An Integrated Computational Approach for Seismic Risk Assessment of Individual Buildings
Abstract
:1. Introduction
2. The SRA Proposed Approach
3. Seismic Action
3.1. EC8-Type Response Spectrum
3.2. Earthquake Scenario
3.2.1. Ground-Motion Prediction Equations
3.2.2. Adjusted Response Spectrum
4. Capacity Curves
- A uniform pattern, proportional to the mass of each degree of freedom, that being ϕn = 1 (Figure 7a);
- a modal-like pattern, which can be proportional to the distance between the base (Figure 7b) and the degree of freedom (DOF), the configuration of the simplified Rayleigh method or corresponding to the configuration of a given computed vibration mode, normally the one with the highest mass participation in the direction where the forces are applied (Figure 7c).
5. Damage Assessment
5.1. N2 Method
- If T* ≥ TC (the medium and long period range), then:
- If T* < TC (the short period range), then:
5.2. Capacity Spectrum Method (CSM)
5.3. Fragility Curves
6. Output Results
7. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Appendix A
- The area (Em*) under the capacity curve corresponding to the limit point (the maximum force of the capacity curve, which is the pair dm*, Fm*) is determined using Equation (13) with .The initial stiffness of the idealized elastic-perfectly plastic structural system will be equal toInstead of computing through Equation (A2) in the developed computer routines it is also possible to obtain this stiffness for a given percentage of the force , as presented in the technical instructions of the NTC2018.Figure A1. Flowchart of the developed algorithm for the iterative N2 method.
- The performance point (the target displacement dti*) of the SDOF system is computed as follows:
- If T* < TC then:
- If T* ≥ TC then dti* = det*:
- The difference ∆dti* between the old performance point and the new performance point is determined. If ∆dti* is higher than a given maximum error, then the area (Eti*) under the capacity curve corresponding to the new target displacement dti* is computed.
- If dti* < dm* then:
- The procedure returns to step 2 until convergence is reached.
Appendix B
- At first, the limit points of the intervals () and () of the performance curve where the target point () is located (Figure A4) are computed by scanning the points of the performance curve.
- Then, a simple iterative process is adopted, until the convergence is reached with the desired error precision:
- If then , otherwise .
- The iterative process is repeated until and is almost exactly 100%.
References
- Augenti, N.; Cosenza, E.; Dolce, M.; Manfredi, G.; Masi, A.; Samela, L. Performance of School Buildings during the 2002 Molise, Italy, Earthquake. Earthq. Spectra 2004, 20, S257–S270. [Google Scholar] [CrossRef]
- Puglia, R.; Vona, M.; Klin, P.; Ladina, C.; Masi, A.; Priolo, E.; Silvestri, F. Analysis of Site Response and Building Damage Distribution Induced by the 31 October 2002 Earthquake at San Giuliano di Puglia (Italy). Earthq. Spectra 2013, 29, 497–526. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Digrisolo, A.; Moroni, C.; Graziotti, F.; Manfredi, V.; Prota, A.; Dolce, M.; Manfredi, G. Remarks on damage and response of school buildings after the Central Italy earthquake sequence. Bull. Earthq. Eng. 2018, 10, 5679–5700. [Google Scholar] [CrossRef]
- Estêvão, J.M.C.; Ferreira, M.A.; Morales-Esteban, A.; Martínez-Álvarez, F.; Fazendeiro-Sá, L.; Requena-García-Cruz, V.; Segovia-Verjel, M.L.; Oliveira, C.S. Earthquake resilient schools in Algarve (Portugal) and Huelva (Spain). In Proceedings of the 16th European Conference on Earthquake Engineering (16ECEE), Thessaloniki, Greece, 18–21 June 2018; pp. 1–11. [Google Scholar]
- Chrysostomou, C.Z.; Kyriakides, N.; Papanikolaou, V.K.; Kappos, A.J.; Dimitrakopoulos, E.G.; Giouvanidis, A.I. Vulnerability assessment and feasibility analysis of seismic strengthening of school buildings. Bull. Earthq. Eng. 2015, 13, 3809–3840. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, X.; Zeng, X.; Xu, Y.; Li, Y. Seismic loss assessment for buildings with various-LOD BIM data. Adv. Eng. Inform. 2019, 39, 112–126. [Google Scholar] [CrossRef]
- Clementi, F.; Quagliarini, E.; Maracchini, G.; Lenci, S. Post-World War II Italian school buildings: Typical and specific seismic vulnerabilities. J. Build. Eng. 2015, 4, 152–166. [Google Scholar] [CrossRef]
- Ventura, C.E.; Bebamzadeh, A.; Fairhurst, M.; Turek, M.; Taylor, G.; Finn, W.D.L. Performance-based seismic retrofit of school buildings in British Columbia, Canada–an overview. In Proceedings of the 16th World Conference on Earthquake Engineering (16WCEE), Santiago, Chile, 9–13 January 2017; pp. 1–12. [Google Scholar]
- El-Betar, S.A. Seismic vulnerability evaluation of existing R.C. buildings. HBRC J. 2018, 14, 189–197. [Google Scholar] [CrossRef]
- Korkmaz, M.; Ozdemir, M.A.; Kavali, E.; Cakir, F. Performance-based assessment of multi-story unreinforced masonry buildings: The case of historical Khatib School in Erzurum, Turkey. Eng. Fail. Anal. 2018, 94, 195–213. [Google Scholar] [CrossRef]
- O’Reilly, G.J.; Perrone, D.; Fox, M.; Monteiro, R.; Filiatrault, A. Seismic assessment and loss estimation of existing school buildings in Italy. Eng. Struct. 2018, 168, 142–162. [Google Scholar] [CrossRef]
- Oyguc, R. Seismic performance of RC school buildings after 2011 Van earthquakes. Bull. Earthq. Eng. 2016, 14, 821–847. [Google Scholar] [CrossRef]
- Freeman, S.A. Review of the development of the capacity spectrum method. ISET J. Earthq. Technol. 2004, 41, 1–13. [Google Scholar]
- ATC. Seismic Evaluation and Retrofit of Concrete Buildings, Volume 1; Applied Technology Council: Redwood City, CA, USA, 1996; p. 341. [Google Scholar]
- Fajfar, P. Analysis in seismic provisions for buildings: Past, present and future. Bull. Earthq. Eng. 2018, 16, 2567–2608. [Google Scholar] [CrossRef]
- Fajfar, P. A nonlinear analysis method for performance-based seismic design. Earthq. Spectra 2000, 16, 573–592. [Google Scholar] [CrossRef]
- CEN. Eurocode 8, Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings. EN 1998-1:2004; Comité Européen de Normalisation: Brussels, Belgium, 2004; p. 229. [Google Scholar]
- Andredakis, I.; Proietti, C.; Fonio, C.; Annunziato, A. Seismic Risk Assessment Tools-Workshop; JRC Technical Reports; European Union: Brussels, Belgium, 2017; p. 37. [Google Scholar] [CrossRef]
- Crowley, H.; Colombi, M.; Crempien, J.; Erduran, E.; Lopez, M.; Liu, H.; Mayfield, M.; Milanesi, M. GEM1 Seismic Risk Report: Part 1, GEM Technical Report 2010-5; GEM Foundation: Pavia, Italy, 2010. [Google Scholar]
- GFDRR. Understanding Risk-Review of Open Source and Open Access Software Packages Available to Quantify Risk From Natural Hazards; International Bank for Reconstruction and Development/International Development Association or The World Bank: Washington, DC, USA, 2014; p. 67. [Google Scholar]
- Lyle, T.S.; Hund, S.V. Way Forward for Risk Assessment Tools in Canada; Open File 8255; Geological Survey of Canada: Vancouver, BC, Canada, 2017. [CrossRef]
- Nurlu, M.; Fahjan, Y.; Eravci, B.; Baykal, M.; Yenilmez, G.; Yalçin, D.; Yanik, K.; Kara, F.İ.; Pakdamar, F. Rapid estimation of earthquake losses in Turkey using AFAD-RED system. In Proceedings of the Second European Conference on Earthquake Engineering, Istanbul, Turkey, 25–29 August 2014; pp. 1–8. [Google Scholar]
- Sedan, O.; Negulescu, C.; Terrier, M.; Roulle, A.; Winter, T.; Bertil, D. Armagedom—A Tool for Seismic Risk Assessment Illustrated with Applications. J. Earthq. Eng. 2013, 17, 253–281. [Google Scholar] [CrossRef]
- Aguilar-Meléndez, A.; Ordaz Schroeder, M.G.; De la Puente, J.; González Rocha, S.N.; Rodriguez Lozoya, H.E.; Córdova Ceballos, A.; García Elías, A.; Calderón Ramón, C.M.; Escalante Martínez, J.E.; Laguna Camacho, J.R.; et al. Development and Validation of Software CRISIS to Perform Probabilistic Seismic Hazard Assessment with Emphasis on the Recent CRISIS2015. Computación y Sistemas 2017, 21. [Google Scholar] [CrossRef]
- Cardona, O.D.; Ordaz, M.G.; Reinoso, E.; Yamín, L.E.; Barbat, A.H. CAPRA-Comprehensive Approach to Probabilistic Risk Assessment: International Initiative for Risk Management Effectiveness. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012; pp. 1–10. [Google Scholar]
- Müller, M.; Vorogushyn, S.; Maier, P.; Thieken, A.H.; Petrow, T.; Kron, A.; Büchele, B.; Wächter, J. CEDIM Risk Explorer—A map server solution in the project “Risk Map Germany”. Nat. Hazards Earth Syst. Sci. 2006, 6, 711–720. [Google Scholar] [CrossRef]
- Abo El Ezz, A.; Smirnoff, A.; Nastev, M.; Nollet, M.-J.; McGrath, H. ER2-Earthquake: Interactive web-application for urban seismic risk assessment. Int. J. Disaster Risk Reduct. 2019, 34, 326–336. [Google Scholar] [CrossRef]
- Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M. ELER software–a new tool for urban earthquake loss assessment. Nat. Hazards Earth Syst. Sci. 2010, 10, 2677–2696. [Google Scholar] [CrossRef]
- Eguchi, R.T.; Goltz, J.D.; Seligson, H.A.; Flores, P.J.; Blais, N.C.; Heaton, T.H.; Bortugno, E. Real-Time Loss Estimation as an Emergency Response Decision Support System: The Early Post-Earthquake Damage Assessment Tool (EPEDAT). Earthq. Spectra 1997, 13, 815–832. [Google Scholar] [CrossRef]
- Robinson, D.; Fulford, G.; Dhu, T. EQRM: Geoscience Australia’s Earthquake Risk Model. Technical Manual Version 3.0; Geoscience Australia Record 2005/01; Australian Government: Canberra, Australia, 2005.
- FEMA. Hazus®-MH 2.1-Advanced Engineering Building Module (AEBM). Technical and User’s Manual; Federal Emergency Management Agency (FEMA): Washington, DC, USA, 2002.
- Pranantyo, I.R.; Fadmastuti, M.; Chandra, F. InaSAFE applications in disaster preparedness. AIP Conf. Proc. 2015, 1658, 060001. [Google Scholar] [CrossRef]
- Erdik, M.; Aydinoglu, N.; Fahjan, Y.; Sesetyan, K.; Demircioglu, M.; Siyahi, B.; Durukal, E.; Ozbey, C.; Biro, Y.; Akman, H.; et al. Earthquake risk assessment for Istanbul metropolitan area. Earthq. Eng. Eng. Vib. 2003, 2, 1–23. [Google Scholar] [CrossRef]
- Sousa, M.L.; Costa, A.C.; Carvalho, A.; Coelho, E. An automatic seismic scenario loss methodology integrated on a geographic information system. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004; pp. 1–13. [Google Scholar]
- Elnashai, A.; Hampton, S.; Lee, J.S.; McLaren, T.; Myers, J.D.; Navarro, C.; Spencer, B.; Tolbert, N. Architectural Overview of MAEviz–HAZTURK. J. Earthq. Eng. 2008, 12, 92–99. [Google Scholar] [CrossRef]
- Muto, M.; Krishnan, S.; Beck, J.L.; Mitrani-Reiser, J. Seismic loss estimation based on end-to-end simulation. In Proceedings of the International Symposium on Life-Cycle Civil Engineering, IALCCE’08, Varenna, Lake Como, Italy, 10–14 June 2008; pp. 1–6. [Google Scholar]
- Silva, V.; Crowley, H.; Pagani, M.; Monelli, D.; Pinho, R. Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Nat. Hazards 2014, 72, 1409–1427. [Google Scholar] [CrossRef]
- Rosset, P.; Bishop, B.; Tolis, S.; Wyss, M. QLARM: A Global Model for Earthquake Loss Estimates in Real-Time and Scenario Modes. In Proceedings of the UNISDR Science and Technology Conference on the implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030, Geneva, Switzerland, 27–29 January 2016. [Google Scholar]
- Mota de Sá, F.; Ferreira, M.A.; Oliveira, C.S. QuakeIST® earthquake scenario simulator using interdependencies. Bull. Earthq. Eng. 2016, 14, 2047–2067. [Google Scholar] [CrossRef]
- Bell, R.G.; Reese, S.; King, A.B. Regional RiskScape: A multi-hazard loss modelling tool. In Proceedings of the Coastal Communities Natural Disasters, Auckland, New Zealand; pp. 1–4.
- Anagnostopoulos, S.; Providakis, C.; Salvaneschi, P.; Athanasopoulos, G.; Bonacina, G. SEISMOCARE: An efficient GIS tool for scenario-type investigations of seismic risk of existing cities. Soil Dyn. Earthq. Eng. 2008, 28, 73–84. [Google Scholar] [CrossRef]
- Molina, S.; Lang, D.H.; Lindholm, C.D. SELENA–An open-source tool for seismic risk and loss assessment using a logic tree computation procedure. Comput. Geosci. 2010, 36, 257–269. [Google Scholar] [CrossRef]
- Latcharote, P.; Terada, K.; Hori, M.; Imamura, F. A Prototype Seismic Loss Assessment Tool Using Integrated Earthquake Simulation. Int. J. Disaster Risk Reduct. 2018, 31, 1354–1365. [Google Scholar] [CrossRef]
- Estêvão, J.M.C.; Carvalho, A. The role of source and site effects on structural failures due to Azores earthquakes. Eng. Fail. Anal. 2015, 56, 429–440. [Google Scholar] [CrossRef]
- Estêvão, J.M.C.; Oliveira, C.S. Point and fault rupture stochastic methods for generating simulated accelerograms considering soil effects for structural analysis. Soil Dyn. Earthq. Eng. 2012, 43, 329–341. [Google Scholar] [CrossRef]
- Estêvão, J.M.C. Utilização do programa EC8spec na avaliação e reforço sísmico de edifícios do Algarve. In Proceedings of the 10° Congresso Nacional de Sismologia e Engenharia Sísmica, Ponta Delgada, Açores, Portugal; pp. 1–11. CD25(In Portuguese).
- Hu, S.-y.; Cheng, J.-H. Development of the unlocking mechanisms for the complex method. Comput. Struct. 2005, 83, 1991–2002. [Google Scholar] [CrossRef]
- Rao, S.S. Engineering optimization; John Wiley & sons, Inc.: New York, NY, USA, 1996; p. 922. [Google Scholar]
- NTC. Aggiornamento delle «Norme tecniche per le costruzioni»; Ministero delle infrastrutture e dei trasporti: Roma, Italy, 2018. (In Italian)
- NTC. Istruzioni per l’applicazione dell’«Aggiornamento delle “Norme tecniche per le costruzioni”» di cui al decreto ministeriale 17 gennaio 2018; Ministero delle infrastrutture e dei trasporti: Roma, Italy, 2019. (In Italian)
- Bisch, P. Eurocode 8. Evolution or Revolution? In Recent Advances in Earthquake Engineering in Europe: 16th European Conference on Earthquake Engineering-Thessaloniki 2018; Pitilakis, K., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 639–660. [Google Scholar] [CrossRef]
- Estêvão, J.M.C. Feasibility of using neural networks to obtain simplified capacity curves for seismic assessment. Buildings 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Ambraseys, N.N.; Douglas, J.; Sarma, S.K.; Smit, P.M. Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration. Bull. Earthq. Eng. 2005, 3, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Reinoso, E.; Ordaz, M. Duration of strong ground motion during Mexican earthquakes in terms of magnitude, distance to the rupture area and dominant site period. Earthq. Eng. Struct. Dyn. 2001, 30, 653–673. [Google Scholar] [CrossRef]
SRA Tools | Hazard Module | Vulnerability Module | Exposure Module | GIS Output Results |
---|---|---|---|---|
AFAD-RED [22] | ☑ 1 | ☑ | ☑ | ☑ |
ARMAGEDOM [23] | ☑ 1,2 | ☑ 3,4 | ☑ 6 | ☑ |
CAPRA+CRISIS [24,25] | ☑ 1,2 | ☑ | ☑ 5,6 | ☑ |
CEDIM [19,26] | ☑ 1,2 | ☑ 3 | ☑ 5,6 | ☑ |
ER2-Earthquake [27] | ☑ 1,2 | ☑ 4 | ☑ 6 | ☑ |
ELER [19,28] | ☑ 1 | ☑ 3,4 | ☑ 6 | ☑ |
EPEDAT [29] | ☑ 1 | ☑ 3 | ☑ 6 | ☑ |
EQRM [19,30] | ☑ 1,2 | ☑ | ☑ 5,6 | ☑ |
HAZUS [31] | ☑ 1,2 | ☑ 4 | ☑ 5,6 | ☑ |
InaSAFE [32] | ☑ | ☑ | ☑ 5 | ☑ |
KOERILoss [33] | ☑ 1,2 | ☑ 4 | ☑ 6 | ☑ |
LNECLoss [19,34] | ☑ 1 | ☑ 3,4 | ☑ 6 | ☑ |
MAEViz [19,35] | ☑ 1,2 | ☑ | ☑ 5 | ☑ |
MDLA [36] | ☑ 1,2 | ☑ 4 | ☑ ? | ⊠ |
OpenQuake [37] | ☑ 1,2 | ☑ 3 | ☑ 6 | ☑ |
QLARM [38] | ☑ 1 | ☑ | ☑ 6 | ☑ |
QuakeIST [39] | ☑ 1 | ☑ 3,4 | ☑ 5,6 | ☑ |
RiskScape [19,40] | ☑ 1 | ☑ 3 | ☑ 5,6 | ☑ |
SEISMOCARE [41] | ☑ 2 | ☑ 4 | ☑ 5 | ☑ |
SELENA [42] | ☑ 1,2 | ☑ 4 | ☑ 5,6 | ☑ |
SLA-IES [43] | ☑ 1 | ☑ 4 | ☑ 5 | ☑ |
Method of Analysis | Displacement at the Top of the Building (m) |
---|---|
N2 | 0.05032 |
CSM-C | 0.04765 |
CSM-B | 0.03820 |
CSM-A | 0.03322 |
DNA minimum | 0.03010 |
DNA mean | 0.03694 |
DNA maximum | 0.04519 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estêvão, J.M.C. An Integrated Computational Approach for Seismic Risk Assessment of Individual Buildings. Appl. Sci. 2019, 9, 5088. https://doi.org/10.3390/app9235088
Estêvão JMC. An Integrated Computational Approach for Seismic Risk Assessment of Individual Buildings. Applied Sciences. 2019; 9(23):5088. https://doi.org/10.3390/app9235088
Chicago/Turabian StyleEstêvão, João M. C. 2019. "An Integrated Computational Approach for Seismic Risk Assessment of Individual Buildings" Applied Sciences 9, no. 23: 5088. https://doi.org/10.3390/app9235088
APA StyleEstêvão, J. M. C. (2019). An Integrated Computational Approach for Seismic Risk Assessment of Individual Buildings. Applied Sciences, 9(23), 5088. https://doi.org/10.3390/app9235088