Determination of Optimum Frequency for Electromagnetic-Assisted Nanofluid Core Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Reservoir Rock Sample Electromagnetic Properties
2.3. Reservoir Model Geometry and Electromagnetic Propagation Simulation
3. Results and Discussion
3.1. Fe3O4 Nanofluid Characterization
3.2. Reservoir Rock Sample Characterization
3.3. Reservoir Rock Electromagnetic Properties
3.4. EM Wave Propagation
3.4.1. Antenna Impedance and Return Loss
3.4.2. Transmitter Propagation Pattern
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghazanfari, E.; Pervizpour, M.; Pamukcu, S. Mathematical Modeling of Electrically Assisted Hydrocarbon Transport in Porous Media. In Proceedings of the GeoCongress, Oakland, CA, USA, 25–29 March 2012; pp. 2302–2311. [Google Scholar]
- Ryoo, S.; Rahmani, A.R.; Yoon, K.Y.; Prodanović, M.; Kotsmar, C.; Milner, T.E.; Johnston, K.P.; Bryant, S.L.; Huh, C. Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. J. Petrol. Sci. Eng. 2012, 81, 129–144. [Google Scholar] [CrossRef]
- Prigiobbe, V.; Ko, S.; Huh, C.; Bryant, S.L. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions. J. Colloid Interface Sci. 2015, 447, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, M.M.; Meribout, M. Antenna array design for enhanced oil recovery under oil reservoir constraints with experimental validation. Energy 2014, 66, 868–880. [Google Scholar] [CrossRef]
- Guru, B.S.; Hiziroglu, H.R. Electromagnetic Field Theory Fundamentals; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Balanis, C.A. Modern Antenna Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Revil, A. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz. Water Resour. Res. 2013, 49, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.A.; Shafie, A.; Yahya, N.; Zainuddin, N. Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review. Energies 2019, 12, 1575. [Google Scholar] [CrossRef]
- Adebayo, L.L.; Soleimani, H.; Yahya, N.; Abbas, Z.; Ridwan, A.T.; Wahaab, F.A. Investigation of the Broadband Microwave Absorption of Citric Acid Coated Fe3O4/PVDF Composite Using Finite Element Method. Appl. Sci. 2019, 18. [Google Scholar] [CrossRef]
- Kovaleva, L.; Davletbaev, A.; Babadagli, T.; Stepanova, Z.J.E. Effects of electrical and radio-frequency electromagnetic heating on the mass-transfer process during miscible injection for heavy-oil recovery. Fuels 2010, 25, 482–486. [Google Scholar] [CrossRef]
- Adil, M.; Lee, K.; Mohd Zaid, H.; Ahmad Latiff, N.R.; Alnarabiji, M.S. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR). PLoS ONE 2018, 13, e0193518. [Google Scholar] [CrossRef]
- Carrizales, M.A.; Lake, L.W.; Johns, R.T. Production improvement of heavy-oil recovery by using electromagnetic heating. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. [Google Scholar]
- Morte, M.; Bloom, E.; Huff, G.; Dean, J.; Hascakir, B. Factors Affecting Electromagnetic Wave Penetration in Heavy Oil Reservoirs. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 13–14 March 2018. [Google Scholar]
- Yahya, N.; Kashif, M.; Shafie, A.; Soleimani, H.; Zaid, H.M.; Latiff, N.R.A. Improved oil recovery by high magnetic flux density subjected to iron oxide nanofluids. J. Nano Res. 2013, 26, 89–99. [Google Scholar] [CrossRef]
- Sahni, A.; Kumar, M.; Knapp, R.B. Electromagnetic Heating Methods for Heavy Oil Reservoirs; Lawrence Livermore National Lab.: Livermore, CA, USA, 2000. [Google Scholar]
- Kashif, M.; Yahya, N.; Zaid, H.M.; Shafie, A.; Jasamai, M.; Nasir, N.; Akhter, M.N. Oil Recovery by Using Electromagnetic Waves. J. Appl. Sci. 2011, 11, 1366–1370. [Google Scholar] [CrossRef]
- Bera, A.; Babadagli, T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Appl. Energy 2015, 151, 206–226. [Google Scholar] [CrossRef]
- Trautman, M.; Macfarlane, B. Experimental and numerical simulation results from a radio frequency heating test in native oil sands at the North Steepbank Mine. In Proceedings of the World Heavy Oil Congress, New Orleans, LA, USA, 5–7 March 2014; pp. 5–7. [Google Scholar]
- Despande, S.R.; Wright, B.N.; Watt, A. Techniques for Installing Effective Solvent Extraction Incorporating Electromagnetic Heating (“ESEIEH”) Completions. In Proceedings of the World Heavy Oil Congress, Edmonton, AB, Canada, 26–27 November 2019; pp. WHOC15–WHOC317. [Google Scholar]
- Wise, S.; Patterson, C. Reducing Supply Cost With Eseieh™ Pronounced Easy. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 7–9 June 2016. [Google Scholar]
- Davletbaev, A.; Kovaleva, L.; Babadagli, T. Mathematical modeling and field application of heavy oil recovery by Radio-Frequency Electromagnetic stimulation. J. Petrol. Sci. Eng. 2011, 78, 646–653. [Google Scholar] [CrossRef]
- Soleimani, H.; Yahya, N.; Latiff, N.R.A.; Zaid, H.M.; Demiral, B.; Amighian, J. Novel enhanced oil recovery method using CO2+ xFe2+ 1-xFe3+ 2O4 as magnetic nanoparticles activated by electromagnetic waves. J. Nano Res. 2013, 26, 111–116. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Thanh, N.T. Magnetic Nanoparticles: From Fabrication to Clinical Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Lee, K.; Adil, M.; Zaid, H.M.; Guan, B.H.; Soleimani, H.; Weis, M. Wettability, Interfacial Tension (IFT) and Viscosity Alteration of Nanofluids Under Electromagnetic (EM) Waves for Enhanced Oil Recovery (IFT) Applications. In Engineering Design Applications; Springer: Berlin, Germany, 2019; pp. 305–311. [Google Scholar]
- Taheri-Shakib, J.; Shekarifard, A.; Naderi, H. The study of influence of electromagnetic waves on the wettability alteration of oil-wet calcite: Imprints in surface properties. J. Petrol. Sci. Eng. 2018, 168, 1–7. [Google Scholar] [CrossRef]
- Hascakir, B.; Acar, C.; Akin, S. Microwave-assisted heavy oil production: An experimental approach. Energy Fuels 2009, 23, 6033–6039. [Google Scholar] [CrossRef]
- Ovalles, C.; Vaca, P.; Okoniewski, M.; Dieckmann, G.; Pasalic, D.; Dunlavey, J. Numerical Simulation of Dielectric Heating in a Heavy Oil Reservoir Using a Shaped Dipole Antenna. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 13–14 March 2018. [Google Scholar]
- Santos, M.; Neto, A.; Mata, W.; Silva, J.J. New antenna modelling using wavelets for heavy oil thermal recovering methods. J. Petrol. Sci. Eng. 2011, 76, 63–75. [Google Scholar] [CrossRef]
- Cassidy, N.J.; Jol, H. Electrical and magnetic properties of rocks, soils and fluids. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 2. [Google Scholar]
- Saeedfar, A.; Lawton, D.; Osadetz, K. Directional RF Heating for Heavy Oil Recovery Using Antenna Array Beam-Forming. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 7–9 June 2016. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wang, Z.; Gao, D.; Liu, K.; Tan, T.; Wang, Z.; Li, W. Study on Radio Frequency Heating Pattern of Heavy Oil Reservoir Based on Multi-Antenna Configuration. In Proceedings of the SPE International Heavy Oil Conference and Exhibition, Kuwait City, Kuwait, 10–12 December 2018. [Google Scholar]
- Bera, A.; Babadagli, T.J. Effect of native and injected nano-particles on the efficiency of heavy oil recovery by radio frequency electromagnetic heating. J. Petrol. Sci. Eng. 2017, 153, 244–256. [Google Scholar] [CrossRef]
- Mirabito, C.; Narayanan, A.; Pérez, D.; Stone, B. FEMLAB Model of a Coupled Electromagnetic–Thermal Boundary Value Problem; Worcester Polytechnic Institute: Worcester, MA, USA, 2005. [Google Scholar]
- Shin, W.; Fan, S. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 2012, 231, 3406–3431. [Google Scholar] [CrossRef]
- Gang, W.; Lin, A. COMSOL Multiphysics Engineering Practice and Theory Simulation: Multiphysics Numerical Analysis Technology; Electronic Industry Press: Beijing, China, 2013. [Google Scholar]
- Xu, C.; Kang, Y.; You, Z.; Chen, M. Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known. J. Nat. Gas Sci. Eng. 2016, 36, 1208–1219. [Google Scholar] [CrossRef]
- Mousavi, M.; Hassanajili, S.; Rahimpour, M. Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs. Appl. Surf. Sci. 2013, 273, 205–214. [Google Scholar] [CrossRef]
- Prodanovic, M.; Ryoo, S.; Rahmani, A.R.; Kuranov, R.V.; Kotsmar, C.; Milner, T.E.; Johnston, K.P.; Bryant, S.L.; Huh, C. Effects of magnetic field on the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- Bobrov, P.; Lapina, A.; Repin, A. Effect of the rock/water/air interaction on the complex dielectric permittivity and electromagnetic waves attenuation in water-saturated sandstones. In Proceedings of the PIERS Proceedings, Prague, Czech Republic, 6–9 July 2015; pp. 1877–1879. [Google Scholar]
- Hu, Z.; Zhao, J.; Gao, H.; Nourafkan, E.; Wen, D. Transport and deposition of carbon nanoparticles in saturated porous media. Energies 2017, 10, 1151. [Google Scholar] [CrossRef]
- Knight, R.J.; Nur, A. The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics 1987, 52, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Fanchi, J.R. Feasibility of Near-Wellbore Heating by Electromagnetic Irradiation. SPE Adv. Technol. Ser. 1993, 1, 161–169. [Google Scholar] [CrossRef]
- Sherman, M.M. Interpretation of dielectric permittivity measurements in the 20-to 50-MHz frequency range. SPE Form. Eval. 1990, 5, 76–80. [Google Scholar] [CrossRef]
- Slyusar, V.I. 60 years of electrically small antennas theory. In Proceedings of the 2007 6th International Conference on Antenna Theory and Techniques, Sevastopol, Ukraine, 17–21 September 2007; pp. 116–118. [Google Scholar]
- Li, R.; Li, B.; Du, G.; Sun, X.; Sun, H. A Compact Broadband Antenna with Dual-Resonance for Implantable Devices. Micromachines 2019, 10, 59. [Google Scholar] [CrossRef]
- Idris, F.M.; Hashim, M.; Abbas, Z.; Ismail, I.; Nazlan, R.; Ibrahim, I.R. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. J. Magn. Magn. Mater. 2016, 405, 197–208. [Google Scholar] [CrossRef]
- Lalatonne, Y.; Richardi, J.; Pileni, M. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat. Mater. 2004, 3, 121. [Google Scholar] [CrossRef]
- Faure, B.; Salazar-Alvarez, G.; Bergström, L. Hamaker constants of iron oxide nanoparticles. Langmuir 2011, 27, 8659–8664. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Reservoir model length (cm) | 30.5 |
Reservoir model diameter (cm) | 4.0 |
Transmitter distance (cm) | 1.0 |
Antenna arm length (mm) | 17.0 |
Antenna radius (mm) | 1.0 |
Gap (mm) | 1.0 |
Formation | Dielectric Permittivity | Conductivity (×10−2 S/m) | Magnetization (×10−3 emu/g) | Coercivity (G) | Retentivity (×10−9 emu/g) |
---|---|---|---|---|---|
Dry Sandstone | 4.0 | 3.276 | 10.361 | 47.82 | 91.89 |
Sandstone + Oil | 6.1 | 2.396 | 4.367 | 37.59 | 29.43 |
Sandstone + Oil + Brine | 8.1 | 3.487 | 6.221 | 23.91 | 32.05 |
Sandstone + Oil + Brine + Nanofluid (Fe3O4) | 19.1 | 7.732 | 10.601 | 31.66 | 24.30 |
Parameters | Dry Sandstone | Oil Saturated | Oil and Brine Saturated | Oil, Brine and Nanofluid Saturated |
---|---|---|---|---|
Resonant Frequency (GHz) | 1.30 | 1.20 | 1.00 and 1.40 | 0.80 and 1.30 |
Return Loss (dB) | −20.70 | −21.47 | −21.12 and −21.36 | −18.911 and −20.00 |
Real Impedance (Ω) | 52.04 | 50.62 | 44.39 and 53.31 | 40.51 and 46.35 |
Imaginary Impedance (Ω) | 9.22 | 8.50 | 6.13 and 8.21 | 3.82 and 8.96 |
Bandwidth (GHz) | 0.91 | 1.01 | 1.10 | 1.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahaab, F.A.; Yahya, N.; Shafie, A.; Soleimani, H.; Rostami, A.; Ganeson, M. Determination of Optimum Frequency for Electromagnetic-Assisted Nanofluid Core Flooding. Appl. Sci. 2019, 9, 4608. https://doi.org/10.3390/app9214608
Wahaab FA, Yahya N, Shafie A, Soleimani H, Rostami A, Ganeson M. Determination of Optimum Frequency for Electromagnetic-Assisted Nanofluid Core Flooding. Applied Sciences. 2019; 9(21):4608. https://doi.org/10.3390/app9214608
Chicago/Turabian StyleWahaab, Fatai A., Noorhana Yahya, Afza Shafie, Hassan Soleimani, Amir Rostami, and Menaka Ganeson. 2019. "Determination of Optimum Frequency for Electromagnetic-Assisted Nanofluid Core Flooding" Applied Sciences 9, no. 21: 4608. https://doi.org/10.3390/app9214608
APA StyleWahaab, F. A., Yahya, N., Shafie, A., Soleimani, H., Rostami, A., & Ganeson, M. (2019). Determination of Optimum Frequency for Electromagnetic-Assisted Nanofluid Core Flooding. Applied Sciences, 9(21), 4608. https://doi.org/10.3390/app9214608