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Abstract: In this paper, we develop a novel classification algorithm that is based on the integration
between competitive learning and the computational power of quantum computing. The proposed
algorithm classifies an input into one of two binary classes even if the input pattern is incomplete.
We use the entanglement measure after applying unitary operators to conduct the competition
between neurons in order to find the winning class based on wining-take-all. The novelty of the
proposed algorithm is shown in its application to the quantum computer. Our idea is validated via
classifying the state of Reactor Coolant Pump of a Risky Nuclear Power Plant and compared with
other quantum-based competitive neural networks model.

Keywords: quantum classification models; quantum neural netweorks; competitive Learnings

1. Introduction

Quantum neural networks (QNNs) is a research domain that proposes neural network models
based on quantum computing postulates [1]. One of the main advantages of classical artificial neural
networks (CANNs) is its ability to perform computations in parallel [2]. However implementing
CANNs on traditional computers does not offer this advantage. Traditional computers allow
computations based on the bit value that is either ”0” or ”1”. R. Feynman suggested that performing
that quantum computation is also perfectly possible at the quantum bit (qubit) level [3] on the
grounds of the superposition phenomenon. In fact, quantum computations are based on quantum
correlations [4–7], particularly, quantum entanglement [8]. Therefore, the learning phase is expected to
be much faster than CANNs due to quantum parallelism.
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The birth of QNNs was in 1995 with Kak who tried to link CANNs to quantum mechanics [9].
Consequently, several researchers proposed various models and algorithms of CANNs that attempt to
harness the principles of quantum computing and quantum information theory [1]. These algorithms
are classified into three main categories. The first category is called QNN’s algorithms [10–21]. They are
based on quantum mechanics postulates [1] and can be implemented only on quantum computers. The
second category is ANNs that are inspired by quantum computing, and exploits some mathematical
aspects of quantum information and quantum computation to speed up the learning process of
CANNs [22–34]. However, this kind of ANNs can be implemented only on classical computers rather
than physical quantum computers. Finally, the third category of these algorithms is a hybrid model
that combines QNNs and CANNs in such a way that some calculations are performed on quantum
computers, then based on the outputs of measurement operations, the remaining calculations are
performed on classical computers [35–38].

Competitive learning is one of the unsupervised learning techniques that is inspired by biological
brains [2]. This type of learning allows for competition among neurons, and ends with a single winner
neuron. The winning neuron has the most similar pattern to an input test pattern. Because this
competition allows only one neuron to be a winner, it is called winner-take-all competition. This
competition is often used in Hamming neural networks [2,39] which is used to solve some classification
problems intractable for other CANNs. There are four models proposed to implement quantum
competitive learning, two of these models are not applicable on physical quantum systems [23,38],
while the other two models have unreliable results [21,40]. To overcome the defects of the previous
models, we exploit the power of quantum computing to propose a novel quantum classifier by
harnessing both the superposition and entanglement to implement competitive learning on quantum
systems. In this paper, we propose a novel quantum classification model that exploits the superposition
property to allow the competition between the neurons by applying the CNOT-gate, between the
register of the input pattern and the register that stores prototypes patterns, and applying the quantum
NOT-gate on the register that stores prototypes patterns. Then the Toffli-gate is used to mark the wining
neuron that represents that class. This winning neuron could have zero value state, |0〉, or one value
state, |1〉. So, in order to find the value of the wining neuron, we need to implement the winner-take-all
technique. To implement this technique, we propose to use one of the entanglement measures called
concurrence, so that if the wining neuron has zero value state |0〉, then the corresponding value
of concurrence is zero. Conversely, if the wining neuron has one value state |1〉, then the value of
concurrence is one. Due to the proposed classification model harnesses the superposition property of
quantum mechanics, it outperforms the classical model in two ways. First, it performs the competition
between neurons exponentially faster than classical competitive neural networks. Second, the proposed
model uses Zhou’s storage model [20] to store the prototypes patterns, therefore the storage capacity is
increased exponentially compared to classical models. The proposed model also recognizes the wining
class by quantifying the concurrence value that is more accurate than Zhou’s quantum model [21] that
recalls the state of the wining pattern with probability 1

M , where M is the number of the prototypes
patterns. The efficiency of the proposed model is verified by using the dataset of Risky Nuclear Power
Plant to identify the state of the Reactor Coolant Pump (RCP), and to classify it into one of two classes,
low-risk (labeled as class “0”) or high-risk (labeled as class “1”). Then, the classification accuracy of
the proposed model is compared with the classification accuracy of Zhou’s model [21].

This paper is organized as follows: Section 2 reviews the related work of quantum competitive
learning. In Section 3, we briefly review some basic quantum concepts and the quantum gates that will
be used to propose the quantum competitive model. In Section 4, we demonstrate the methodology
used to apply winner-take-all using quantum aspects. Section 5 explains the proposed algorithm and
shows how can be applied on a case study. Section 6 discusses the experimental results and shows
the effectiveness of the proposed algorithm to classify a real-world dataset based on the principle
of competitive learning. Finally, Section 7 concludes the paper and presents some possible research
perspectives.
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2. Quantum Competitive Learning

A well-known learning technique in ANNs is competitive learning. The technique is useful for
classification applications and has the potential to implement associative memory for a set of predefined
patterns. Competitive learning is inspired in biological neural networks, and accommodates ANNs
based on a neural configurations where only one neuron fires, winner-take-all, at a tine at a given
iteration. In competitive learning, a neuron will be a winner if it has the largest weighted input
compared with the other neurons in the competitive layer. Several neural network algorithms based on
the competitive learning were proposed such as the Hamming neural network (HNN), self-organizing
feature map (SOM) and learning vector quantization (LVQ) [2].

HNN is used to find the degree of similarity between an input vector and the weight vector of
each neuron in the network. HNN consists of two layers L1 and L2. L1 is called the input matching
layer, while L2 is called the competitive layer. The Hamming distance between an input pattern and
prototype patterns is calculated via Layer, whereas the most matched storage pattern to the input
pattern is obtained based on the rule of minimum distance, via L2 layer. Figure 1 shows the topology
structure of the classical HNN.

Figure 1. The topology structure of classical hamming neural networks.

Four models of competitive learning based on quantum properties have been proposed to
maximize the efficiency of classical competitive neural networks. The first model was developed
in 1999 by Ventura [23], who proposed a competitive learning algorithm inspired by the properties
of quantum computing to be implemented on traditional computers only. Moreover, the learning
algorithm of this model requires to be adapted with threshold parameter depending on the application
at hand. The second model, developed by Zhou [20,21] in 2007, established the quantum algorithm
that stores a set of predefined patterns in the memory of n neurons. This model increases the storage
capacity of the neurons exponentially in contrast to classical neurons. Then, in 2010, Zhou proposed
a quantum version of competitive CANNs that comprised two phases. The first phase is the storing
phase, and is used to store the patterns in the neurons of the competitive ANNs. In the second phase,
the competitive phase, Zhou proposed a quantum algorithm that allows the competition between
neurons when an input pattern is presented to the network [21]. The primary defect of Zhou’s
competitive model [21] that the wining pattern is decided with low probability, because this model
recalls the wining pattern based on decreased probability of the undesired patterns. Therefore, the
probability of the wining pattern is decreased as the number of the stored patterns increases in the
storing phase [38]. Zhong and Yuan proposed the third model of quantum competitive learning
using Grover’s algorithm [41]. This is in order to perform the competition between the neurons to
recall the wining pattern when an incomplete pattern is presented to their model [40]. They showed
that recalling pseudo-patterns is inevitable on their competitive model [40]. The final model was
developed in 2015 is called HQNN model [38]. In this model, competitive learning is conducted as
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a hybrid of quantum and classical computation so that the competitive phase is performed on two
competitive layers. The first layer allows competitions between neurons using quantum gates, where
the second layer uses nonlinear operation to find the winning neuron based on the winner-take-all
technique. Unlike the Ventura model [23], HQNN model [38] does not have a threshold parameter,
and unlike Zhou’s model [21], it recalls the winning pattern only and discards the undesired patterns.
Additionally, HQNN model does not recall pseudo patterns as Zhong’s and Yuan’s model does [38],
however, it cannot be fully implemented in real quantum computers because the winning pattern is
only retrievable using classical operation.

3. Qubits and Quantum Gates

3.1. Qubit

The fundamental element in quantum computer is called quantum bit (qubit). It stores information
based on the superposition phenomena [1] of “0” and “1”, in the form

|φ〉 = µ|0〉+ λ|1〉,

the coefficients µ,λ are complex numbers where |µ|2 + |λ|2 = 1. After the measurement process, the
state of the qubit |φ〉 collapses into a state |0〉 or a state |1〉 with probability |µ|2 or |λ|2, respectively.

3.2. Quantum Gates

According to quantum mechanics postulates [1], the evolution of the quantum systems is allowed
only through unitary operators. An arbitrary operator A is unitary if and only if AA† = A† A = I,
where A† = (A∗)T . So, quantum gates are unitary operators. So far, quantum computations are
performed practically through the quantum circuit model. The proposed competitive algorithm
uses quantum negation gate X, CNOT gate and finally the Toffoli-gate. The quantum negation gate,
X = |1〉〈0| + |0〉〈1|, negates the state of a qubit. CNOT gate, CNOT|u, v〉 = |u, (u + v) mod 2〉, is
acting on two qubits together one of them is the control qubit, and the other is the target qubit. This
gate negates the state of the target qubit only if the state of the control qubit is ”1”. On the other hand,
Toffoli gate (T2) acts up on three qubits, two of which are used as control qubits, and the third is the
target qubit. The whole gate is described as follows [42]:

T2|uvw >= |uv, (w + (u.v))mod2〉,

In other words, Toffoli gate (T2) negates the third qubit only if the first two qubits are in the state
|11〉. The general form of applying the Toffoli gate (T j) on j + 1 qubits is defined as:

T j|u1u2...ujuj+1 >= |u1u2...uj, (uj+1 +
j

∏
p=1

up)mod2〉, (1)

where the superscript j represents the number of control qubits. Toffoli (T j) gate negates the indexed
qubit uj+1 only if the first j qubits are in the state |11...1〉. These gates will be used to propose the
quantum classification algorithm based on competitive neural network (see Section 5).

4. Methodology

Entanglement is a type of the quantum correlations [6,43–48] that distinguishes the behavior of
quantum mechanics. A two-qubit system becomes an entangled states if the state of one qubit cannot
be separated from the state of the other. Entanglement cannot be detected directly, so entanglement
measures [49–51] were proposed to determine the degree of entanglement in a quantum system.
Various measurements are proposed to measure the strength of the entanglement between two-qubit
systems such as concurrence, witness, and negativity among others [50,52,53]. However, the strength
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of entanglement in a two-qubit system is often measured using concurrence measure [50,51]. An
arbitrary, pure two-qubit state has the form

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (2)

its concurrence measure is defined theoretically as follows [54]:

C = 2|αδ− γβ|, (3)

where 0 ≤ C ≤ 1. It is obvious that if the state of the two-qubit system is defined by the state
α|00〉+ β|11〉, the concurrence value becomes 2|αβ| [55]. Concurrence measure operator, denoted Mz,
was proposed to solve some quantum computation problems [56]. For example, some researchers
used this operator to increase the computational speed for testing junta variables [57] and measuring
the Hamming distance between boolean functions [58] quantum mechanically. The circuit model of
Mz operator was proposed as shown in Figure 2 when applied on arbitrary two qubits |u〉 and |v〉.
The state of the qubit |v〉 is initialized in the vacuum state |0〉 and the state of the qubit |u〉 is arbitrary.
The Mz is a unitary operator that applies the CNOT gate between the qubits |u〉 and |v〉 followed by
measuring the degree of entanglement in between through the operator D. The Mz operator creates
the entangled state |uv〉 = α|00〉+ δ|11〉, then it measures the concurrence between the qubits |u〉 and
|v〉 as C > 0 through the operator D only if the input qubit |u〉 is in the state |u〉 = α|0〉+ δ|1〉, while it
leaves them disentangled in the state |uv〉 = |00〉, then it measures the concurrence value in between
as C = 0 through the operator D only if the input qubit |u〉 is in the state |u〉 = |0〉.

|u〉 • D

|v〉 D

Figure 2. Quantum circuit of Mz operator when applied on two qubits u and v, where u is the control
qubit and v is the target qubit.

Some suggestions to implement the operator D using experimental setups are depicted in [51,55,59].
However, concretely in this paper, we propose to implement the operator D in the operator Mz using
Romero et al. protocol [54]. This protocol implements Equation (3) quantum mechanically, and the
circuit model of this protocol is depicted in Figure 3. This protocol requires two copies of the two-qubit
pure state given by Equation (2). This protocol is summarized in the following steps:

1. Prepare two copies of the two-qubit state given by Equation (2) as follows:

|η0〉 = |ψ〉(σy ⊗ σy|ψ〉).

2. CNOT gate is applied between the second and the forth qubits, respectively, followed by the
rotation R gate as follows:

|η1〉 = R CNOTη02 η04
|η0〉,

where the subscripts in the CNOTη02 η04
gate represent the control and the target gate, respectively.

However, the unitary R gate rotate the state of the qubit as follows:

R|0〉 = |0〉 − |1〉√
2

, R|1〉 = |0〉+ |1〉√
2

.
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Therefore, the state of the system is as follows:

|η1〉 = 1√
2
{ (βγ− αδ)|0000〉+ (βγ + αδ)|0100〉+ (αγ− βδ)|0001〉 − (αγ + βδ)|0101〉+ 2γδ|1100〉
−2αβ|0110〉+ (β2 − α2)|0011〉+ (β2 + α2)|0111〉+ (γ2 − δ2)|1001〉 − (γ2 + δ2)|1101〉
+(βγ− αδ)|1010〉 − (βγ + αδ)|1110〉+ (αγ + βδ)|1111〉 − (αγ− βδ)|1011〉}.

(4)

Comparing Equation (3) and Equation (4), we obtain

C = 2
√

2P0000 or C = 2
√

2P1010 , (5)

where P0000 and P1010 are the success probability for obtaining the state |0000〉 and |1010〉,
respectively.

end.

So, taking this into account, our proposal to implement the operator D using Romero et al.
circuit [54], transforms the circuit model of the Mz operator from Figures 2–4. It is obvious that Mz

operator applies two main operations. In the first operation, the CNOT gate is applied on each replica
of the two-qubit systems |u〉 and |v〉 as the control qubit and as a target qubit, respectively. Accordingly,
there are two cases:

(i) The state of each replica of the two-qubit |uv〉 system will be entangled, |uv〉 = α|00〉+ δ|11〉,
only if |u〉 = α|0〉+ δ|1〉. Consequently, when the second operation of the operator Mz operator is
applying the operator D on the state |uv〉 ⊗ |uv〉 as shown in Figure 4. Therefore, the state of the
system is as follows:

|η1〉 = 1√
2
{−αδ|0000〉+ αδ|0100〉 − α2|0011〉 − αδ|1010〉+ α2|0111〉 − δ2|1001〉 − δ2|1101〉 − αδ|1110〉}. (6)

Comparing Equation (3) and Equation (6), we obtain

C = 2
√

2P0000, C = 2
√

2P0100, C = 2
√

2P1010 or C = 2
√

2P1110. (7)

Then the concurrence can be estimated using one of the formulas shown in Equation (7).

(ii) On the other hand, the state of the system will be separable in the state |uv〉 = |00〉 if the
state of the qubit |u〉 is |0〉. Again, when the second operation of the operator Mz operator is applying
the operator D on the state |uv〉 ⊗ |uv〉 as shown in Figure 4. Therefore, the state of the system is
as follows:

|η1〉 =
1√
2
{−α2|0011〉+ α2|0111〉}. (8)

So, in this case the concurrence value is C = 0. Eventually, the operator D in Mz operator
measures the concurrence value between the two qubits |u〉 and |v〉, by estimating the probability of
obtaining the probability of the state |0000〉, |0100〉, |1010〉, or |1110〉, therefore the concurrence value
is given by Equation (7). Mz will be used in the last step int the proposed algorithm (see Section 5).
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|u〉

|v〉 • R

|u〉 σy

|v〉 σy

Figure 3. The circuit model of Romero et al. [54] protocol to measure the entanglement between
two qubits defined by the state given by Equation (2). By feeding two copies of the state given by
Equation (2) to this circuit model. The protocol applies a controlled-not (CNOT) gate between the
qubits indexed by 2 and 4, respectively. The σy gate is applied on the third and fourth qubits and
followed by the rotation gate R, therefore the measurement process is performed on the four qubits.

|u〉 •

|v〉 • R

|u〉 • σy

|v〉 σy

Figure 4. The circuit model of Mz operator using Romero et al. [54] protocol for implementing the
operator D.

5. The proposed Quantum Classification Algorithm Based on Competitive Learning and
Entanglement Measure: Case Study

Quantum competitive neural networks consists of two layers namely quantum-storing layer and
quantum-competitive layer [21,38]. Quantum-storing layer stores M defined prototype patterns in
advance with equal probabilities via n neurons using the Zhou’s storage model (for more details see
Section 5.1). Here, we propose the quantum classification algorithm based on competitive neural
network. As for the quantum-competitive layer, the QCPNN algorithm classifies the input pattern into
one of two classes ”0” or ”1”. In this layer, the steps of the QCPNN algorithm conduct a competition
between the prototype patterns to mark, by entanglement, the class of the closest prototype pattern to
the input pattern. Eventually, to determine the winning class based on winner-take-all property, Mz

operator output only the winning class based on the value of the concurrence. The steps of the QCPNN
algorithm are shown in Algorithm 1. According to step 1, the quantum system is initialized by three
quantum registers, arranged as |inp, qn, uv〉. In step 2, when an input pattern is presented to QCPNN
algorithm via register |inp〉, the competition process is performed by detecting the overlapping qubits
between the register |inp〉 and the register |qn〉, by applying the CNOT gate followed by the negation
quantum gate X. Hence, the winning class, which is entangled with the matched pattern, is marked
by entanglement via applying the Toffoli-gate T j+1 in step 3. This gate flips the state of the qubit |u〉
to state |1〉 if the winning class is “1”, therefore, the state of the qubit |u〉 =

√
M−1

M |0〉+
√

1
M |1〉. On

the other hand, the gate T j+1 leaves the state of the qubit |u〉 with no effect if the winning class is “0”,
therefore, the state of the qubit |u〉 = |0〉.
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Algorithm 1 The proposed Quantum Classification Algorithm based on Competitive Learning and
Entanglement Measure (QCPNN).

For an input pattern inp do{
1. Initialization Step: |ψ0〉 = |inp, qn, uv〉.
Here, the quantum system is initialized by three quantum registers |inp〉, |qn〉 and |uv〉 of size n,
n + 1 and 2 qubits, respectively. The register |qn〉 represents the memory register that holds the
prototype patterns, while |u〉 and |v〉 are the states of the other qubits. The first n qubits of the
register |qn〉 store the M prototype patterns, and the last qubit stores the class of the associated
pattern. The input pattern that has a set h of j elements, where (j≤n) is presented to the network via
the register |inp〉. The set h contains the indices of the qubits that have well known values. Finally,
|uv〉 is a two-qubit control register which are initialized by state |00〉.
2. Apply the competitive detection operator between the input register |inp〉 and the prototype
register |qn〉 as follows:

|ψ1〉 = ∏
i∈h

Xqni CNOTinpiqni |ψ0〉.

In this step, the CNOT gate is applied between each qubit i ∈ h, of the resiter inp as a control qubit
and the corresponding qubit i in the register qn as a target qubit. Then the negation gate X is applied
on each qubit i ∈ h in the register qn.
3. Apply the Toffoli gate between j + 1 qubits of the register |qn〉 as control qubits and the qubit |u〉
as target qubit as follows:

|ψ2〉 = T j+1
(∏i∈h qniqnn+1u)|ψ1〉.

In this step, the Toffoli gate (T j+1) is applied on j + 2 qubits, where the superscript j + 1 represents
the number of control qubits. Toffoli gate (T j+1) negates the qubit u if the state of each qubit i belongs
to the h and the state of the qubit qnn+1 are in the state |1〉.
4. Repeat the steps 1, 2 and 3 to get another copy of |uv〉 because Mz operator needs two copies to
quantify the degree of concurrence in between (see Section 4).

Remark: this step does not violate the non-cloning theorem [60] because when steps 1, 2 and 3 are
repeated, a new different system is initialized in the first step and when the second and third steps
are applied then a new copy of |uv〉 is created, independently, without cloning the original state.
5. Apply the operator Mz, shown in Figure 4, on the two copies of the state |uv〉 and quantify
the probability of the state |0000〉, |0100〉, |1010〉 or |1110〉 and use Equation (7) to quantify the
concurrence value C.

if C = 0 then
inp ∈ class label "0".

Else if C > 0 then
inp ∈ 1 class label "1".

} End.

In step 4, steps 1, 2 and 3 are repeated to generate a duplicate of the two-qubit system |uv〉 that
does not violate the non-cloning theorem [60], because Mz operator requires two copies to quantify
the degree of concurrence between the qubits |u〉 and |v〉 as explained in Section 4. Finally, in step 5,
the Mz operator is applied on the two copies of |uv〉 to test the presence of entanglement between |u〉
and |v〉 by estimating the probability of the state |0000〉, |0100〉, |1010〉 or |1110〉 and use Equation (7)
to quantify the concurrence value C. If the concurrence is C = 0, then the winning class is “0”. On the
other hand, if the value of the concurrence is C > 0, then the label of the winning class is “1”.

5.1. Case Study

To explain the proposed algorithm in more detail, we will explain the proposed algorithm on the
following synthesis data set. Suppose that we have a data set from two classes that are labeled “0” and
“1”. The prototype patterns of the class that is labelled by class “1” are three patterns in four attributes
given as 1110, 1100 and 1011, while the prototype patterns of the class label “0”, also, are three patterns
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in four attributes given as 0100, 0010 and 0001. So, the set of the prototype patterns can be written as
follows:

Pt =
{

11101, 11001, 10111, 01000, 00100, 00010
}

, (9)

where in each pattern in the set Pt the first four values represent the attributes of the pattern, while
the last value represents the class label. Assume that we have an incomplete input pattern that has
missing attributes, e.g. inp = 1?0?, the sign “?” means that this pattern is incomplete in the second
and the fourth qubits. To store M, where M = 6, predefined prototype patterns which are given by
Equation (9) with equal probabilities in the quantum-storing layer, we use Zhou’s storage model.

5.1.1. Quantum-Storing Layer Using Zhou’s Storage Model

Zhou’s storage model is initialized by three disentangled registers as follows: |p〉, |qn〉, and |c〉,
the first and the second registers are composed of n qubit, while the third register is called the quantum
control register that is a two-qubit system is initialized with the state |01〉. The register |p〉 is called
the input register that stores the the classical prototype pattern p ∈ Pt into the quantum register |qn〉.
Now lets processed to summarize the “quantum-sorting” in the following eight steps [20,38]:

• Step 1: The quantum system is initialized by the three registers |p〉, |qn〉 and |c〉 as |ψ0〉= |p, qn, c〉.
Assuming that the input state is given by p = 11101, where the first pattern in Equation (9) is
considered, so the initial state can be described as |ψ0〉= |11101, 00000, 01〉.

• Step 2: |ψ1〉=∏n=5
i=1 T2

pic2qni
|ψ0〉 = |11101, 11101, 01〉, where T2 is the toffli gate (Equation (1)).

• Step 3: |ψ2〉=∏n=5
i=1 NOTqni XORpiqni |ψ1〉 = |11101, 11111, 01〉.

• Step 4: |ψ3〉=Tn=5
qn1qn2qn3qn4qn5c1

|ψ2〉 = |11101, 11111, 11〉.

• Step 5: |ψ4〉=S6
c1c2
|ψ3〉 = 1√

6
|11101, 11111, 10〉+

√
5
6 |11101, 11111, 11〉, where S is a Venture and

Martinez’s gate operator [10,20] that is defined as follows:

SJ =


1 0 0 0
0 1 0 0

0 0
√

J−1
J

1√
J

0 0 −1√
J

√
J−1

J

 (10)

where J is the index of the pattern in the patterns set pt.

• Step 6: |ψ5〉=Tn=5
qn1qn2qn3qn4qn5c1

|ψ4〉 = 1√
6
|11101, 11111, 00〉+

√
5
6 |11101, 11111, 01〉.

• Step 7: |ψ6〉=∏n=5
i=1 XORpiqni NOTqni |ψ7 = 1√

6
|11101, 11101, 00〉+

√
5
6 |11101, 11101, 01〉.

• Step 8: |ψ7〉=∏n=5
i=1 T2

pic2qni
|ψ6〉 = 1√

6
|11101, 11101, 00〉+

√
5
6 |11101, 00000, 01〉.

So, it is clear that the pattern |11101〉 is stored in the first term of the quantum system (|ψ7〉).
Since, the value of |c〉 register is |01〉 in the second term of the quantum system |ψ7〉, consequently
the second pattern |11001〉 will be stored in the second term of the quantum system |ψ7〉 when the
quantum-storing algorithm is repeated again. The same procedure will be performed for the remaining
prototype patterns. At the end of this storing phase, we will find both of the registers |p〉 and |c〉 are
separable with the register memory |qn〉. That means the output of the quantum-storing layer using
Zhou’s storage model is the register |qn〉 that stores the prototype patterns of the set Pt in a uniform
superposition as follows:

|qn〉 = 1√
6
(|11101〉+ |11001〉+ |10111〉+ |01000〉+ |00100〉+ |00010〉). (11)
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5.1.2. Classification an Input Using the Proposed Algorithm

Here, we processed to classify the incomplete pattern inp = 1?0? using the proposed algorithm in
Section 5 according to the following steps

1. Initialization Step: |ψ0〉 = |inp, qn, uv〉.
Here, the input register is |inp〉 = |1?0?〉, |qn〉 is the memory register that holds the prototypes
patterns and its state is given by Equation (11), and |uv〉 is initialized by the state |00〉. Due to the
input, test, pattern |inp〉 = |1?0?〉 has two well known values in the first and third qubits, so
h = {1, 3}. Therefore, the state of the system is described as follows:
|ψ0〉 = 1√

6
(|1?0?, 11101, 00〉 + |1?0?, 11001, 00〉 + |1?0?, 10111, 00〉 + |1?0?, 01000, 00〉 +

|1?0?, 00100, 00〉+ |1?0?, 00010, 00〉).
2. Apply the competitive detection operator between the input register |inp〉 and the prototype

register |qn〉 as |ψ1〉 = ∏i∈h={1,3} Xqni CNOTinpiqni |ψ0〉.
|ψ1〉 = 1√

6
(|1?0?, 11001, 00〉 + |1?0?, 11101, 00〉 + |1?0?, 10011, 00〉 + |1?0?, 01100, 00〉 +

|1?0?, 00000, 00〉+ |1?0?, 00110, 00〉).
3. Apply the Toffoli-gate between j + 1 qubits of the register |qn〉 and the qubit |u〉 as control qubits

and target qubit, respectively.

|ψ2〉 = T j+1
(∏i∈h={1,3} qniqnn+1u)|ψ1〉 = T3

(qn1qn3qn5u)|ψ1〉.

|ψ2〉 = 1√
6
(|1?0?, 11001, 00〉 + |1?0?, 11101, 10〉 + |1?0?, 10011, 00〉 + |1?0?, 01100, 00〉 +

|1?0?, 00000, 00〉+ |1?0?, 00110, 00〉). Hence, the state of the two-qubit system |uv〉 is

|uv〉 =
√

5
6
|00〉+ 1√

6
|10〉.

4. Repeat the steps 1, 2 and 3 to get another decoupled copy of the state |uv〉.
5. Apply the operator Mz on the state |uv〉 ⊗ |uv〉 yields the state:

1√
2
{−
√

5
6
|0000〉+

√
5

6
|0100〉 − 5

6
|0011〉 −

√
5

6
|1010〉+ 5

6
|0111〉 − 1

6
|1001〉 − 1

6
|1101〉 −

√
5

6
|1110〉}.

Here, it is obvious that the probability of the state |0000〉, |0100〉,|1010〉 or |1110〉 is non-zero, so
according to Equation (7) the concurrence value C > 0. Then, the test pattern inp = 1?0? belongs
to the class label “1”.

6. Application

To evaluate the efficiency of the proposed algorithm, we conducted a fair comparison with some
of other reported state-of-the-art classification algorithms to classify the state of Reactor Coolant
Pump (RCP) in a risky Nuclear Power Plant (NPP). In the case of plant transients, the process of
optimizing the outage gets more complex based on the neutronic parameters inside the reactor’s core,
and the thermal-hydraulic processes of primary and secondary coolant loops that are governing all the
reactor’s processes. These processes produce a massive stream of data that is processed simultaneously
in a short time. Three Mile Island (TMI) accident is a typical example to illustrate the interference
among the massive number of signals [61]. In TMI accident, the Loss Of Coolant Accident (LOCA)
caused 500 alarms to appear in the first minute and 800 in the second-minute [61]. Instantly, the large
number of alarms affects the psychological control of the human operator, and consequently his/her
ability to reach the correct decision will be impaired. This leads to the operator’s inability to determine
the source of the failure precisely. To minimize the interference caused by these alarms, attention
has been given to provide an intelligent support system [62]. This has been applied in a crucial part
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of the reactor’s operation, i.e Reactor Coolant system (RCS) which is the primary cooling system in
NPPs. RCS consists of four major components: a reactor vessel, the steam generator (SG), RCP and
pressurizer. Here, the efficiency of the proposed QCPNN algorithm is validated via classifying the
state of RCP in a risky NPP.

The state of RCP is characterized via 12 sensors that are reported in Table 1. According to the
history that was recorded in real time during the accident of the Kori-2 PWR, these sensors transmitted
fault signals that were recorded via 41 patterns of different faults. In this experiment, these patterns are
used as prototypes to classify various faults into two type of classes: the high risk and low-risk mode.
The current application requires 26 qubits of a real quantum computer which it is not available for
research so far. So, the experiments are simulated using Java tool on a PC with a configuration 3.1 GHz
Intel(R) Xeon(R) E5-2687 v3, and 64.00 GB RAM on 64-bit OS operating system. We have considered
testing the classification accuracy when the patterns of alarms may appear incomplete assuming that
there is sensors failure.

Table 1. Alarming signals sensors of RCP.

Alarm Signal Description

s1 Bearing flow low
s2 Thermal barrier flow low
s3 No.1 seal differential pressure low
s4 Standpipe level low
s5 Charging pump flow low
s6 No.1 seal leak off flow low
s7 Bearing temperature high
s8 Seal injection flow low
s9 No.1 Seal leak off flow high
s10 Seal injection filter differential pressure high
s11 Standpipe level high
s12 Thermal barrier temperature high

The classification rate of QCPNN is compared with Zhou’s quantum competitive neural network
(QCNN) approach [21], where both techniques are tested under unified experimental conditions. Since
the outcome of both models is stochastic, so we conducted the experiments for 30 runs, each run
consisted of one batch of simulations, and yielded one value for the classification rate. The classification
rate is defined as follows:

Classi f ication rate =
tp + tn

tp + fp + fn + tn
,

where tp, fp, tn, and fn indicate the true positive, false positive, true negative and false negative,
respectively. The mean and standard deviation of the classification rate for the proposed model
(QCPNN), and Zhou’s model (QCNN) are reported in Figure 5. In this figure, red bars indicate mean
values averaged over N = 30 runs, error bars indicate the corresponding standard deviations. It is
clear from Figure 5 that the classification rate of the QCPNN algorithm based on entanglement measure
outmatches the QCNN algorithm. Where, QCNN achieved a classification rate of 3.1% with standard
deviation 2.3%. Conversely, QCPNN achieved 51.0% with standard deviation 2.4% in the classification
rate. Then, we performed t-test between the results of the two models, we got p-value = 3.1753× 10−34,
which is < 0.001, so the difference is highly significant. In this regard, it is lucid from the results of the
classification rate reported in Figure 5, and according to the t-test that the proposed QCPNN model
is highly significantly better and more reliable compared with the competitor model QCNN [21] to
perform pattern classification based on competitive learning quantum mechanically. Consequently, in
this context, four essential remarks may be inferred. The first remark is that the proposed QCPNN
model does not demand the designer to optimize any parameters values to accomplish the learning
process efficiently. In contrast, this is the case in Ventura’s [23] and Zhou’s [21] competitive learning
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models, where the threshold parameter α and the number of control qubits, respectively, must be
optimized in advance. The optimal values of these parameters depend on both the presented data
set and the input patterns. In this regard, this remark assures the generalization of the proposed
QCPNN learning model compared Ventura’s [23] and Zhou’s [21] competitive learning models. The
proposed QCPNN model performs better than that of QCNN [21] in the classification rate. This better
performance of the QCPNN compared to QCNN [21] is because the QCPNN algorithm finds the
winning class by quantifying the degree of entanglement between the two qubits |u〉 and |v〉 which is
an accurate measurement regardless of the value of the coefficients of the basis |00〉 and |11〉. On the

other hand, QCNN finds the wining pattern, which is stored with the probability amplitude
√

1
M , by

minimizing the probabilities of the other patterns. So, as the number of stored patterns M increases,
the probability of the wining pattern decreases. The third remark is that the HQNN model [38] cannot
be implemented completely on real quantum computer in contrast with QCPNN that can be fully
implemented on real quantum computers. The final remark is that the QCPNN model does not recall
pseudo state(s), which is the main defect of Zhong’s and Yuan’s model [40]. As a result, the superiority
of QCPNN is remarkable compared to other Quantum competitive algorithms [21,23,38,40].

Figure 5. Comparison of the classification rates of the proposed model QCPNN and the QCNN
model [21], for classifying the state of RCP in a risky NPP. Red bars indicate mean values averaged
over N = 30 runs, error bars indicate the corresponding standard deviations. The difference is highly
significant (p = 3.1753× 10−34 < 0.001). For both models the number of neurons was set to 13.

7. Conclusions

We have proposed a novel algorithm to perform competitive learning which can be implemented
in quantum computer. The proposed algorithm classifies the state of the incomplete pattern presented
to the network using unitary operations and measuring the degree of the entanglement. Based on
the entanglement measure, the proposed algorithm implements winner-take-all property to classify
the state of the input pattern to one of two classes ”0” and ”1”. The proposed QCPNN algorithm
avoids the defects of other quantum competitive learning algorithms reported in the literature and
applicable to quantum computers. The efficiency of the proposed QHNN algorithm has been tested
via fair evaluation of a classification application. We found that QCPNN is a reliable quantum model
of competitive learning compared to other quantum competitive algorithms [21,23,38,40].
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