# High-Precision Light Spot Position Detection in Low SNR Condition Based on Quadrant Detector

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of QD Characteristics

## 3. Direct Detection Method

## 4. Improved Detection Method

#### 4.1. Modulation of Beacon Light

#### 4.2. Kalman Filtering

## 5. Experiment Results

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Nikulin, V.V.; Khandeka, R.M.; Agile, J.S. Acousto-optic tracking system for free space optical communications. Opt. Eng.
**2008**, 47, 064301. [Google Scholar] [CrossRef] - Fan, X.; Zhang, L.; Tong, S.; Song, Y.; Jiang, L. Influence of sky background light on space laser communication system. Laser Optoelectron. Prog.
**2017**, 54, 102–110. [Google Scholar] - Fitzsimons, E.D.; Bogenstahl, J.; Hough, J.; Killow, C.J.; Perreur-Lloyd, M.; Robertson, D.I.; Ward, H. Precision absolute positional measurement of laser beams. Appl. Opt.
**2013**, 52, 2527–2530. [Google Scholar] [CrossRef] [PubMed] - Wu, J.; Zhao, B.; Wu, Z. Improved measurement accuracy of the spot position on an InGaAs quadrant detector by introducing Boltzmann function. In Proceedings of the International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, 16–18 July 2015; pp. 183–185. [Google Scholar]
- Liu, Z.; Steele, J.M.; Lee, H.; Zhang, X. Tuning the focus of a plasmonic lens by the incident angle. Appl. Phys. Lett.
**2006**, 88, 171108. [Google Scholar] [CrossRef] - Dang, L.P.; Tang, S.G.; Zhou, Z. Characteristic Analysis and Optimization of Quadrant Detector Output Signal. Opto-Electron. Eng.
**2010**, 37, 1–6. [Google Scholar] - Chen, M.; Yang, Y.; Jia, X.; Gao, H. Investigation of positioning algorithm and method for increasing the linear measurement range for four-quadrant detector. Optik
**2013**, 124, 6806–6809. [Google Scholar] [CrossRef] - Zhu, Y.; Li, M.; Tang, G.; Jiang, W. Noise analysis of photon counting quadrant detector. Opto-Electron. Eng.
**1999**, 26, 1–7. [Google Scholar] - Wang, G. Optical Axis Deviation Detection Technique based on the Balanced Detector. Ms.C. Thesis, Institute of Optics and Electronics, Chinese Academy of Sciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Anssi, M. Position-Sensitive Devices and Sensor Systems for Optical Tracking and Displacement Sensing Application. Ph.D. Thesis, Faculty of Technology, University of Oulu, Oulu, Finland, 2000. Available online: http://jultika.oulu.fi/files/isbn9514257804.pdf (accessed on 20 March 2019).
- Shen, C. The Development of Photon Beam Position Monitor System Based on Four-Quadrant Detector; University of Science and Technology of China: Hefei, China, 2009. [Google Scholar]
- Zhao, X.; Tong, S.; Jiang, H. Experimental testing on characteristics of four-quadrant detector. Opt. Precis. Eng.
**2010**, 18, 2164–2170. [Google Scholar] - Li, Q.; Xu, S.; Yu, J.; Yan, L.; Huang, Y. An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication. Sensors
**2019**, 19, 175. [Google Scholar] [CrossRef] - Talebi, S.P.; Kanna, S.; Mandic, D.P. A distributed quaternion Kalman filter with applications to smart grid and target tracking. IEEE Trans. Signal Inf. Process. Netw.
**2016**, 2, 477–488. [Google Scholar] [CrossRef] - Olfati-Saber, R. Distributed Kalman filtering for sensor networks. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 5492–5498. [Google Scholar]
- Qi, W.-J.; Zhang, P.; Nie, G.-H.; Deng, Z.-L. Robust weighted fusion kalman predictors with uncertain noise variances. Digit Signal Process.
**2014**, 30, 37–54. [Google Scholar] [CrossRef] - Cattivelli, F.; Sayed, A.H. Diffusion distributed Kalman filtering with adaptive weights. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–4 November 2009. [Google Scholar]
- Jiang, T.; Matei, I.; Baras, J.S. A trust based distributed Kalman filtering approach for mode estimation in power systems. In Proceedings of the Workshop on Secure Control Systems, Stockholm, Sweden, 12 April 2010. [Google Scholar]

**Figure 5.**(

**a**) The input modulated signals; (

**b**) the input modulated signals which are zoomed in on to see the details.

**Figure 6.**(

**a**) The calculated x coordinate curves using the two methods (10 points Kalman filtering); (

**b**) the absolute errors using the two methods (10 points Kalman filtering).

**Figure 7.**(

**a**) The calculated x coordinate curves using the two methods (40 points Kalman filtering); (

**b**) the absolute errors using the two methods (40 points Kalman filtering).

**Figure 8.**(

**a**) The calculated x coordinate curves using the two methods (80 points Kalman filtering); (

**b**) the absolute errors using the two methods (80 points Kalman filtering).

Points | Proposed Method | Direct Method |
---|---|---|

10 | 0.0062 mm | 0.0101 mm |

40 | 0.0053 mm | |

80 | 0.0049 mm |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yu, J.; Li, Q.; Li, H.; Wang, Q.; Zhou, G.; He, D.; Xu, S.; Xia, Y.; Huang, Y.
High-Precision Light Spot Position Detection in Low SNR Condition Based on Quadrant Detector. *Appl. Sci.* **2019**, *9*, 1299.
https://doi.org/10.3390/app9071299

**AMA Style**

Yu J, Li Q, Li H, Wang Q, Zhou G, He D, Xu S, Xia Y, Huang Y.
High-Precision Light Spot Position Detection in Low SNR Condition Based on Quadrant Detector. *Applied Sciences*. 2019; 9(7):1299.
https://doi.org/10.3390/app9071299

**Chicago/Turabian Style**

Yu, Jiawei, Qing Li, Hongwei Li, Qiang Wang, Guozhong Zhou, Dong He, Shaoxiong Xu, Yunxia Xia, and Yongmei Huang.
2019. "High-Precision Light Spot Position Detection in Low SNR Condition Based on Quadrant Detector" *Applied Sciences* 9, no. 7: 1299.
https://doi.org/10.3390/app9071299