Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers
Abstract
:Featured Application
Abstract
1. Introduction
2. Fabrication Techniques and Design Considerations of Distributed Bragg Reflectors (DBRs)
2.1. Fabrication Techniques of DBRs
2.2. Optical Design Consideration
2.3. Transport Properties: Electrical and Thermal Conductivities
3. Epitaxial DBRs for GaN Vertical Cavity Surface-Emitting Lasers (VCSELs)
3.1. Al(Ga)N/GaN DBRs
3.2. AlInN/GaN DBRs
4. Non-Epitaxial DBRs for GaN VCSELs
4.1. Dielectric DBRs through Substrate Removal
4.2. Non-Epitaxial DBRs through Epitaxial Lateral Overgrowth (ELO)
4.3. Non-Epitaxial DBRs through Substrate Thinning and Curved Dielectric Mirrors
5. Airgap and Porous DBRs—A New Approach to Epitaxial DBR
5.1. GaN/Air Gap DBR
5.2. Nanoporous GaN/GaN DBRs
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Yoshioka, S.; Kinoshita, S. Wavelength–selective and anisotropic light–diffusing scale on the wing of the Morpho butterfly. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 581–587. [Google Scholar] [CrossRef]
- Lee, R.T.; Smith, G.S. Detailed electromagnetic simulation for the structural color of butterfly wings. Appl. Opt. 2009, 48, 4177–4190. [Google Scholar] [CrossRef]
- Zi, J.; Yu, X.; Li, Y.; Hu, X.; Xu, C.; Wang, X.; Liu, X.; Fu, R. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. USA 2003, 100, 12576–12578. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir 2008, 24, 4114–4119. [Google Scholar] [CrossRef]
- Yao, H.-B.; Ge, J.; Mao, L.-B.; Yan, Y.-X.; Yu, S.-H. 25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications. Adv. Mater. 2014, 26, 163–188. [Google Scholar] [CrossRef]
- De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M. Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices Microstruct. 2009, 46, 84–89. [Google Scholar] [CrossRef]
- Caprio, G.D.; Coppola, G.; Stefano, L.D.; Stefano, M.D.; Antonucci, A.; Congestri, R.; Tommasi, E.D. Shedding light on diatom photonics by means of digital holography. J. Biophotonics 2014, 7, 341–350. [Google Scholar] [CrossRef]
- Vukusic, P.; Sambles, J.R. Corrigendum: Photonic structures in biology. Nature 2004, 429, 680. [Google Scholar] [CrossRef]
- Cartwright, H.; Turner, A.F. Minutes of the Washington, D.C. Meeting, April 27–29, 1939. Phys. Rev. 1939, 55, 1109–1147. [Google Scholar]
- Dimmick, G.L. A New Dichroic Reflector and its Application to Protocell Monitoring Systems. J. Soc. Motion Pict. Eng. 1942, 38, 36–44. [Google Scholar] [CrossRef]
- Banning, M. Practical Methods of Making and Using Multilayer Filters. JOSA 1947, 37, 792–797. [Google Scholar] [CrossRef]
- Ogura, M.; Hata, T.; Kawai, N.J.; Yao, T. GaAs/AlxGa1–xAs Multilayer Reflector for Surface Emitting Laser Diode. Jpn. J. Appl. Phys. 1983, 22, L112. [Google Scholar] [CrossRef]
- Tai, K.; Fischer, R.J.; Seabury, C.W.; Olsson, N.A.; Huo, T.D.; Ota, Y.; Cho, A.Y. Room-temperature continuous-wave vertical-cavity surface-emitting GaAs injection lasers. Appl. Phys. Lett. 1989, 55, 2473–2475. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jewell, J.L.; Scherer, A.; McCall†, S.L.; Harbison, J.P.; Florez, L.T. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett. 1989, 25, 1377–1378. [Google Scholar] [CrossRef] [Green Version]
- Koyama, F. Recent Advances of VCSEL Photonics. J. Light. Technol. 2006, 24, 4502–4513. [Google Scholar] [CrossRef]
- VCSEL Market Worth 3.89 Billion USD by 2023. Available online: https://www.marketsandmarkets.com/PressReleases/vcsel.asp (accessed on 10 March 2019).
- Someya, T.; Werner, R.; Forchel, A.; Catalano, M.; Cingolani, R.; Arakawa, Y. Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities. Science 1999, 285, 1905–1906. [Google Scholar] [CrossRef]
- Zhou, H.; Diagne, M.; Makarona, E.; Nurmikko, A.V.; Han, J.; Waldrip, K.E.; Figiel, J.J. Near ultraviolet optically pumped vertical cavity laser. Electron. Lett. 2000, 36, 1777–1779. [Google Scholar] [CrossRef]
- Lu, T.-C.; Kao, C.-C.; Kuo, H.-C.; Huang, G.-S.; Wang, S.-C. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl. Phys. Lett. 2008, 92, 141102. [Google Scholar] [CrossRef]
- Higuchi, Y.; Omae, K.; Matsumura, H.; Mukai, T. Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. Appl. Phys. Express 2008, 1, 121102. [Google Scholar] [CrossRef]
- Perry, D.L. Low-Loss Multilayer Dielectric Mirrors. Appl. Opt. 1965, 4, 987–991. [Google Scholar] [CrossRef]
- Baumeister, P. Optical Coating Technology; SPIE Press: Bellingham, WA, USA, 2004; ISBN 978-0-8194-5313-6. [Google Scholar]
- Iga, K.; Koyama, F.; Kinoshita, S. Surface emitting semiconductor lasers. IEEE J. Quantum Electron. 1988, 24, 1845–1855. [Google Scholar] [CrossRef]
- Soda, H.; Iga, K.; Kitahara, C.; Suematsu, Y. GaInAsP/InP Surface Emitting Injection Lasers. Jpn. J. Appl. Phys. 1979, 18, 2329. [Google Scholar] [CrossRef]
- Soda, H.; Motegi, Y.; Iga, K. GaInAsP/InP surface emitting injection lasers with short cavity length. IEEE J. Quantum Electron. 1983, 19, 1035–1041. [Google Scholar] [CrossRef]
- Iga, K.; Ishikawa, S.; Ohkouchi, S.; Nishimura, T. Room temperature pulsed oscillation of GaAlAs/GaAs surface emitting junction laser. IEEE J. Quantum Electron. 1985, 21, 663–668. [Google Scholar] [CrossRef]
- Iga, K.; Kinoshita, S.; Koyama, F. Microcavity GalaAs/GaAs surface-emitting laser with Ith = 6 mA. Electron. Lett. 1987, 23, 134–136. [Google Scholar] [CrossRef]
- Koyama, F.; Uenohara, H.; Sakaguchi, T.; Iga, K. GaAlAs/GaAs MOCVD Growth for Surface Emitting Laser. Jpn. J. Appl. Phys. 1987, 26, 1077. [Google Scholar] [CrossRef]
- Singh, J.; Bajaj, K.K. Theoretical investigations of the nature of the normal and inverted GaAs–AlGaAs structures grown by molecular beam epitaxy. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1984, 2, 576–581. [Google Scholar] [CrossRef]
- Sakaki, H.; Noda, T.; Hirakawa, K.; Tanaka, M.; Matsusue, T. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 1987, 51, 1934–1936. [Google Scholar] [CrossRef]
- Sakaki, H.; Tanaka, M.; Yoshino, J. One Atomic Layer Heterointerface Fluctuations in GaAs-AlAs Quantum Well Structures and Their Suppression by Insertion of Smoothing Period in Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 1985, 24, L417. [Google Scholar] [CrossRef]
- Egorov, A.Y.; Kovsh, A.R.; Ustinov, V.M.; Zhukov, A.E.; Kop’ev, P.S.; Tu, C.W. A thermodynamic analysis of the growth of III–V compounds with two volatile group V elements by molecular-beam epitaxy. J. Cryst. Growth 1998, 188, 69–74. [Google Scholar] [CrossRef]
- Liang, B.W.; Tu, C.W. A kinetic model for As and P incorporation behaviors in GaAsP grown by gas-source molecular beam epitaxy. J. Appl. Phys. 1993, 74, 255–259. [Google Scholar] [CrossRef]
- Johnson, K.; Hibbs-Brenner, M.; Hogan, W.; Dummer, M.; Dogubo, K.; Berg, G. Record high temperature high output power red VCSELs. SPIE 2011, 7952, 795208. [Google Scholar]
- Westphalen, R.; Landgren, G.; Stalnacke, B.; Beccard, R. Improved homogeneity of LP-MOVPE grown InP/GaInAsP heterostructure for DBR using an optimized liner and susceptor arrangement. In Proceedings of the Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99) (Cat. No. 99CH36362), Davos, Switzerland, 16–20 May 1999; pp. 139–142. [Google Scholar]
- Hou, H.Q.; Chui, H.C.; Choquette, K.D.; Hammons, B.E.; Breiland, W.G.; Geib, K.M. Highly uniform and reproducible vertical-cavity surface-emitting lasers grown by metalorganic vapor phase epitaxy with in situ reflectometry. IEEE Photonics Technol. Lett. 1996, 8, 1285–1287. [Google Scholar] [CrossRef]
- Asom, M.T.; Geva, M.; Leibenguth, R.E.; Chu, S.N.G. Interface disorder in AlAs/(Al)GaAs Bragg reflectors. Appl. Phys. Lett. 1991, 59, 976–978. [Google Scholar] [CrossRef]
- Zhang, Z.; von Würtemberg, R.M.; Berggren, J.; Hammar, M. Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors. Appl. Phys. Lett. 2007, 91, 101101. [Google Scholar] [CrossRef]
- Schneider, R.P.; Lott, J.A. InAIP/InAlGaP distributed Bragg reflectors for visible vertical cavity surface-emitting lasers. Appl. Phys. Lett. 1993, 62, 2748–2750. [Google Scholar] [CrossRef]
- Tuttle, G.; Kavanaugh, J.; McCalmont, S. (Al,Ga)Sb long-wavelength distributed Bragg reflectors. IEEE Photonics Technol. Lett. 1993, 5, 1376–1379. [Google Scholar] [CrossRef]
- Duan, X.; Huang, Y.; Shang, Y.; Wang, J.; Ren, X. High-efficiency dual-absorption InGaAs/InP photodetector incorporating GaAs/AlGaAs Bragg reflectors. Opt. Lett. 2014, 39, 2447–2450. [Google Scholar] [CrossRef]
- Vučković, J.; Pelton, M.; Scherer, A.; Yamamoto, Y. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics. Phys. Rev. A 2002, 66, 023808. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mashanovitch, M.L. Diode Lasers and Photonic Integrated Circuits, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; Available online: https://www.wiley.com/en-us/Diode+Lasers+and+Photonic+Integrated+Circuits%2C+2nd+Edition-p-9780470484128 (accessed on 19 February 2019).
- Carlin, J.-F.; Ilegems, M. High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN. Appl. Phys. Lett. 2003, 83, 668–670. [Google Scholar] [CrossRef]
- Wilmsen, C.W.; Coldren, L.A.; Temkin, H. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications; Cambridge University Press: Cambridge, UK, 2001; ISBN 978-0-521-00629-3. [Google Scholar]
- Mishkat-Ul-Masabih, S.; Leonard, J.; Cohen, D.; Nakamura, S.; Feezell, D. Techniques to reduce thermal resistance in flip-chip GaN-based VCSELs. Phys. Status Solidi A 2017, 214, 1600819. [Google Scholar] [CrossRef]
- Mei, Y.; Xu, R.-B.; Xu, H.; Ying, L.-Y.; Zheng, Z.-W.; Zhang, B.-P.; Li, M.; Zhang, J. A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures. Semicond. Sci. Technol. 2017, 33, 015016. [Google Scholar] [CrossRef] [Green Version]
- Forman, C.A.; Lee, S.; Young, E.C.; Kearns, J.A.; Cohen, D.A.; Leonard, J.T.; Margalith, T.; DenBaars, S.P.; Nakamura, S. Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers. SPIE 2018, 10532, 105321C. [Google Scholar]
- Zhou, P.; Cheng, J.; Schaus, C.F.; Sun, S.Z.; Zheng, K.; Armour, E.; Hains, C.; Hsin, W.; Myers, D.R.; Vawter, G.A. Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD. IEEE Photonics Technol. Lett. 1991, 3, 591–593. [Google Scholar] [CrossRef]
- Piprek, J.; Troger, T.; Schroter, B.; Kolodzey, J.; Ih, C.S. Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors. IEEE Photonics Technol. Lett. 1998, 10, 81–83. [Google Scholar] [CrossRef]
- Sugimoto, M.; Kosaka, H.; Kurihara, K.; Ogura, I.; Numai, T.; Kasahara, K. Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed Bragg reflectors. Electron. Lett. 1992, 28, 385–387. [Google Scholar] [CrossRef]
- Lear, K.L.; Schneider, R.P. Uniparabolic mirror grading for vertical cavity surface emitting lasers. Appl. Phys. Lett. 1996, 68, 605–607. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, S.A.; Lear, K.L.; Killeen, K.P. Low resistance wavelength-reproducible p-type (Al,Ga)As distributed Bragg reflectors grown by molecular beam epitaxy. Appl. Phys. Lett. 1993, 62, 1585–1587. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Fuutagawa, N.; Izumi, S.; Murayama, M.; Narui, H. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth. Phys. Status Solidi A 2016, 213, 1170–1176. [Google Scholar] [CrossRef]
- Gherasimova, M.; Cui, G.; Ren, Z.; Su, J.; Wang, X.-L.; Han, J.; Higashimine, K.; Otsuka, N. Heteroepitaxial evolution of AlN on GaN Grown by metal-organic chemical vapor deposition. J. Appl. Phys. 2004, 95, 2921–2923. [Google Scholar] [CrossRef]
- Pastrňák, J.; Roskovcová, L. Refraction Index Measurements on AlN Single Crystals. Phys. Status Solidi B 1966, 14, K5–K8. [Google Scholar] [CrossRef]
- Barker, A.S.; Ilegems, M. Infrared Lattice Vibrations and Free-Electron Dispersion in GaN. Phys. Rev. B 1973, 7, 743–750. [Google Scholar] [CrossRef]
- Khan, M.A.; Kuznia, J.N.; Van Hove, J.M.; Olson, D.T. Reflective filters based on single-crystal GaN/AlxGa1−xN multilayers deposited using low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 1991, 59, 1449–1451. [Google Scholar] [CrossRef]
- Redwing, J.M.; Loeber, D.A.S.; Anderson, N.G.; Tischler, M.A.; Flynn, J.S. An optically pumped GaN–AlGaN vertical cavity surface emitting laser. Appl. Phys. Lett. 1996, 69, 1–3. [Google Scholar] [CrossRef]
- Nakada, N.; Ishikawa, H.; Egawa, T.; Jimbo, T. Suppression of Crack Generation in GaN/AlGaN Distributed Bragg Reflector on Sapphire by the Insertion of GaN/AlGaN Superlattice Grown by Metal-Organic Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2003, 42, L144. [Google Scholar] [CrossRef]
- Han, J.; Waldrip, K.E.; Lee, S.R.; Figiel, J.J.; Hearne, S.J.; Petersen, G.A.; Myers, S.M. Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers. Appl. Phys. Lett. 2000, 78, 67–69. [Google Scholar] [CrossRef]
- Krestnikov, I.L.; Lundin, W.V.; Sakharov, A.V.; Semenov, V.A.; Usikov, A.S.; Tsatsul’nikov, A.F.; Alferov, Z.I.; Ledentsov, N.N.; Hoffmann, A.; Bimberg, D. Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface-emitting laser. Appl. Phys. Lett. 1999, 75, 1192–1194. [Google Scholar] [CrossRef]
- Nakada, N.; Ishikawa, H.; Egawa, T.; Jimbo, T.; Umeno, M. MOCVD growth of high reflective GaN/AlGaN distributed Bragg reflectors. J. Cryst. Growth 2002, 237–239, 961–967. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Iyer, S.; Iliopoulos, E.; Sampath, A.V.; Cabalu, J.; Moustakas, T.D.; Friel, I. High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2002, 20, 1229–1233. [Google Scholar] [CrossRef]
- Natali, F.; Byrne, D.; Dussaigne, A.; Grandjean, N.; Massies, J.; Damilano, B. High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy. Appl. Phys. Lett. 2003, 82, 499–501. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Schmult, S.; Manfra, M.J.; Siegrist, T.; Weimann, N.G.; Sergent, A.M.; Molnar, R.J. High-reflectivity ultraviolet AlGaN/AlGaN distributed Bragg reflectors. Appl. Phys. Lett. 2006, 88, 171101. [Google Scholar] [CrossRef]
- Kao, C.-C.; Peng, Y.C.; Yao, H.H.; Tsai, J.Y.; Chang, Y.H.; Chu, J.T.; Huang, H.W.; Kao, T.T.; Lu, T.C.; Kuo, H.C.; et al. Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector. Appl. Phys. Lett. 2005, 87, 081105. [Google Scholar] [CrossRef]
- Diagne, M.; He, Y.; Zhou, H.; Makarona, E.; Nurmikko, A.V.; Han, J.; Waldrip, K.E.; Figiel, J.J.; Takeuchi, T.; Krames, M. Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction. Appl. Phys. Lett. 2001, 79, 3720–3722. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Lu, T.-C.; Kuo, H.-C.; Wang, S.-C.; Lo, M.-H.; Lau, K.M. HRTEM investigation of high-reflectance AlN/GaN distributed Bragg-reflectors by inserting AlN/GaN superlattice. J. Cryst. Growth 2009, 311, 3089–3092. [Google Scholar] [CrossRef]
- Kim, K.S.; Saxler, A.; Kung, P.; Razeghi, M.; Lim, K.Y. Determination of the band-gap energy of Al1−xInxN grown by metal–organic chemical-vapor deposition. Appl. Phys. Lett. 1997, 71, 800–802. [Google Scholar] [CrossRef]
- Han, J.; Figiel, J.J.; Petersen, G.A.; Myers, S.M.; Crawford, M.H.; Banas, M.A. Metal-Organic Vapor-Phase Epitaxial Growth and Characterization of Quaternary AlGaInN. Jpn. J. Appl. Phys. 2000, 39, 2372. [Google Scholar] [CrossRef]
- Butté, R.; Carlin, J.-F.; Feltin, E.; Gonschorek, M.; Nicolay, S.; Christmann, G.; Simeonov, D.; Castiglia, A.; Dorsaz, J.; Buehlmann, H.J.; et al. Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. Appl. Phys. 2007, 40, 6328–6344. [Google Scholar] [CrossRef]
- Carlin, J.-F.; Dorsaz, J.; Feltin, E.; Butté, R.; Grandjean, N.; Ilegems, M.; Laügt, M. Crack-free fully epitaxial nitride microcavity using highly reflective AlInN/GaN Bragg mirrors. Appl. Phys. Lett. 2005, 86, 031107. [Google Scholar] [CrossRef]
- Cosendey, G.; Castiglia, A.; Rossbach, G.; Carlin, J.-F.; Grandjean, N. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl. Phys. Lett. 2012, 101, 151113. [Google Scholar] [CrossRef]
- Krost, A.; Berger, C.; Bläsing, J.; Franke, A.; Hempel, T.; Dadgar, A.; Christen, J. Strain evaluation in AlInN/GaN Bragg mirrors by in situ curvature measurements and ex situ x-ray grazing incidence and transmission scattering. Appl. Phys. Lett. 2010, 97, 181105. [Google Scholar] [CrossRef]
- Berger, C.; Dadgar, A.; Bläsing, J.; Lesnik, A.; Veit, P.; Schmidt, G.; Hempel, T.; Christen, J.; Krost, A.; Strittmatter, A. Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality. J. Cryst. Growth 2015, 414, 105–109. [Google Scholar] [CrossRef]
- Kozuka, Y.; Ikeyama, K.; Yasuda, T.; Takeuchi, T.; Kamiyama, S.; Iwaya, M.; Akasaki, I. Growths of AlInN Single Layers and Distributed Bragg Reflectors for VCSELs. MRS Online Proc. Libr. Arch. 2015, 1736. [Google Scholar] [CrossRef]
- Ikeyama, K.; Kozuka, Y.; Matsui, K.; Yoshida, S.; Akagi, T.; Akatsuka, Y.; Koide, N.; Takeuchi, T.; Kamiyama, S.; Iwaya, M.; et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Appl. Phys. Express 2016, 9, 102101. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, T.; Kamiyama, S.; Iwaya, M.; Akasaki, I. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors. Rep. Prog. Phys. 2018, 82, 012502. [Google Scholar] [CrossRef]
- Yoshida, S.; Ikeyama, K.; Yasuda, T.; Furuta, T.; Takeuchi, T.; Iwaya, M.; Kamiyama, S.; Akasaki, I. Electron and hole accumulations at GaN/AlInN/GaN interfaces and conductive n-type AlInN/GaN distributed Bragg reflectors. Jpn. J. Appl. Phys. 2016, 55, 05FD10. [Google Scholar] [CrossRef]
- Kuramoto, M.; Kobayashi, S.; Akagi, T.; Tazawa, K.; Tanaka, K.; Saito, T.; Takeuchi, T. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide. Appl. Phys. Lett. 2018, 112, 111104. [Google Scholar] [CrossRef]
- Song, Y.-K.; Diagne, M.; Zhou, H.; Nurmikko, A.V.; Schneider, R.P.; Takeuchi, T. Resonant-cavity InGaN quantum-well blue light-emitting diodes. Appl. Phys. Lett. 2000, 77, 1744–1746. [Google Scholar] [CrossRef]
- Onishi, T.; Imafuji, O.; Nagamatsu, K.; Kawaguchi, M.; Yamanaka, K.; Takigawa, S. Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature. IEEE J. Quantum Electron. 2012, 48, 1107–1112. [Google Scholar] [CrossRef]
- Holder, C.; Speck, J.S.; DenBaars, S.P.; Nakamura, S.; Feezell, D. Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers. Appl. Phys. Express 2012, 5, 092104. [Google Scholar] [CrossRef]
- Cai, W.; Yuan, J.; Ni, S.; Shi, Z.; Zhou, W.; Liu, Y.; Wang, Y.; Amano, H. GaN-on-Si resonant-cavity light-emitting diode incorporating top and bottom dielectric distributed Bragg reflectors. Appl. Phys. Express 2019, 12, 032004. [Google Scholar] [CrossRef]
- Kasahara, D.; Morita, D.; Kosugi, T.; Nakagawa, K.; Kawamata, J.; Higuchi, Y.; Matsumura, H.; Mukai, T. Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature. Appl. Phys. Express 2011, 4, 072103. [Google Scholar] [CrossRef]
- Wong, W.S.; Sands, T.; Cheung, N.W.; Kneissl, M.; Bour, D.P.; Mei, P.; Romano, L.T.; Johnson, N.M. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 1999, 75, 1360–1362. [Google Scholar] [CrossRef]
- Leonard, J.T.; Cohen, D.A.; Yonkee, B.P.; Farrell, R.M.; Margalith, T.; Lee, S.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett. 2015, 107, 011102. [Google Scholar] [CrossRef]
- Nam, O.-H.; Bremser, M.D.; Zheleva, T.S.; Davis, R.F. Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 1997, 71, 2638–2640. [Google Scholar] [CrossRef]
- Nurmikko, A.V.; Song, Y.-K. Blue/Ultraviolet/Green Vertical Cavity Surface Emitting Laser Employing Lateral Edge Overgrowth (LEO) technique. U.S. Patent 6233267B1, 15 May 2001. [Google Scholar]
- Izumi, S.; Fuutagawa, N.; Hamaguchi, T.; Murayama, M.; Kuramoto, M.; Narui, H. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth. Appl. Phys. Express 2015, 8, 062702. [Google Scholar] [CrossRef]
- Kapolnek, D.; Keller, S.; Vetury, R.; Underwood, R.D.; Kozodoy, P.; Den Baars, S.P.; Mishra, U.K. Anisotropic epitaxial lateral growth in GaN selective area epitaxy. Appl. Phys. Lett. 1997, 71, 1204–1206. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Tanaka, M.; Mitomo, J.; Nakajima, H.; Ito, M.; Ohara, M.; Kobayashi, N.; Fujii, K.; Watanabe, H.; Satou, S.; et al. Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror. Sci. Rep. 2018, 8, 10350. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kim, J.; Jeon, H.; Sakong, T.; Lee, S.-N.; Chae, S.; Park, Y.; Jeong, C.-H.; Yeom, G.-Y.; Cho, Y.-H. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme. Appl. Phys. Lett. 2003, 83, 2121–2123. [Google Scholar] [CrossRef]
- Debusmann, R.; Dhidah, N.; Hoffmann, V.; Weixelbaum, L.; Brauch, U.; Graf, T.; Weyers, M.; Kneissl, M. InGaN–GaN Disk Laser for Blue-Violet Emission Wavelengths. IEEE Photonics Technol. Lett. 2010, 22, 652–654. [Google Scholar] [CrossRef]
- Wunderer, T.; Northrup, J.E.; Yang, Z.; Teepe, M.; Strittmatter, A.; Johnson, N.M.; Rotella, P.; Wraback, M. In-well pumping of InGaN/GaN vertical-external-cavity surface-emitting lasers. Appl. Phys. Lett. 2011, 99, 201109. [Google Scholar] [CrossRef]
- Mende, J.; Spindler, G.; Speiser, J.; Giesen, A. Concept of neutral gain modules for power scaling of thin-disk lasers. Appl. Phys. B 2009, 97, 307. [Google Scholar] [CrossRef]
- Hu, E.L.; Minsky, M.S. Photoelectrochemical Wet Etching of Group III Nitrides. U.S. Patent 5773369A, 30 June 1998. [Google Scholar]
- Sharma, R.; Haberer, E.D.; Meier, C.; Hu, E.L.; Nakamura, S. Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching. Appl. Phys. Lett. 2005, 87, 051107. [Google Scholar] [CrossRef]
- Sharma, R.; Choi, Y.-S.; Wang, C.-F.; David, A.; Weisbuch, C.; Nakamura, S.; Hu, E.L. Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors. Appl. Phys. Lett. 2007, 91, 211108. [Google Scholar] [CrossRef]
- Bellanger, M.; Bousquet, V.; Christmann, G.; Baumberg, J.; Kauer, M. Highly Reflective GaN-Based Air-Gap Distributed Bragg Reflectors Fabricated Using AlInN Wet Etching. Appl. Phys. Express 2009, 2, 121003. [Google Scholar] [CrossRef]
- Xiong, C.; Edwards, P.R.; Christmann, G.; Gu, E.; Dawson, M.D.; Baumberg, J.J.; Martin, R.W.; Watson, I.M. High-reflectivity GaN/air vertical distributed Bragg reflectors fabricated by wet etching of sacrificial AlInN layers. Semicond. Sci. Technol. 2010, 25, 032001. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Han, J. High reflectance membrane-based distributed Bragg reflectors for GaN photonics. Appl. Phys. Lett. 2012, 101, 221104. [Google Scholar] [CrossRef]
- Tao, R.; Arita, M.; Kako, S.; Arakawa, Y. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities. Appl. Phys. Lett. 2013, 103, 201118. [Google Scholar] [CrossRef]
- Thompson, G.E.; Wood, G.C. Porous anodic film formation on aluminium. Nature 1981, 290, 230. [Google Scholar] [CrossRef]
- Parkhutik, V.P.; Shershulsky, V.I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. Appl. Phys. 1992, 25, 1258–1263. [Google Scholar] [CrossRef]
- Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173–1175. [Google Scholar] [CrossRef]
- Beale, M.I.J.; Benjamin, J.D.; Uren, M.J.; Chew, N.G.; Cullis, A.G. An experimental and theoretical study of the formation and microstructure of porous silicon. J. Cryst. Growth 1985, 73, 622–636. [Google Scholar] [CrossRef]
- Smith, R.L.; Collins, S.D. Porous silicon formation mechanisms. J. Appl. Phys. 1992, 71, R1–R22. [Google Scholar] [CrossRef]
- Zhang, X.G. Morphology and Formation Mechanisms of Porous Silicon. J. Electrochem. Soc. 2004, 151, C69–C80. [Google Scholar] [CrossRef]
- Hasse, G.; Christophersen, M.; Carstensen, J.; Föll, H. New Insights into Si Electrochemistry and Pore Growth by Transient Measurements and Impedance Spectroscopy. Phys. Status Solidi A 2000, 182, 23–29. [Google Scholar] [CrossRef]
- Konstantinov, A.O.; Harris, C.I.; Janzén, E. Electrical properties and formation mechanism of porous silicon carbide. Appl. Phys. Lett. 1994, 65, 2699–2701. [Google Scholar] [CrossRef]
- Ke, Y.; Devaty, R.P.; Choyke, W.J. Self-Ordered Nanocolumnar Pore Formation in the Photoelectrochemical Etching of 6H SiC. Electrochem. Solid-State Lett. 2007, 10, K24–K27. [Google Scholar] [CrossRef]
- Ke, Y.; Devaty, R.P.; Choyke, W.J. Comparative columnar porous etching studies on n-type 6H SiC crystalline faces. Phys. Status Solidi B 2008, 245, 1396–1403. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, H.; Han, J. Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism. J. Appl. Phys. 2012, 112, 064303. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Q.; Leung, B.; Simon, J.; Lee, M.L.; Han, J. The fabrication of large-area, free-standing GaN by a novel nanoetching process. Nanotechnology 2010, 22, 045603. [Google Scholar] [CrossRef]
- Zhang, C.; Park, S.H.; Chen, D.; Lin, D.-W.; Xiong, W.; Kuo, H.-C.; Lin, C.-F.; Cao, H.; Han, J. Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example. ACS Photonics 2015, 2, 980–986. [Google Scholar] [CrossRef]
- Lee, S.-M.; Gong, S.-H.; Kang, J.-H.; Ebaid, M.; Ryu, S.-W.; Cho, Y.-H. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector. Opt. Express 2015, 23, 11023–11030. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Liu, Y.; Ding, T.; Fu, W.Y.; Jarman, J.; Ren, C.X.; Kumar, R.V.; Oliver, R.A. Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification. Sci. Rep. 2017, 7, 45344. [Google Scholar] [CrossRef] [Green Version]
- Mishkat-Ul-Masabih, S.; Luk, T.S.; Rishinaramangalam, A.; Monavarian, M.; Nami, M.; Feezell, D. Nanoporous distributed Bragg reflectors on free-standing nonpolar m-plane GaN. Appl. Phys. Lett. 2018, 112, 041109. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Xiao, H.; Cao, D.; Zhao, C.; Shen, L.; Ma, J. Fabrication, annealing, and regrowth of wafer-scale nanoporous GaN distributed Bragg reflectors. Scr. Mater. 2018, 156, 10–13. [Google Scholar] [CrossRef]
- Braniste, T.; Monaico, E.; Martin, D.; Carlin, J.-F.; Popa, V.; Ursaki, V.V.; Grandjean, N.; Tiginyanu, I.M. Multilayer porous structures on GaN for the fabrication of Bragg reflectors. SPIE 2017, 10248, 102480R. [Google Scholar]
- Zhang, C.; Xiong, K.; Yuan, G.; Han, J. A resonant-cavity blue–violet light-emitting diode with conductive nanoporous distributed Bragg reflector. Phys. Status Solidi A 2017, 214, 1600866. [Google Scholar] [CrossRef]
- Shiu, G.-Y.; Chen, K.-T.; Fan, F.-H.; Huang, K.-P.; Hsu, W.-J.; Dai, J.-J.; Lai, C.-F.; Lin, C.-F. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors. Sci. Rep. 2016, 6, 29138. [Google Scholar] [CrossRef] [Green Version]
- Sumirat, I.; Ando, Y.; Shimamura, S. Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J. Porous Mater. 2006, 13, 439–443. [Google Scholar] [CrossRef]
- Romano, G.; Grossman, J.C. Phonon bottleneck identification in disordered nanoporous materials. Phys. Rev. B 2017, 96, 115425. [Google Scholar] [CrossRef]
- Mishkat-Ul-Masabih, S.M.; Aragon, A.A.; Monavarian, M.; Luk, T.S.; Feezell, D.F. Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors. Appl. Phys. Express 2019, 12, 036504. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; ElAfandy, R.; Han, J. Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers. Appl. Sci. 2019, 9, 1593. https://doi.org/10.3390/app9081593
Zhang C, ElAfandy R, Han J. Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers. Applied Sciences. 2019; 9(8):1593. https://doi.org/10.3390/app9081593
Chicago/Turabian StyleZhang, Cheng, Rami ElAfandy, and Jung Han. 2019. "Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers" Applied Sciences 9, no. 8: 1593. https://doi.org/10.3390/app9081593
APA StyleZhang, C., ElAfandy, R., & Han, J. (2019). Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers. Applied Sciences, 9(8), 1593. https://doi.org/10.3390/app9081593