A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete
Abstract
:1. Introduction
2. Methodology of the Systematic Review
- -
- LCA;
- -
- Concrete;
- -
- Cement;
- -
- SCM;
- -
- Sustainable;
- -
- Methodology.
3. Sources of Discrepancies in LCA Stages
3.1. Stage 1: LCA Scope
3.1.1. System Boundary
3.1.2. Functional Unit Selection
3.2. Stage 2: Inventory Data
3.3. Stage 3: Impact Assessment
3.4. Stage 4: Interpretation of Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, S.A. Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: Can there be too much of a good thing? J. Clean. Prod. 2018, 178, 587–598. [Google Scholar] [CrossRef]
- Serres, N.; Braymand, S.; Feugeas, F. Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. J. Build. Eng. 2016, 5, 24–33. [Google Scholar] [CrossRef]
- Colangelo, F.; Forcina, A.; Farina, I.; Petrillo, A. Life Cycle Assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings 2018, 8, 70. [Google Scholar] [CrossRef]
- Kurda, R.; Silvestre, J.D.; de Brito, J. Lifecycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resour. Conserv. Recycl. 2018, 139, 407–417. [Google Scholar] [CrossRef]
- Habert, G.; de Lacaillerie, J.B.D.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and the Environment: Eco-informed Material Choice; Elsevier Science: Amsterdam, The Netherlands, 2012; Chapter 10. [Google Scholar]
- Miller, S.A.; Horvath, A.; Monteiro, P.J.M. Readily implemenTable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Envion. Res. Lett. 2016, 11, 074029. [Google Scholar] [CrossRef]
- Yuli, S.; Dabo, G.; Heran, Z.; Jiamin, O.; Yuan, L.; Jing, M.; Zhifu, M.; Zhu, L.; Qiang, Z. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2017, 114. [Google Scholar] [CrossRef]
- Viñuales, J.E.; Depledge, J.; Reiner, D.M.; Lees, E. Climate policy after the Paris 2015 climate conference. Clim. Policy 2017, 17, 1–8. [Google Scholar] [CrossRef]
- Pretot, S.; Collet, F.; Garnier, C. Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. Build. Environ. 2014, 72, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Zhou, J.; Chang, V.W.C.; Yang, E.-H. Life cycle assessment of adoption of local recycled aggregates and green concrete in Singapore perspective. J. Clean. Prod. 2017, 164, 918–926. [Google Scholar] [CrossRef]
- Turk, J.; Cotič, Z.; Mladenovič, A.; Šajna, A. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag. 2015, 45, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Tait, M.W.; Cheung, W.M. A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Int. J. Life Cycle Assess. 2016, 21, 847–860. [Google Scholar] [CrossRef] [Green Version]
- Tae, S.; Baek, C.; Shin, S. Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environ. Impact Assess. Rev. 2011, 31. [Google Scholar] [CrossRef]
- Wu, P.; Xia, B.; Zhao, X. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete—A review. Renew. Suatain. Energy Rev. 2014, 37, 360–369. [Google Scholar] [CrossRef]
- Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N. Environmental assessment of green concretes for structural use. J. Clean. Prod. 2017, 154, 633–649. [Google Scholar] [CrossRef]
- Al-Ayish, N.; During, O.; Malaga, K.; Silva, N.; Gudmundsson, K. The influence of supplementary cementitious materials on climate impact of concrete bridges exposed to chlorides. Constr. Build. Mater. 2018, 188, 391–398. [Google Scholar] [CrossRef]
- Bilim, C.; Atiş, C.D.; Tanyildizi, H.; Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 2009, 40, 334–340. [Google Scholar] [CrossRef]
- Biswas, W.K.; Alhorr, Y.; Lawania, K.K.; Sarker, P.K.; Elsarrag, E. Life cycle assessment for environmental product declaration of concrete in the Gulf States. Sustain. Cities Soc. 2017, 35, 36–46. [Google Scholar] [CrossRef]
- Celik, K.; Meral, C.; Gursel, A.P.; Mehta, P.K.; Horvath, A.; Monteiro, P.J.M. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cem. Concr. Compos. 2015, 56, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Shui, Z.; Yu, R.; Zhang, X.; Zhu, S. Durability and environment evaluation of an eco-friendly cement-based material incorporating recycled chromium containing slag. J. Clean. Prod. 2018, 185, 23–31. [Google Scholar] [CrossRef]
- De Schepper, M.; van den Heede, P.; van Driessche, I.; de Belie, N. Life cycle assessment of completely recyclable concrete. Materials 2014, 7, 6010–6027. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Xiao, J.; Tam, V.W.Y. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China. Waste Manag. 2016, 56, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Einsfeld, R.A.; Velasco, M.S.L. Fracture parameters for high-performance concrete. Cem. Concr. Res. 2006, 36, 576–583. [Google Scholar] [CrossRef]
- Felekoğlu, B.; Türkel, S.; Baradan, B. Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Build. Environ. 2007, 42, 1795–1802. [Google Scholar] [CrossRef]
- Fan, C.; Miller, S.A. Reducing greenhouse gas emissions for prescribed concrete compressive strength. Constr. Build. Mater. 2018, 167, 918–928. [Google Scholar] [CrossRef]
- Garcez, M.R.; Rohden, A.B.; de Godoy, L.G.G. The role of concrete compressive strength on the service life and life cycle of a RC structure: Case study. J. Clean. Prod. 2018, 172, 27–38. [Google Scholar] [CrossRef]
- García-Segura, T.; Yepes, V.; Alcalá, J. Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 2014, 19, 3–12. [Google Scholar] [CrossRef]
- Gettu, R.; Pillai, R.; Santhanam, M.; Basavaraj, A.; Rathnarajan, S.; Dhanya, B. Sustainability-based decision support framework for choosing concrete mixture proportions. Mater. Struct. 2018, 51, 1–16. [Google Scholar] [CrossRef]
- Gursel, A.P.; Maryman, H.; Ostertag, C. A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. J. Clean. Prod. 2016, 112, 823–836. [Google Scholar] [CrossRef]
- Kleijer, A.L.; Lasvaux, S.; Citherlet, S.; Viviani, M. Product-specific Life Cycle Assessment of ready mix concrete: Comparison between a recycled and an ordinary concrete. Resour. Conserv. Recycl. 2017, 122, 210–218. [Google Scholar] [CrossRef]
- Miller, S.A.; Monteiro, P.J.M.; Ostertag, C.P.; Horvath, A. Comparison indices for design and proportioning of concrete mixtures taking environmental impacts into account. Cem. Concr. Compos. 2016, 68, 131–143. [Google Scholar] [CrossRef]
- Ignacio, J.N.; Víctor, Y.; José, V.M. Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability 2018, 10, 845. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S.; Yildiz, R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem. Concr. Res. 2005, 35, 1165–1171. [Google Scholar] [CrossRef]
- Panesar, D.K.; Churchill, C.J. The influence of design variables and environmental factors on life-cycle cost assessment of concrete culverts. Struct. Infrastruct. Eng. 2010, 9, 1–13. [Google Scholar] [CrossRef]
- Park, J.; Tae, S.; Kim, T. Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea. Renew. Sustain. Energy Rev. 2012, 16, 2940–2946. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Wong, Y.L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000, 30. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Mejía-Arcila, J.; de Gutiérrez, R.M.; Martínez, E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 2018, 176, 103–111. [Google Scholar] [CrossRef]
- Rohden, A.B.; Garcez, M.R. Increasing the sustainability potential of a reinforced concrete building through design strategies: Case study. Case Stud. Constr. Mater. 2018, 9, e00174. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Ulloa, N.; Baykara, H.; Boero, A.J. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 2018, 190, 170–177. [Google Scholar] [CrossRef]
- Sandanayake, M.; Gunasekara, C.; Law, D.; Zhang, G.; Setunge, S. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. J. Clean. Prod. 2018, 204, 399–408. [Google Scholar] [CrossRef]
- Siddique, R. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 2004, 34, 487–493. [Google Scholar] [CrossRef]
- Souto-Martinez, A.; Delesky, E.A.; Foster, K.E.O.; Srubar, W.V., III. A mathematical model for predicting the carbon sequestration potential of ordinary portland cement (OPC) concrete. Constr. Build. Mater. 2017, 147, 417. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Mateus, R.; Camões, A.F.; Bragança, L.; Branco, F.G. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 2016, 112, 2221–2230. [Google Scholar] [CrossRef] [Green Version]
- Van Den Heede, P.; de Belie, N. Durability Related Functional Units for Life Cycle Assessment of High-Volume Fly Ash Concrete; UWM Center for By-Products Utilization: Milwaukee, WI, USA, 2010; pp. 583–594. [Google Scholar]
- Van Den Heede, P.; de Belie, N. Accelerated and natural carbonation of concrete with high volumes of fly ash: Chemical, mineralogical and microstructural effects. R. Soc. Open Sci. 2018, 6, 181665. [Google Scholar] [CrossRef] [PubMed]
- Yazdanbakhsh, A.; Bank, L.; Baez, T.; Wernick, I. Comparative LCA of concrete with natural and recycled coarse aggregate in the New York City area. Int. J. Life Cycle Assess. 2018, 23, 1163–1173. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Wu, W.-J.; Wang, Y.-F. Bridge life cycle assessment with data uncertainty. Int. J. Life Cycle Assess. 2016, 21, 569–576. [Google Scholar] [CrossRef]
- Dhanya, B.S.; Santhanam, M.; Gettu, R.; Pillai, R.G. Performance evaluation of concretes having different supplementary cementitious material dosages belonging to different strength ranges. Constr. Build. Mater. 2018, 187, 984–995. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, X.; Rajabipour, F.; Hendrickson, C.T. Comparative Life Cycle Assessment of Conventional, Glass Powder, and Alkali-Activated Slag Concrete and Mortar. J. Infrastruct. Syst. 2014, 20. [Google Scholar] [CrossRef]
- Guo, Z.; Tu, A.; Chen, C.; Lehman, D.E. Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates. J. Clean. Prod. 2018, 199, 136–149. [Google Scholar] [CrossRef]
- Anastasiou, E.K.; Liapis, A.; Papayianni, I. Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resour. Conserv. Recycl. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Teh, S.H.; Wiedmann, T.; Castel, A.; de Burgh, J. Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J. Clean. Prod. 2017, 152, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Hafez, H.; Cheung, W.M.; Nagaratnam, B.; Kurda, R. A Proposed Performance Based Approach for Life Cycle Assessment of Reinforced Blended Cement Concrete. In Proceedings of the 5th SCMT Conference, Kingston University, Kingston, UK, 14–17 July 2019; pp. 50–61. [Google Scholar]
- Panesar, D.; Seto, K.; Churchill, C. Impact of the selection of functional unit on the life cycle assessment of green concrete. Int. J. Life Cycle Assess. 2017, 22, 1969–1986. [Google Scholar] [CrossRef]
- Sagastume Gutiérrez, A.; Eras, J.J.C.; Gaviria, C.A.; van Caneghem, J.; Vandecasteele, C. Improved selection of the functional unit in environmental impact assessment of cement. J. Clean. Prod. 2017, 168, 463–473. [Google Scholar] [CrossRef]
- Bjørn, A.; Hauschild, M. Introducing carrying capacity-based normalisation in LCA: Framework and development of references at midpoint level. Int. J. Life Cycle Assess. 2015, 20, 1005–1018. [Google Scholar] [CrossRef]
- Menoufi, K.A.I. Life Cycle Analysis and Life Cyle Impact Assessment Methodologies: A State of the Art; Castell, A., Cabeza, L.F., Eds.; Universitat De Lleida, Escola Politècnica: Liberia, Spain, 2011. [Google Scholar]
- Huijbregts, M. Application of uncertainty and variability in LCA. Int. J. Life Cycle Assess. 1998, 3, 273–280. [Google Scholar] [CrossRef]
- Häfliger, I.-F.; John, V.; Passer, A.; Lasvaux, S.; Hoxha, E.; Saade, M.R.M.; Habert, G. Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. J. Clean. Prod. 2017, 156, 805–816. [Google Scholar] [CrossRef]
- Collins, F. Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. Int. J. Life Cycle Assess. 2010, 15, 549–556. [Google Scholar] [CrossRef]
- Gursel, A.P. Life-Cycle Assessment of Concrete: Decision-Support Tool and Case Study Application. Int. J. Life Cycle Assess. 2014, 19. [Google Scholar] [CrossRef]
- Kim, T.; Chae, C.U. Evaluation analysis of the CO2 emission and absorption life cycle for precast concrete in Korea. Sustainability (Switzerland) 2016, 8, 663. [Google Scholar] [CrossRef]
- Lee, S.; Park, W.; Lee, H. Life cycle CO2 assessment method for concrete using CO2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment. Energy Build. 2012, 58. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Lu, M.; Wang, J.D.; Gao, Y. Considering uncertainty in life-cycle carbon dioxide emissions of fly ash concrete. Proc. Inst. Civ. Eng. Eng. Sustain. 2019, 172, 198–206. [Google Scholar] [CrossRef]
- Gayarre, F.L.; Pérez, J.G.; Pérez, C.L.; López, M.S.; Martínez, A.L. Life cycle assessment for concrete kerbs manufactured with recycled aggregates. J. Clean. Prod. 2016, 113, 41–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Wang, J.; Wang, Y.; Xu, Y.; Xiao, J. A review of life cycle assessment of recycled aggregate concrete. Constr. Build. Mater. 2019, 209, 115–125. [Google Scholar] [CrossRef]
- Kurda, R.; de Brito, J.; Silvestre, J. CONCRETop—A multi-criteria decision method for concrete optimization. Environ. Impact Assess. Rev. 2019, 74, 73. [Google Scholar] [CrossRef]
- Hedayatinia, F.; Delnavaz, M.; Emamzadeh, S.S. Rheological properties, compressive strength and life cycle assessment of self-compacting concrete containing natural pumice pozzolan (Book review). Constr. Build. Mater. 2019, 206, 122–129. [Google Scholar] [CrossRef]
- Mahima, S.; Moorthi, P.; Bahurudeen, A.; Gopinath, A. Influence of chloride threshold value in service life prediction of reinforced concrete structures. Sādhanā 2018, 43, 1–19. [Google Scholar] [CrossRef]
- Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [Google Scholar] [CrossRef]
- Anand, C.K.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Suatain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef]
- Del Borghi, A. LCA and communication: Environmental Product Declaration (Editorial). Int. J. Life Cycle Assess. 2013, 18, 293. [Google Scholar] [CrossRef]
- Crossin, E. Comparative Life Cycle Assessment of Concrete Blends; RMIT University: Melbourne, Australia, 2012. [Google Scholar]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Ventura, A. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resour. Conserv. Recycl. 2010, 54, 1231–1240. [Google Scholar] [CrossRef]
- Yang, K.-H.; Seo, E.-A.; Jung, Y.-B.; Tae, S.-H. Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete. J. Korea Concr. Inst. 2014, 26, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.R.; Liu, M.H.; Xie, H.B.; Wang, Y.F. Assessment of CO2 emissions and cost in fly ash concrete. In Environment, Energy and Applied Technology, Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014), Beijing, China, 6–7 December 2014; CRC Press: Boca Raton, FL, USA, 2014; p. 327. [Google Scholar]
- Wałach, D.; Dybeł, P.; Sagan, J.; Gicala, M. Environmental performance of ordinary and new generation concrete structures—A comparative analysis. Environ. Sci. Pollut. Res. 2019, 26, 3980–3990. [Google Scholar] [CrossRef] [PubMed]
- Rahla, K.M.; Mateus, R.; Bragança, L. Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 2019, 220, 445–459. [Google Scholar] [CrossRef]
- Chiaia, B.; Fantilli, A.P.; Guerini, A.; Volpatti, G.; Zampini, D. Eco-mechanical index for structural concrete. Constr. Build. Mater. 2014, 67, 386–392. [Google Scholar] [CrossRef]
- Long, G.; Gao, Y.; Xie, Y. Designing more sustainable and greener self-compacting concrete. Constr. Build. Mater. 2015, 84, 301–306. [Google Scholar] [CrossRef]
- Flower, D.; Sanjayan, J. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Proske, T.; Hainer, S.; Rezvani, M.; Graubner, C.-A. Eco-friendly concretes with reduced water and cement content—Mix design principles and application in practice. Constr. Build. Mater. 2014, 67, 413–421. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Najm, H.; Venkiteela, G.; Hencken, J. Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. J. Clean. Prod. 2019, 237, 117714. [Google Scholar] [CrossRef]
- Gursel, A.P.; Ostertag, C.P. Impact of Singapore’s importers on life-cycle assessment of concrete. J. Clean. Prod. 2016, 118, 140–150. [Google Scholar] [CrossRef]
- Khodabakhshian, A.; de Brito, J.; Ghalehnovi, M.; Shamsabadi, E.A. Mechanical environmental and economic performance of structural concrete containing silica fume and marble industry waste powder. Constr. Build. Mater. 2018, 169, 237–251. [Google Scholar] [CrossRef]
- Li, C.; Nie, Z.; Cui, S.; Gong, X.; Wang, Z.; Meng, X. The life cycle inventory study of cement manufacture in China. J. Clean. Prod. 2014, 72, 204–211. [Google Scholar] [CrossRef]
- Seto, K.; Panesar, D.; Churchill, C. Criteria for the evaluation of life cycle assessment software packages and life cycle inventory data with application to concrete. Int. J. Life Cycle Assess. 2017, 22, 694–706. [Google Scholar] [CrossRef]
- Tucker, E.L.; Ferraro, C.C.; Laux, S.J.; Townsend, T.G. Economic and life cycle assessment of recycling municipal glass as a pozzolan in portland cement concrete production. Resour. Conserv. Recycl. 2018, 129, 240–247. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Sun, Y.; Tingley, D.D.; Zhang, Y. Life cycle sustainability assessment of fly ash concrete structures. Renew. Sustain. Energy Rev. 2017, 80, 1162–1174. [Google Scholar] [CrossRef]
- Yuan, X.; Tang, Y.; Li, Y.; Wang, Q.; Zuo, J.; Song, Z. Environmental and economic impacts assessment of concrete pavement brick and permeable brick production process—A case study in China. J. Clean. Prod. 2018, 171, 198–208. [Google Scholar] [CrossRef]
- Kim, T.; Lee, S.; Chae, C.U.; Jang, H.; Lee, K. Development of the CO2 emission evaluation tool for the life cycle assessment of concrete. Sustainability (Switzerland) 2017, 9, 2116. [Google Scholar] [CrossRef]
- Panesar, D.K.; Kanraj, D.; Abualrous, Y. Effect of transportation of fly ash: Life cycle assessment and life cycle cost analysis of concrete. Cem. Concr. Compos. 2019, 99, 214–224. [Google Scholar] [CrossRef]
- O’Brien, K.; Ménaché, J.; O’Moore, L. Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int. J. Life Cycle Assess. 2009, 14, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Chrysostomou, C.; Kylili, A.; Nicolaides, D.; Fokaides, P.A. Life Cycle Assessment of concrete manufacturing in small isolated states: The case of Cyprus. Int. J. Sustain. Energy 2017, 36, 825–839. [Google Scholar] [CrossRef]
- Maria, A.; Salman, M.; Dubois, M.; Acker, K. Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag. Int. J. Life Cycle Assess. 2018, 23, 2091–2109. [Google Scholar] [CrossRef]
- Sayagh, S.; Ventura, A.; Hoang, T.; François, D.; Jullien, A. Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resour. Conserv. Recycl. 2010, 54, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Maia de Souza, D.; Lafontaine, M.; Charron-Doucet, F.; Chappert, B.; Kicak, K.; Duarte, F.; Lima, L. Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. J. Clean. Prod. 2016, 137, 70–82. [Google Scholar] [CrossRef]
- De Matos, P.R.; Sakata, R.D.; Prudêncio, L.R. Eco-efficient low binder high-performance self-compacting concretes. Constr. Build. Mater. 2019, 225, 941–955. [Google Scholar] [CrossRef]
- Pillai, R.G.; Gettu, R.; Santhanam, M.; Rengaraju, S.; Dhandapani, Y.; Rathnarajan, S.; Basavaraj, A.S. Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem. Concr. Res. 2019, 118, 111. [Google Scholar] [CrossRef]
- Passuello, A.; Rodríguez, E.D.; Hirt, E.; Longhi, M.; Bernal, S.A.; Provis, J.L.; Kirchheim, A.P. Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J. Clean. Prod. 2017, 166, 680–689. [Google Scholar] [CrossRef]
- Boesch, M.E.; Hellweg, S. Identifying improvement potentials in cement production with life cycle assessment. Environ. Sci. Technol. 2010, 44, 9143–9149. [Google Scholar] [CrossRef] [PubMed]
- Broun, R.; Menzies, G.F. Life Cycle Energy and Environmental Analysis of Partition Wall Systems in the UK. Proced. Eng. 2011, 21, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Budelmann, H.; Holst, A.; Wachsmann, A. Durability Related Life-Cycle Assessment of Concrete Structures: Mechanisms, Models, Implementation; IALCCE: Vienna, Austria, 2012; pp. 75–86. [Google Scholar]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Cheung, J.; Roberts, L.; Liu, J. Admixtures and sustainability. Cem. Concr. Res. 2018, 114, 79–89. [Google Scholar] [CrossRef]
- Colangelo, F.; Petrillo, A.; Cioffi, R.; Borrelli, C.; Forcina, A. Life cycle assessment of recycled concretes: A case study in southern Italy. Sci. Total Environ. 2018, 615, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Fabiani, C.; Pisello, A.L.; Ubertini, F.; Materazzi, A.L.; Cotana, F. Innovative concretes for low-carbon constructions: A review. Int. J. Low Carbon Technol. 2017, 12, 289–309. [Google Scholar] [CrossRef]
- Damineli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 2010, 32, 555–562. [Google Scholar] [CrossRef]
- Densley Tingley, D.; Davison, B. Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build. Environ. 2012, 57, 387–395. [Google Scholar] [CrossRef]
- Dobbelaere, G.; de Brito, J.; Evangelista, L. Definition of an equivalent functional unit for structural concrete incorporating recycled aggregates. Eng. Struct. 2016, 122, 196–208. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T.; Kwan, A.H.K.; Wu, S.K. Substituting local data for overseas life cycle inventories e a case study of concrete products in Hong Kong. J. Clean. Prod. 2015, 108, 414–422. [Google Scholar] [CrossRef]
- Estanqueiro, B.; Silvestre, J.D.; de Brito, J.; Pinheiro, M.D. Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. Eur. J. Environ. Civ. Eng. 2018, 22, 429–449. [Google Scholar] [CrossRef]
- Evangelista, B.L.; Rosado, L.P.; Penteado, C.S.G. Life cycle assessment of concrete paving blocks using electric arc furnace slag as natural coarse aggregate substitute. J. Clean. Prod. 2018, 178, 176–185. [Google Scholar] [CrossRef]
- Evangelista, P.P.A.; Kiperstok, A.; Torres, E.A.; Gonçalves, J.P. Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Constr. Build. Mater. 2018, 169, 748–761. [Google Scholar] [CrossRef]
- Fantilli, A.P.; Tondolo, F.; Chiaia, B.; Habert, G. Designing reinforced concrete beams containing supplementary cementitious materials. Materials 2019, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-Cabello, J.; Fraile-Garcia, E.; Martinez-Camara, E.; Perez-de-La-Parte, M. Sensitivity analysis of Life Cycle Assessment to select reinforced concrete structures with one-way slabs. Eng. Struct. 2017, 132, 586–596. [Google Scholar] [CrossRef]
- Font, A.; Borrachero, M.V.; Soriano, L.; Monz, J.; Mellado, A.; Pay, J. New eco-cellular concretes: Sustainable and energy-efficient materials. Green Chem. 2018, 20, 4684–4694. [Google Scholar] [CrossRef]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. Repercussion the use phase in the life cycle assessment of structures in residential buildings using one-way slabs. J. Clean. Prod. 2017, 143, 191–199. [Google Scholar] [CrossRef]
- Franco de Carvalho, J.M.; Melo, T.V.d.; Fontes, W.C.; Batista, J.O.D.S.; Brigolini, G.J.; Peixoto, R.A.F. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials (Book review). Constr. Build. Mater. 2019, 206, 397–409. [Google Scholar] [CrossRef]
- Gómez de Cózar, J.C.; Martínez, A.G.; López, Í.A.; Alfonsea, M.R. Life cycle assessment as a decision-making tool for selecting building systems in heritage intervention: Case study of Roman Theatre in Itálica, Spain. J. Clean. Prod. 2019, 206, 27–39. [Google Scholar] [CrossRef]
- Göswein, V.; Rodrigues, C.; Silvestre, J.D.; Freire, F.; Habert, G.; König, J. Using anticipatory life cycle assessment to enable future sustainable construction. J. Ind. Ecol. 2019. [Google Scholar] [CrossRef]
- Gursel, A.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51. [Google Scholar] [CrossRef]
- Hong, T.; Ji, C.; Park, H. Integrated model for assessing the cost and CO2 emission (IMACC) for sustainable structural design in ready-mix concrete. J. Environ. Manag. 2012, 103, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.-H.; Ji, C.-Y.; Jang, M.-H.; Park, H.-S. Predicting the CO2 Emission of Concrete Using Statistical Analysis. J. Constr. Eng. Proj. Manag. 2012, 2, 53–60. [Google Scholar] [CrossRef]
- Hossain, M.; Poon, C.; Lo, I.; Cheng, J. Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. Int. J. Life Cycle Assess. 2016, 21, 70–84. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C.P. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resour. Conserv. Recycl. 2016, 109, 67–77. [Google Scholar] [CrossRef]
- Iezzi, B.; Brady, R.; Sardag, S.; Eu, B.; Skerlos, S. Growing bricks: Assessing biocement for lower embodied carbon structures. Proced. CIRP 2019, 80, 470–475. [Google Scholar] [CrossRef]
- Josa, A. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cem. Concr. Res. 2007, 37. [Google Scholar] [CrossRef]
- Juhart, J.; David, G.-A.; Saade, M.R.M.; Baldermann, C.; Passer, A.; Mittermayr, F. Functional and environmental performance optimization of Portland cement-based materials by combined mineral fillers. Cem. Concr. Res. 2019, 122, 157–178. [Google Scholar] [CrossRef]
- Kurda, R.; Silvestre, J.D.; de Brito, J.; Ahmed, H. Optimizing recycled concrete containing high volume of fly ash in terms of the embodied energy and chloride ion resistance. J. Clean. Prod. 2018, 194, 735–750. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Zhang, Z.; Li, N. An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 2019, 144, 297–309. [Google Scholar] [CrossRef]
- Luo, W.; Sandanayake, M.; Zhang, G. Direct and indirect carbon emissions in foundation construction—Two case studies of driven precast and cast-in-situ piles (Report). J. Clean. Prod. 2019, 211, 1517. [Google Scholar] [CrossRef]
- Miller, S.A.; Monteiro, P.J.M.; Ostertag, C.P.; Horvath, A. Concrete mixture proportioning for desired strength and reduced global warming potential. Constr. Build. Mater. 2016, 128, 410–421. [Google Scholar] [CrossRef]
- Mohammadi, J.; South, W. Life cycle assessment (LCA) of benchmark concrete products in Australia. Int. J. Life Cycle Assess. 2017, 22, 1588–1608. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Aliaghazadeh, M.; Charkhtab, A.S.; Fathollahpour, A. Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). J. Clean. Prod. 2018, 172, 2683–2694. [Google Scholar] [CrossRef]
- Omar, W.M.S.W.; Doh, J.-H.; Panuwatwanich, K.; Miller, D. Assessment of the embodied carbon in precast concrete wall panels using a hybrid life cycle assessment approach in Malaysia. Sustain. Cities Soc. 2014, 10, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, S.; Tiwari, B.R.; Kumar, S.; Barai, S.V. Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. J. Clean. Prod. 2019, 228, 679–691. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2017. [Google Scholar] [CrossRef]
- Röyne, F. Life Cycle Assessment of BioZEment—Concrete Production Based on Bacteria; RISE—Research Institutes of Sweden, Built Environment, Energy and Circular Economy: Stockholm, Sweden, 2017. [Google Scholar]
- Saade, M.R.M.; Passer, A.; Mittermayr, F. A Preliminary Systematic Investigation onto Sprayed Concrete’s Environmental Performance. Proced. CIRP 2018, 69, 212–217. [Google Scholar] [CrossRef]
- Säynäjoki, A.; Heinonen, J.; Junnila, S.; Horvath, A. Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ. Res. Lett. 2017, 12, 013001. [Google Scholar] [CrossRef] [Green Version]
- Säynäjoki, A.; Heinonen, J.; Junnonen, J.-M.; Junnila, S. Input–output and process LCAs in the building sector: Are the results compatible with each other? Carbon Manag. 2017, 8, 155–166. [Google Scholar] [CrossRef]
- Seto, K.E.; Churchill, C.J.; Panesar, D.K. Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. J. Clean. Prod. 2017, 157, 65–75. [Google Scholar] [CrossRef]
- Shrivastava, S.; Shrivastava, R.L. A systematic literature review on green manufacturing concepts in cement industries. Int. J. Qual. Reliab. Manag. 2017, 34, 68–90. [Google Scholar] [CrossRef]
- Silva, R.V.; Neves, R.; de Brito, J.; Dhir, R.K. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 2015, 62, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Sinka, M.; van den Heede, P.; de Belie, N.; Bajare, D.; Sahmenko, G.; Korjakins, A. Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resour. Conserv. Recycl. 2018, 133, 288–299. [Google Scholar] [CrossRef]
- Soleimani, M.; Shahandashti, M. Comparative process-based life-cycle assessment of bioconcrete and conventional concrete. J. Eng. Des. Technol. 2017, 15, 667–688. [Google Scholar] [CrossRef]
- Suárez Silgado, S.; Valdiviezo, L.C.; Domingo, S.G.; Roca, X. Multi-criteria decision analysis to assess the environmental and economic performance of using recycled gypsum cement and recycled aggregate to produce concrete: The case of Catalonia (Spain). Resour. Conserv. Recycl. 2018, 133, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Tempest, B.; Sanusi, O.; Gergely, J.; Ogunro, V.; Weggel, D. Compressive Strength and Embodied Energy Optimization of Fly Ash Based Geopolymer Concrete. In Proceedings of the 2009 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 4–7 May 2009. [Google Scholar]
- Tošić, N.; Marinković, S.; Dašić, T.; Stanić, M. Multicriteria optimization of natural and recycled aggregate concrete for structural use. J. Clean. Prod. 2015, 87, 766–776. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Vieira, D.R.; Calmon, J.L.; Coelho, F.Z. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr. Build. Mater. 2016, 124, 656–666. [Google Scholar] [CrossRef]
- Wijayasundara, M.; Mendis, P.; Crawford, R.H. Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 2017, 166, 321–334. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, P. Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. J. Clean. Prod. 2015, 108, 748–756. [Google Scholar] [CrossRef]
- Zingg, S.; Habert, G.; Lämmlein, T.; Lura, P.; Denarié, E.; Hajiesmaeili, A. Environmental Assessment of Radical Innovation in Concrete Structures. In Proceedings of the 2016 Sustainable Built Environment (SBE) Regional Conference, Zürich, Switzerland, 15–17 June 2016. [Google Scholar]
- Hafez, H.; Kurda, R.; Cheung, W.M.; Nagaratnam, B. Comparative life cycle assessment between imported and recovered fly ash for blended cement concrete in the UK. J. Clean. Prod. 2019, 244, 118722. [Google Scholar] [CrossRef]
References | First Author’s Last Name | Year | Kg CO2/m3 |
---|---|---|---|
[62] | Collins | 2010 | 5 |
[29] | Garcia-Segura | 2013 | 61 |
[64] | Kim and Chae | 2016 | 172 |
[65] | Lee | 2013 | 10 |
[46] | Panesar and Churchill | 2010 | 30 * |
[66] | Zhang | 2019 | 39 * |
[44] | Souto-Matrinez | 2017 | 60 |
Reference | [36] | [46] | |||||
---|---|---|---|---|---|---|---|
Concrete Type | OPCC | 25%GGBS | 50%GGBS | 15% FA | 35%FA | 50%FA | |
Cover (mm) | Service Life (Years) | ||||||
Carbonation | 65 | 62 | 124 | 200 | - | - | - |
50 | 124 | 200 | 200 | - | - | - | |
35 | 200 | 200 | 200 | - | 100 | 100 | |
Chloride Penetration | 65 | 33 | 68 | 114 | - | - | - |
50 | 67 | 138 | 200 | 51 | - | 60 | |
35 | 91 | 186 | 200 | - | - | - |
References | First Author’s Last Name | Year | kg CO2/m3 |
---|---|---|---|
[28] | Garcez | 2017 | 25 |
[29] | Garcia-Segura | 2013 | 5 |
[67] | Lopez-Gayyare | 2015 | 13 |
[62] | Collins | 2010 | 5 |
Ref. | 1st Author’s Name | Year | eq kg CO2/Tonne | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Steel | Coarse NA | Fine NA | FA | SF | GGBS | Lime | SH | SS | SP | |||
[78] | Yang | 2014 | 3.2 | 2.3 | 27 | |||||||
[30] | Gettu | 2018 | 265 | 144 | 516 | |||||||
[79] | Zhang | 2014 | 14 | 41 | 27 | 720 | ||||||
[20] | Biswas | 2017 | 1470 | 5 | 2.4 | 72 | 156 | 1130 | ||||
[37] | Park | 2012 | 4 | 1 | 20 | 27 | 250 | |||||
[39] | Robayo-Slazar | 2018 | 1.1 | 0.5 | 9 | 277 | 1359 | 793 | ||||
[69] | Kurda | 2018 | 29 | 2 | 4 | |||||||
[80] | Walach | 2018 | 3 | 13 | 4 | 1840 | ||||||
[77] | Chen | 2010 | 350 | 19 | ||||||||
[5] | Habert | 2011 | 4.3 | 2.4 | 5 | 17 | 35 | 1140 | 749 | |||
[81] | Rahla | 2019 | 210 | 1580 | 134 | |||||||
[82] | Chiaia | 2014 | 150 | 2.5 | 2.5 | 19 | 720 | |||||
[83] | Long | 2015 | 6 | 1 | 9 | 19 | 17 | 720 | ||||
[62] | Collins | 2010 | 46 | 14 | 27 | 143 | ||||||
[84] | Flower and Sanjayan | 2007 | 36 | 14 | 27 | 143 | ||||||
[85] | Proske | 2014 | 874 | 7 | 2.3 | 11 | 29 | 772 | ||||
[52] | Sandanayake | 2018 | 40 | 14 | 1425 | 780 | ||||||
[29] | Garcia-Segura | 2013 | 920 | 4 | 4 | 4 | 52 | 220 | ||||
[18] | Al-Ayish | 2018 | 370 | 2.4 | 1.7 | 88 | ||||||
Mean | 694.8 | 11.547368 | 6.44737 | 74.46 | 552 | 95.85 | 105.5 | 1392 | 904.3 | 833.2 | ||
St dev | 486.2 | 14.489436 | 9.75525 | 118.2 | 890.9 | 78.61 | 201.2 | 46.7 | 204.2 | 441.7 | ||
St. dev (% of mean) | 69.98 | 125.47825 | 151.306 | 158.7 | 161.4 | 82.01 | 190.7 | 3.35 | 22.58 | 53.01 |
Ref. | 1st Author’s Name | Year | Country | FA (£/Tonne) | GGBS (£/Tonne) | SF (£/Tonne) | Electricity (£/kWh) |
---|---|---|---|---|---|---|---|
[53] | Anastasiou | 2015 | Greece | 3.50 | |||
[86] | Chen | 2019 | France | 35 | 23 | 0.12 | |
[77] | Chen | 2010 | France | 20 | 40 | 0.1 | |
[75] | Crossin | 2012 | Australia | 100 | |||
[87] | Gursel | 2015 | USA | 890 | |||
[5] | Habert | 2011 | Switzerland | 25 | 45 | 0.12 | |
[51] | Jiang | 2014 | USA | 74 | |||
[88] | Khodabakhshian | 2018 | Iran | 500 | |||
[89] | Li | 2015 | China | 20 | |||
[17] | Marinkovic | 2017 | Serbia | 3.5 | 0.05 | ||
[34] | Igancio | 2018 | Spain | 38 | 1140 | ||
[56] | Panesar | 2019 | Canada | 135 | |||
[37] | Park | 2012 | South Korea | 33 | 41 | ||
[81] | Rahla | 2019 | Portugal | 28 | 37 | 430 | |
[90] | Seto | 2017 | Canada | 107 | 0.07 | ||
[45] | Teixeira | 2015 | Portugal | 21 | 0.22 | ||
[91] | Tucker | 2017 | USA | 0.09 | |||
[92] | Wang | 2017 | China | 10 | 0.11 | ||
[93] | Yuan | 2017 | China | 0.11 | |||
[59] | Zhang | 2014 | China | 9 | |||
Mean | 38.7 | 42.6 | 740.0 | 0.11 | |||
St dev | 40.3 | 29.0 | 334.8 | 0.05 | |||
St. dev (% of mean) | 104.2 | 68.2 | 45.2 | 43.1 |
Ref. | Author | Year | Kilometres | ||||||
---|---|---|---|---|---|---|---|---|---|
OPC | Aggregates | FA | GGBS | SP | SH | SS | |||
[53] | Anastasiou | 2015 | 50 | 50 | 50 | ||||
[20] | Biwas | 2017 | 25 | 1 | 0.01 | ||||
[93] | Chrysostomou | 2017 | 45 | 36 | 39 | ||||
[75] | Crossin | 2012 | 90 | 30 | 945 | 9317 | |||
[98] | Maria | 2018 | 50 | 50 | 10 | ||||
[24] | Ding | 2016 | 100 | ||||||
[29] | Garcia-Segura | 2013 | 32 | 12 | 180 | 1640 | 724 | ||
[64] | Kim and Chae | 2016 | 106 | 32 | 77 | ||||
[69] | Kurda | 2018 | 60 | 65 | 160 | 15 | |||
[89] | Li | 2015 | 177 | ||||||
[17] | Marinkovic | 2017 | 100 | 100 | 50 | 50 | 20 | ||
[39] | Robayo-Slazar | 2018 | 6 | 10 | 10 | 493 | 53 | 192 | |
[41] | Salas | 2018 | 5 | 5 | 12 | 64 | |||
[13] | Turk | 2015 | 50 | 1 | |||||
[46] | Van den Heede and De Belie | 2010 | 113 | 193 | 38 | 118 | |||
[78] | Yang | 2014 | 277 | 43 | 322 | 339 | 70 | ||
mean | 72.1 | 48.5 | 195.9 | 1498.0 | 173.8 | 38.3 | 92.0 | ||
St dev | 68.5 | 51.0 | 299.2 | 3205.7 | 271.8 | 22.9 | 89.4 | ||
St. dev (% of mean) | 95.0 | 105.2 | 152.7 | 214.0 | 156.4 | 59.6 | 97.1 |
# | LCA Stage | Source of Discrepancy | Description | Outcome | Frequency | Category | Impact on LCA Outcome | Potential Solution |
---|---|---|---|---|---|---|---|---|
1 | Stage 1: LCA Scope | System Boundaries | Disregarding the “use” phase | Ignoring potential carbon sequestration by concrete | 90% | Reliability | 2–20% overestimation | Deduct the sequestered carbon by predicting the carbonation potential of concrete throughout its expected service life |
2 | Assuming same service life for concrete alternatives | 75% | Reliability | Underestimation (variable) | Include maintenance and/or replacement impact depending on the difference between the required and expected service life of concrete | |||
3 | Ignoring the operational energy consumed by concrete | 75% | Precision | 1–10% underestimation | Add an estimate of the operational energy consumed by concrete throughout its service life | |||
4 | Disregarding the “end-of-life” phase | Ignoring the impact of demolishing concrete | 75% | Precision | 1–10% underestimation | Add an estimate of the emissions and energy required to demolish the concrete alternative at the end of its service life | ||
5 | Ignores the avoided landfill impact for CDW waste | 95% | Precision | 1–10% overestimation | Deduct the impact from avoiding landfilling the waste that is being recycled as aggregates in the concrete mix | |||
6 | Functional Unit | Selecting a volume based FU | Ignores the functional properties of concrete | 65% | Reliability | Variable | Select a functional unit that reflects performance based specifications such as strength and predicted service life | |
7 | Selecting a unit level of details | Missing out on the potential of optimizing the total volume required | 70% | Precision | Variable | If possible, select a “whole structure” LoD to run different scenarios optimizing the impact based on strength and volume of concrete | ||
8 | Stage 2: Inventory Data | Data source | Relying on secondary sources | Not reliable and sometimes irrelevant data | 45% | Reliability | Variable | Whenever possible, rely on primary sources such as EPDs and certified lab results |
9 | Data variability | Variability in upstream data | Higher uncertainty in the values for impact and cost of transportation and raw materials | NA | Precision | Variable | Whenever needed, perform scenario analyses to measure the sensitivity of the outcome to the potential variability in upstream data | |
10 | Impact allocation | Impact allocation for SCM | Ignoring the impact allocation for SCMs recycled in concrete | 75% | Reliability | Variable | If the difference between the price of main and secondary process generating the SCM product is > 25%; economic allocation should be applied | |
11 | Stage 3: Impact Assessment | Indicators | Using end-point indicators | Carries large uncertainties in correlating cause-effect environmental impact relationships | 5% | Reliability | Variable | Use a combination of mid-point indicators to calculate the impact for concrete such as GWP, EP, ODP, AP, CED |
12 | Using CO2 as GWP | It ignores the impact associated with methane and nitrogen dioxide as GHG emissions | 10% | Reliability | 10–30% underestimation | Use a standard methodology such as CML or TRACI that characterizes the different GHG emissions contributing to the GWP indicator | ||
13 | Stage4: Interpretation of results | Absolute judgements | Deterministic LCA outcome | Ignores the uncertainties aforementioned in the nature of the upstream data | 90% | Reliability | NA | Perform scenario analyses, quantify the uncertainties in each of the elements then do a Monti Carlo simulation to aggregate the uncertainties of the indicators |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafez, H.; Kurda, R.; Cheung, W.M.; Nagaratnam, B. A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete. Appl. Sci. 2019, 9, 4803. https://doi.org/10.3390/app9224803
Hafez H, Kurda R, Cheung WM, Nagaratnam B. A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete. Applied Sciences. 2019; 9(22):4803. https://doi.org/10.3390/app9224803
Chicago/Turabian StyleHafez, Hisham, Rawaz Kurda, Wai Ming Cheung, and Brabha Nagaratnam. 2019. "A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete" Applied Sciences 9, no. 22: 4803. https://doi.org/10.3390/app9224803