Numerical Simulation of Hot Jet Detonation with Different Ignition Positions
Abstract
:1. Introduction
2. Numerical Model and Methods
2.1. Physical Model
2.2. Numerical Method
2.3. Initial Parameters and Boundary Conditions
2.4. Grid-Independent and Model Validation
3. Results Analysis and Discussion
3.1. Mechanism of Hot Jet Detonation Initiation
3.2. The Influence of Ignition Position on the Hot Jet Detonation Initiation
3.3. Optimization of Ignition Position
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kailasanath, K. Review of propulsion applications of detonation waves. AIAA J. 2000, 38, 1698–1708. [Google Scholar] [CrossRef]
- Zheng, H.T.; Qi, L.; Zhao, N.B.; Li, Z.M.; Liu, X. A Thermodynamic Analysis of the Pressure Gain of Continuously Rotating Detonation Combustor for Gas Turbine Cycle Performance. Appl. Sci. 2018, 8, 535. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, N.B.; Zheng, H.T.; Yang, J.L.; Qi, L. Numerical investigation of the effect of inlet mass flow rates on H2/air non-premixed rotating detonation wave. Int. J. Hydrog. Energy 2018, 43, 13618–13631. [Google Scholar] [CrossRef]
- Sun, C.W.; Zheng, H.T.; Li, Z.M.; Zhao, N.B.; Qi, L.; Guo, H.B. Effects of Diverging Nozzle Downstream on Flow Field Parameters of Rotating Detonation Combustor. Appl. Sci. 2019, 9, 4259. [Google Scholar] [CrossRef]
- Driscoll, R.; George, A.S.; Munday, D.; Gutmark, E.J. Optimization of a multiple pulse detonation engine-crossover system. Appl. Eng. 2016, 96, 463–472. [Google Scholar] [CrossRef]
- Frolov, S.M.; Smetanyuk, V.A.; Gusev, P.A.; Koval, A.S.; Nabatnikov, S.A. How to utilize the kinetic energy of pulsed detonation products. Appl. Therm. Eng. 2019, 147, 728–734. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Fan, W.; He, J.N.; Zhang, Y.; Zhang, Q.B.; Yao, K.G. Experimental study on the wall temperature and heat transfer of a two-phase pulse detonation rocket engine. Appl. Therm Eng. 2017, 114, 387–393. [Google Scholar] [CrossRef]
- Sorin, R.; Zitoun, R.; Desbordes, D. Optimization of the deflagration to detonation transition: Reduction of length and time of transition. Shock Waves 2006, 15, 137–145. [Google Scholar] [CrossRef]
- Harris, P.; Farinaccio, R.; Stowe, R.; Higgins, A.; Thibault, P.; Laviolette, J. The effect of DDT distance on impulse in a detonation tube. In Proceedings of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2001-3467, Salt Lake City, UT, USA, 8–11 July 2001. [Google Scholar]
- Sorin, R.; Zitoun, R.; Khasainov, B.; Desbordes, D. Detonation diffraction through different geometries. Shock Waves 2009, 19, 11–23. [Google Scholar] [CrossRef]
- Jackson, S.; Shepherd, J. Initiation systems for pulse detonation engines. In Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2002-3627, Indianapolis, IN, USA, 7–10 July 2002. [Google Scholar]
- Kellenberger, M.; Ciccarelli, G. Advancements on the propagation mechanism of a detonation wave in an obstructed channel. Combust. Flame 2018, 159, 195–209. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Yuan, L.; Pan, Z.; Zhu, Y. Flame propagation and detonation initiation distance of ethylene/oxygen in narrow gap. Appl. Therm. Eng. 2017, 110, 1274–1282. [Google Scholar] [CrossRef]
- Chambers, J.; Ahmed, K. Turbulent flame augmentation using a fluidic jet for Deflagration-to-Detonation. Fuel 2017, 199, 616–626. [Google Scholar] [CrossRef]
- Zhao, S.; Fan, Y.; Lv, H.; Jia, B. Effects of a jet turbulator upon flame acceleration in a detonation tube. Appl. Therm. Eng. 2017, 115, 33–40. [Google Scholar] [CrossRef]
- Wang, F.; Kuthi, A.; Gundersen, M. Technology for transient plasma ignition. In Proceedings of the 43th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2005-951, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Xiao, H.; Oran, E.S. Shock focusing and detonation initiation at a flame front. Combust. Flame 2019, 203, 397–406. [Google Scholar] [CrossRef]
- Shimada, H.; Kenmoku, Y.; Sato, H.; Hayashi, A.K. A new ignition system for pulse detonation engine. In Proceedings of the 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2004-308, Reno, NV, USA, 5–8 January 2004. [Google Scholar]
- Zhao, W.; Han, Q.X.; Zhang, Q. Experimental investigation on detonation initiation with a transversal hot jet. Combust. Explos. Shock Waves 2013, 49, 171–177. [Google Scholar] [CrossRef]
- Brophy, C.; Sinibaldi, J.; Damphousse, P. Initiator performance for liquid-fueled pulse detonation engines. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-472, Reno, NV, USA, 14–17 January 2002. [Google Scholar]
- Brophy, C.; Werner, S.; Sinibaldi, J. Performance characterization of a valveless pulse detonation engine. In Proceedings of the 41th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2003-1344, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Ishii, K.; Tanaka, T. A study on jet initiation of detonation using multiple tubes. Shock Waves 2005, 14, 273–281. [Google Scholar] [CrossRef]
- Ishii, K.; Akiyoshi, T.; Gonda, M.; Murayama, M. Effects of flame jet configurations on detonation initiation. Shock Waves 2009, 239–244. [Google Scholar]
- Saretto, S.R.; Lee, S.Y.; Conrad, C.; Brumberg, J.; Pal, S.; Stantoro, R.J. Predetonator to thrust tube detonation transition studies for multi-cycle PDE applications. In Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2003-4825, Huntsville, AL, USA, 20–23 July 2003. [Google Scholar]
- Conrad, C.; Saretto, S.R.; Lee, S.Y.; Stantoro, R.J. Studies of Overdriven Detonation Wave Transition in a Gradual Area Expansion for PDE Applications. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2004-3397, Fort Lauderdale, FL, USA, 11–14 July 2004. [Google Scholar]
- He, J.; Fan, W.; Chi, Y.; Zheng, j.; Zhang, W. A Comparative Study on Millimeter-scale Hot jet and Detonation Diffraction in a Rectangular Chamber. In Proceedings of the 21th AIAA International Space Planes and Hypersonics Technologies Conference, AIAA 2017-2149, Xiamen, China, 6–9 March 2017. [Google Scholar]
- Wang, Z.; Zhang, Y.; Chen, X.; Liang, Z.; Zheng, L. Investigation of Hot Jet Effect on Detonation Initiation Characteristics. Combust. Sci. Technol. 2017, 189, 498–519. [Google Scholar] [CrossRef]
- Kumar, K. Vented combustion of hydrogen-air mixtures in a large rectangular volume. In Proceedings of the 44th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2006-375, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Kindracki, J.; Kobiera, A.; Rarata, G.; Wolanski, P. Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels. J. Loss Prev. Process Ind. 2007, 20, 551–561. [Google Scholar] [CrossRef]
- Xiao, H.; Duan, Q.; Jiang, L.; Sun, J. Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube. Int. J. Hydrog. Energy 2014, 39, 8557–8563. [Google Scholar] [CrossRef]
- Peng, Z.; Weng, C. Numerical Calculation of Effect of Plasma Ignition on DDT. Combust Sci. Technol. 2011, 1. [Google Scholar]
- Blanchard, R.; Arndt, D.; Grätz, R.; Scheider, S. Effect of ignition position on the run-up distance to DDT for hydrogen–air explosions. J. Loss Prev. Process Ind. 2011, 24, 194–199. [Google Scholar] [CrossRef]
- Goodwin, G.B.; Houim, R.W.; Oran, E.S. Effect of decreasing blockage ratio on DDT in small channels with obstacles. Combust. Flame 2016, 173, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Perera, I.; Wijeyakulasuriya, S.; Nalim, R. Hot combustion torch jet ignition delay time for ethylene-air mixtures. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-95, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Luo, C.; Zanganeh, J.; Moghtaderi, B. A 3D numerical study of detonation wave propagation in various angled bending tubes. Fire Safety J. 2016, 86, 53–64. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Wu, Y.; Bao, X. Numerical Studies of Multi-Cycle Detonation Induced by Shock Focusing. In Proceedings of the Asia-pacific International Symposium on Aerospace Technology, Toyama, Japan, 25–27 October 2016. [Google Scholar]
- Qin, Y.; Yu, J.; Gao, G. Performance studies of annular pulse detonation engine ejectors. J. Aerosp. Power 2011, 26, 25–41. [Google Scholar]
- Zhang, Z.; Li, Z.; Dong, G. Numerical studies of multi-cycle acetylene-air detonation induced by shock focusing. Procedia Eng. 2015, 99, 327–331. [Google Scholar] [CrossRef]
- Petrova, M.; Varatharajan, B.; Williams, F. Theory of Propane Autoignition. In Proceedings of the 42th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2004-1325, Reno, NV, USA, 5–8 January 2004. [Google Scholar]
- Goodwin, G.B.; Houim, R.W.; Oran, E.S. Shock transition to detonation in channels with obstacles. Proc. Combust. Inst. 2017, 36, 2717–2724. [Google Scholar] [CrossRef] [Green Version]
- CEARUN. Available online: https://cearun.grc.nasa.gov (accessed on 5 February 2004).
- Kuznetsov, M.; Alekseev, V.; Matsukov, I.; Dorofeev, S. DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves 2005, 14, 205–215. [Google Scholar] [CrossRef]
- Bychkov, V.; Fru, G.; Eriksson, L.E.; Petchenko, A. Flame acceleration in the early stages of burning in tubes. Combust. Flame 2007, 150, 263–276. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. Cent Turbul Res Report CTR-S88. 1988, pp. 193–208. Available online: https://www.researchgate.net/publication/234550074_Eddies_streams_and_convergence_zones_in_turbulent_flows (accessed on 29 October 2019).
- Fan, J.; Zhang, Y.; Wang, D. Large-eddy simulation of three-dimensional vortical structures for an impinging transverse jet in the near region. J. Hydrodyn. 2007, 19, 314–321. [Google Scholar] [CrossRef]
- Ahmed, U.; Prosser, R. Modelling Flame turbulence interaction in RANS simulation of premixed turbulent combustion. Combust. Theory Model. 2016, 20, 34–57. [Google Scholar] [CrossRef]
- Ciccarelli, G.; Dorofeev, S. Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 2008, 34, 499–550. [Google Scholar] [CrossRef]
- Gamezo, V.N.; Ogawa, T.; Oran, E.S. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing. Combust. Flame 2008, 155, 302–315. [Google Scholar] [CrossRef]
- Ott, J.D.; Oran, E.S.; Anderson, J.D. A mechanism for flame acceleration in narrow tubes. AIAA J. 2003, 41, 1391–1396. [Google Scholar] [CrossRef]
- Kagan, L.; Sivashinsky, G. Parametric transition from deflagration to detonation: Runaway of fast flames. Proc. Combust. Inst. 2017, 36, 2709–2715. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, Y.; He, X.; Wang, J.; Shuai, S.; Law, C.K. Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 2015, 144, 222–227. [Google Scholar] [CrossRef]
- Massa, L.; Austin, J.; Jackson, T. Triple point shear-layers in gaseous detonation waves. J. Fluid Mech. 2007, 586, 205–248. [Google Scholar] [CrossRef]
Parameters | Theoretical | Numerical | Deviation |
---|---|---|---|
p/p1 | 21.15 | 21.87 | 3.40% |
T/T1 | 9.94 | 10.08 | 1.41% |
VCJ (m/s) | 1904.4 | 1909.5 | 0.27% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Liu, S.; Zhao, N.; Chen, X.; Jia, X.; Li, Z. Numerical Simulation of Hot Jet Detonation with Different Ignition Positions. Appl. Sci. 2019, 9, 4607. https://doi.org/10.3390/app9214607
Zheng H, Liu S, Zhao N, Chen X, Jia X, Li Z. Numerical Simulation of Hot Jet Detonation with Different Ignition Positions. Applied Sciences. 2019; 9(21):4607. https://doi.org/10.3390/app9214607
Chicago/Turabian StyleZheng, Hongtao, Shizheng Liu, Ningbo Zhao, Xiang Chen, Xiongbin Jia, and Zhiming Li. 2019. "Numerical Simulation of Hot Jet Detonation with Different Ignition Positions" Applied Sciences 9, no. 21: 4607. https://doi.org/10.3390/app9214607
APA StyleZheng, H., Liu, S., Zhao, N., Chen, X., Jia, X., & Li, Z. (2019). Numerical Simulation of Hot Jet Detonation with Different Ignition Positions. Applied Sciences, 9(21), 4607. https://doi.org/10.3390/app9214607