Quantum Classification Algorithm Based on Competitive Learning Neural Network and Entanglement Measure
Abstract
:1. Introduction
2. Quantum Competitive Learning
3. Qubits and Quantum Gates
3.1. Qubit
3.2. Quantum Gates
4. Methodology
- Prepare two copies of the two-qubit state given by Equation (2) as follows:
- gate is applied between the second and the forth qubits, respectively, followed by the rotation R gate as follows:
5. The proposed Quantum Classification Algorithm Based on Competitive Learning and Entanglement Measure: Case Study
Algorithm 1 The proposed Quantum Classification Algorithm based on Competitive Learning and Entanglement Measure (QCPNN). |
|
5.1. Case Study
5.1.1. Quantum-Storing Layer Using Zhou’s Storage Model
- Step 1: The quantum system is initialized by the three registers , and as = . Assuming that the input state is given by , where the first pattern in Equation (9) is considered, so the initial state can be described as = .
- Step 2: = where is the toffli gate (Equation (1)).
- Step 3: =
- Step 4: =
- Step 6: =
- Step 7: =
- Step 8: =
5.1.2. Classification an Input Using the Proposed Algorithm
- Initialization Step:Here, the input register is , is the memory register that holds the prototypes patterns and its state is given by Equation (11), and is initialized by the state . Due to the input, test, pattern has two well known values in the first and third qubits, so . Therefore, the state of the system is described as follows:
- Apply the competitive detection operator between the input register and the prototype register as .
- Apply the Toffoli-gate between qubits of the register and the qubit as control qubits and target qubit, respectively.Hence, the state of the two-qubit system is
- Repeat the steps 1, 2 and 3 to get another decoupled copy of the state .
- Apply the operator on the state yields the state:Here, it is obvious that the probability of the state , , or is non-zero, so according to Equation (7) the concurrence value . Then, the test pattern belongs to the class label “1”.
6. Application
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hagan, M.; Demuth, H.; Beale, M. Neural Network Design; PWS publishing Company: Boston, MA, USA, 1996. [Google Scholar]
- Feynman, R. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467. [Google Scholar] [CrossRef]
- Jha, P.K.; Eleuch, H.; Rostovtsev, Y.V. Coherent control of Atomic Excitation using Off-resonant Strong Few-cycle Pulses. Phys. Rev. 2010, 82, 045805. [Google Scholar] [CrossRef]
- Mohamed, A.-B.; Eleuch, H. Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D 2015, 69, 191. [Google Scholar] [CrossRef]
- Sete, E.A.; Svidzinsky, A.A.; Rostovtsev, Y.V.; Eleuch, H.; Jha, P.K.; Suckewer, S.; Scully, M.O. Using Quantum Coherence to Generate Gain in the XUV and X-Ray: Gain-Swept Superradiance and Lasing Without Inversion. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 541–553. [Google Scholar] [CrossRef]
- Sete, E.A.; Eleuch, H.; Das, S. Semiconductor cavity QED with squeezed light: Nonlinear regime. Phys. Rev. 2011, 84, 053817. [Google Scholar] [CrossRef]
- Berrada, K.; Abdel-Khalek, S.; Eleuch, H.; Hassouni, Y. Beam splitting and entanglement generation: Excited coherent states. Quantum Inf. Process. 2013, 12, 69–82. [Google Scholar] [CrossRef]
- Kak, S.C. Quantum Neural Computing. Adv. Imaging Electron. Phys. 1995, 94, 259–314. [Google Scholar]
- Ventura, D.; Martinez, T. Quantum Associative Memory. Inf. Sci. 2000, 124, 273–296. [Google Scholar] [CrossRef]
- Trugenberger, C.A. Probabilistic quantum memories. Phys. Rev. 2001, 87, 067901. [Google Scholar] [CrossRef]
- Guptaa, S.; Ziab, R.K.P. Quantum Neural Networks. J. Comput. Syst. Sci. 2001, 63, 355–383. [Google Scholar] [CrossRef] [Green Version]
- De Paula Neto, F.M.; Ludermir, T.B.; de Oliveira, W.R.; da Silva, A.J. Quantum Perceptron with Dynamic Internal Memory. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Xu, Y.; Zhang, X.; Gai, H. Quantum Neural Networks for Face Recognition Classifier. Procedia Eng. 2011, 15, 1319–1323. [Google Scholar] [CrossRef] [Green Version]
- Siomau, M. A quantum model for autonomous learning automata. Quantum Inf. Process. 2014, 13, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Paparo, G.D.; Dunjko, V.; Makmal, A.; Martin-Delgado1, M.A.; Briegel, H.J. Quantum Speedup for Active Learning Agents. Phys. Rev. 2014, 4, 031002. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayshiy, I.; Petruccione, F. The quest for a quantum Neural Network. Quantum Inf. Process. 2014, 13, 2567–2586. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. Simulating a perceptron on a quantum computer. Phys. Lett. 2015, 379, 660–663. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.J.; Ludermir, T.B.; de Oliveira, W.R. Quantum perceptron over a field and neural network architecture seclection in a quantum computer. Neural Netwo. 2016, 76, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Cao, Y.; Yang, S.; Xu, X. Quantum Storage Network. In Proceedings of the 3rd International Conference on Natural Computation (ICNC), Haikou, Hainan, China, 24–27 August 2007. [Google Scholar]
- Zhou, R. Quantum Competitive Neural Network. Int. J. Theor. Phys. 2010, 49, 110–119. [Google Scholar] [CrossRef]
- Altaisky, M.V. Quantum Neural Networks. Available online: https://arxiv.org/abs/quant-ph/0107012 (accessed on 5 July 2001).
- Ventura, D. Implementing competitive learning in a quantum system. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’99), Washington, DC, USA, 10–16 July 1999; pp. 462–466. [Google Scholar]
- Fei, L.; Baoyu, Z. A study of quantum neural networks. Neural Netw. Signal Process. IEEE 2003, 1, 539–542. [Google Scholar]
- Zhou, R.; Qin, L.; Jiang, N. Quantum perceptron network. LNCS 2006, 4131, 651–657. [Google Scholar]
- Zhou, R.; Ding, Q.; Quantum, M.P. Neural network. Int. J. Theor. Phys. 2007, 46, 3209–3215. [Google Scholar] [CrossRef]
- Li, P.; Xiao, H. Model and algorithm of Quantum-inspired Neural Network with Sequence Input based on Controlled Rotation Gates. Appl. Intell. 2014, 40, 107. [Google Scholar] [CrossRef]
- Shang, F. Quantum-inspired neural network with quantum weights and real Weights. Open J. Appl. Sci. 2015, 5, 609–617. [Google Scholar] [CrossRef]
- Cao, M.; Li, P. Quantum-inspired neural networks with applications. Int. J. Comput. Inf. Technol. 2014, 3, 83–92. [Google Scholar]
- Li, Z.; Li, P. Quantum-Inspired Neural Network with Sequence Input. Open J. Appl. Sci. 2015, 5, 259–269. [Google Scholar] [CrossRef]
- Mahajan, R.P. Hybrid Quantum Inspired Neural Model for Commodity Price Prediction. In Proceedings of the ICACT, Seoul, Korea, 13–16 February 2011; pp. 1353–1357. [Google Scholar]
- Bhattacharyya, S.; Bhattacharjee, S.; Mondal, N.K. A Quantum Backpropagation Multilayer Perceptron (QBMLP) for Predicting Iron Adsorption Capacity of Calcareous Soil from Aqueous Solution. Appl. Soft Comput. 2015, 27, 299–312. [Google Scholar] [CrossRef]
- Sagheer, A.; Zidan, M. Autonomous Quantum Perceptron Neural Network. arXiv 2013, arXiv:1312.4149. Available online: https://arxiv.org/abs/1312.4149 (accessed on 15 December 2013).
- Zidan, M.; Abdel-Aty, A.; El-Sadek, A.; Zanaty, E.A.; Abdel-Aty, M. Low-Cost Autonomous Perceptron Neural Network Inspired by Quantum Computation. AIP Conf. Proc. 2017, 1905, 020005. [Google Scholar]
- Li, P.; Xiao, H.; Shang, F.; Tong, X.; Li, X.; Cao, M. A hybrid quantum-inspired neural networks with sequence inputs. Neurocomputing 2013, 117, 81–90. [Google Scholar] [CrossRef]
- Xiao, H.; Cao, M. Hybrid Quantum Neural Networks Model Algorithm and Simulation. In Proceedings of the 5th International Conference on Natural Computation, Tianjin, China, 14–16 August 2009; pp. 164–168. [Google Scholar]
- Panchi, L.; Shiyong, L. Learning Algorithm and Application of Quantum BP Neural Networks based on universal quantum gates. Syst. Eng. Electron. 2008, 19, 167–174. [Google Scholar] [CrossRef]
- Zidan, M.; Sagheer, A.; Metwally, N. An Autonomous Competitive Learning Algorithm using Quantum Hamming Neural Networks. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–7. [Google Scholar]
- Rojas, R. Unsupervised Learning and Clustering Algorithms, Neural Networks; Springer-Verlag: Berlin, Germany, 1996. [Google Scholar]
- Zhong, Y.; Yuan, C. Quantum Competition Network Model Based On Quantum Entanglement. J. Comput. 2012, 7, 2312–2317. [Google Scholar] [CrossRef]
- Grover, L.K. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 1997, 79, 325. [Google Scholar] [CrossRef]
- Sagheer, A.; Metwally, N. Communication via Quantum Neural Networks. In Proceedings of the 2nd World Congress on Nature and Biologically Inspired Computing, NaBIC, Fukuoka, Japan, 15–17 December 2010; pp. 418–422. [Google Scholar]
- Huang, Z.M.; Qiu, D.W. Geometric quantum discord under noisy environment. Quantum Inf. Process. 2016, 15, 1979. [Google Scholar] [CrossRef]
- Mohamed, A.B. Non-local correlation and quantum discord in two atoms in the non-degenerate model. Ann. Phys. 2012, 327, 3130–3137. [Google Scholar] [CrossRef]
- Luo, S. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. 2008, 77, 022301. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of corre- lations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Luo, S.; Fu, S. Geometric measure of quantum discord. Phys. Rev. 2010, 82, 034302. [Google Scholar] [CrossRef]
- Barzanjeh, S.; Eleuch, H. Dynamical behavior of entanglement in semiconductor microcavities. Phys. E 2010, 42, 2091–2096. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y.B. Concurrence Measurement for the Two-Qubit Optical and Atomic States. Entropy 2015, 17, 4293. [Google Scholar] [CrossRef]
- Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. 2002, 65, 032314. [Google Scholar] [CrossRef]
- Islam, R.; Ma, R.; Preiss, P.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Greine, M. Measuring entanglement entropy in a quantum many-body system. Nature 2015, 528, 48. [Google Scholar] [CrossRef]
- Romero, G.; López, C.E.; Lastra, F.; Solano, E.; Retamal, J.C. Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. 2007, 75, 032303. [Google Scholar] [CrossRef]
- Walborn, S.P.; Ribeior, P.H.S.; Davidovich, L.; Mintert, F.; Buchleitner, A. Experimental determination of entanglement with a single measurement. Nature 2006, 440, 1022. [Google Scholar] [CrossRef] [PubMed]
- Zidan, M.; Abdel-Aty, A.; Younes, A.; Zanaty, E.A.; El-khayat, I.; Abdel-Aty, M. A Novel Algorithm based on Entanglement Measurement for Improving Speed of Quantum Algorithms. Appl. Math. Inf. Sci. 2018, 12, 265–269. [Google Scholar] [CrossRef]
- El-Wazan, K.; Younes, A.; Doma, S.B. A Quantum Algorithm for Testing Junta Variables and Learning Boolean Functions via Entanglement Measure. arXiv, 2017; arXiv:1710.10495. [Google Scholar]
- El-Wazan, K. A Measuring Hamming Distance between Boolean Functions via Entanglement Measure. arXiv, 2019; arXiv:1903.04762. [Google Scholar]
- Hong-Fu, W.; Shou, Z. Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state. Chin. Phys. B 2009, 18, 2642. [Google Scholar] [CrossRef]
- Wootters, W.K.; Zurek, W.H. A Single Quantum Cannot be Cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Cheon, S.W.; Chang, S.H.; Chung, H.Y.; Bien, Z.N. Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants. IEEE Trans. Nucl. Sci. 1993, 40, 11–20. [Google Scholar] [CrossRef]
- Maa, J.; Jiang, J. Applications of fault detection and diagnosis methods in nuclear power plants: A review. Prog. Nucl. Energy 2011, 53, 255–266. [Google Scholar] [CrossRef]
Alarm Signal | Description |
---|---|
Bearing flow low | |
Thermal barrier flow low | |
No.1 seal differential pressure low | |
Standpipe level low | |
Charging pump flow low | |
No.1 seal leak off flow low | |
Bearing temperature high | |
Seal injection flow low | |
No.1 Seal leak off flow high | |
Seal injection filter differential pressure high | |
Standpipe level high | |
Thermal barrier temperature high |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zidan, M.; Abdel-Aty, A.-H.; El-shafei, M.; Feraig, M.; Al-Sbou, Y.; Eleuch, H.; Abdel-Aty, M. Quantum Classification Algorithm Based on Competitive Learning Neural Network and Entanglement Measure. Appl. Sci. 2019, 9, 1277. https://doi.org/10.3390/app9071277
Zidan M, Abdel-Aty A-H, El-shafei M, Feraig M, Al-Sbou Y, Eleuch H, Abdel-Aty M. Quantum Classification Algorithm Based on Competitive Learning Neural Network and Entanglement Measure. Applied Sciences. 2019; 9(7):1277. https://doi.org/10.3390/app9071277
Chicago/Turabian StyleZidan, Mohammed, Abdel-Haleem Abdel-Aty, Mahmoud El-shafei, Marwa Feraig, Yazeed Al-Sbou, Hichem Eleuch, and Mahmoud Abdel-Aty. 2019. "Quantum Classification Algorithm Based on Competitive Learning Neural Network and Entanglement Measure" Applied Sciences 9, no. 7: 1277. https://doi.org/10.3390/app9071277
APA StyleZidan, M., Abdel-Aty, A.-H., El-shafei, M., Feraig, M., Al-Sbou, Y., Eleuch, H., & Abdel-Aty, M. (2019). Quantum Classification Algorithm Based on Competitive Learning Neural Network and Entanglement Measure. Applied Sciences, 9(7), 1277. https://doi.org/10.3390/app9071277