The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Apparatus and Materials
2.2. Test Subjects
2.3. Experimental Procedure
2.3.1. Assessment of the Human Olfactory Response to the Odors of α- Pinene, β- Pinene, d- Limonene (Exp 1)
2.3.2. Effects of Mixed Monoterpenes on Human Psychology and Physiology (Exp 2)
3. Results
3.1. Effect of Individual α-Pinene, β-Pinene, and d-Limonene on Humans
3.2. The Effects of Mixtures of Monoterpenes on Human Psychology and Physiology
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Raw Counting Data | |||||
No. | Concentration (ppbv) | 2 | 3 | 5 | 7 |
Compounds | Number of participant | ||||
1 | α-pinene | 1 | 6 | 19 | 29 |
2 | β-pinene | 0 | 4 | 15 | 29 |
3 | d-limonene | 0 | 5 | 20 | 29 |
Ratio of Participant Could Smell MT Odor | |||||
No. | Concentration (ppbv) | 2 | 3 | 5 | 7 |
Compounds | Ratio of participant (%) | ||||
1 | α-pinene | 3.45 | 20.7 | 65.5 | 100 |
2 | β-pinene | 0.00 | 13.8 | 51.7 | 100 |
3 | d-limonene | 0.00 | 17.2 | 69.0 | 100 |
The Test of Preference between Three Tested MTs | |||||
No. | Compound | Male | Female | Total | Percentage (%) |
1 | α-pinene | 4 | 0 | 4 | 13.8 |
2 | β-pinene | 6 | 1 | 7 | 24.1 |
3 | d-limonene | 13 | 5 | 18 | 62.1 |
Order | Code | Age | Alpha Wave Intensity vs MT (ppbv) | Stress Index vs MT (ppbv) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 15 | 20 | 0 | 7 | 15 | 20 | ||||
1 | F1 | F1 | 21 | 12.70 | 13.57 | 14.05 | 15.90 | 40 | 39 | 36 | 32 |
2 | F2 | F2 | 21 | 12.55 | 12.58 | 13.40 | 16.39 | 57 | 51 | 35 | 24 |
3 | F3 | F3 | 21 | 12.93 | 14.34 | 18.53 | 20.12 | 44 | 42 | 40 | 40 |
4 | F4 | F4 | 21 | 10.40 | 13.02 | 13.91 | 15.87 | 51 | 47 | 42 | 36 |
5 | F5 | F5 | 22 | 9.95 | 15.20 | 15.86 | 16.25 | 39 | 37 | 33 | 28 |
6 | F6 | F6 | 22 | 10.72 | 13.41 | 19.25 | 20.55 | 57 | 56 | 44 | 41 |
7 | F7 | F7 | 21 | 10.17 | 10.22 | 10.74 | 11.61 | 52 | 43 | 40 | 40 |
8 | F8 | F8 | 21 | 8.09 | 10.07 | 10.74 | 11.24 | 50 | 38 | 39 | 39 |
9 | F9 | F9 | 21 | 6.07 | 6.74 | 10.61 | 10.88 | 42 | 41 | 40 | 39 |
10 | F10 | F10 | 26 | 10.42 | 10.39 | 11.87 | 13.31 | 43 | 33 | 34 | 32 |
11 | F11 | F11 | 21 | 8.08 | 9.05 | 9.13 | 9.38 | 35 | 32 | 26 | 25 |
12 | F12 | F12 | 23 | 10.09 | 10.03 | 11.27 | 11.99 | 47 | 37 | 35 | 29 |
13 | F13 | F13 | 30 | 11.03 | 13.49 | 13.95 | 14.96 | 44 | 40 | 39 | 35 |
14 | F14 | F14 | 23 | 5.85 | 7.20 | 9.20 | 10.93 | 41 | 40 | 38 | 38 |
15 | F15 | F15 | 34 | 16.33 | 17.20 | 20.70 | 21.18 | 56 | 43 | 34 | 34 |
16 | M1 | M1 | 24 | 8.06 | 11.17 | 12.76 | 13.34 | 48 | 48 | 46 | 44 |
17 | M2 | M2 | 25 | 8.52 | 12.58 | 13.32 | 13.94 | 43 | 41 | 40 | 37 |
18 | M3 | M3 | 25 | 4.82 | 6.69 | 9.60 | 10.03 | 54 | 43 | 41 | 37 |
19 | M4 | M4 | 24 | 9.70 | 14.76 | 15.46 | 17.34 | 48 | 44 | 41 | 40 |
20 | M5 | M5 | 23 | 7.50 | 12.61 | 13.84 | 15.30 | 42 | 40 | 39 | 35 |
21 | M6 | M6 | 24 | 7.99 | 7.95 | 11.92 | 18.93 | 43 | 41 | 40 | 40 |
22 | M7 | M7 | 24 | 12.84 | 13.94 | 16.90 | 19.98 | 43 | 39 | 38 | 37 |
23 | M8 | M8 | 23 | 9.31 | 11.13 | 11.93 | 13.94 | 48 | 42 | 39 | 37 |
24 | M9 | M9 | 23 | 12.41 | 14.92 | 18.06 | 19.72 | 37 | 36 | 35 | 31 |
25 | M10 | M10 | 24 | 13.17 | 13.29 | 14.89 | 21.31 | 42 | 41 | 38 | 36 |
26 | M11 | M11 | 23 | 10.92 | 11.12 | 11.85 | 11.94 | 45 | 40 | 29 | 24 |
27 | M12 | M12 | 25 | 6.15 | 8.30 | 9.19 | 11.21 | 45 | 39 | 38 | 31 |
28 | M13 | M13 | 23 | 5.84 | 7.56 | 9.91 | 13.14 | 39 | 36 | 32 | 31 |
29 | M14 | M14 | 24 | 5.61 | 7.68 | 8.26 | 9.00 | 56 | 49 | 45 | 36 |
30 | M15 | M15 | 26 | 15.97 | 16.28 | 19.13 | 22.26 | 54 | 43 | 42 | 34 |
No. | Code | Before inhaling MT | After Inhaling MT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Very Stable | Stable | Normal | Unstable | Very Unstable | Very Stable | Stable | Normal | Unstable | Very Unstable | ||
1 | F1 | x | x | ||||||||
2 | F2 | x | x | ||||||||
3 | F3 | x | x | ||||||||
4 | F4 | x | x | ||||||||
5 | F5 | x | x | ||||||||
6 | F6 | x | x | ||||||||
7 | F7 | x | x | ||||||||
8 | F8 | x | x | ||||||||
9 | F9 | x | x | ||||||||
10 | F10 | x | x | ||||||||
11 | F11 | x | x | ||||||||
12 | F12 | x | x | ||||||||
13 | F13 | x | x | ||||||||
14 | F14 | x | x | ||||||||
15 | F15 | x | x | ||||||||
16 | M1 | x | x | ||||||||
17 | M2 | x | x | ||||||||
18 | M3 | x | x | ||||||||
19 | M4 | x | x | ||||||||
20 | M5 | x | x | ||||||||
21 | M6 | x | x | ||||||||
22 | M7 | x | x | ||||||||
23 | M8 | x | x | ||||||||
24 | M9 | x | x | ||||||||
25 | M10 | x | x | ||||||||
26 | M11 | x | x | ||||||||
27 | M12 | x | x | ||||||||
28 | M13 | x | x | ||||||||
29 | M14 | x | x | ||||||||
30 | M15 | x | x |
References
- Li, Q.; Nakadai, A.; Matsushima, H.; Miyazaki, Y.; Krensky, A.M.; Kawada, T.; Morimoto, K. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol. Immunotoxicol. 2006, 28, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Nakadai, A.; Inagaki, H.; Katsumata, M.; Shimizu, T.; Hirata, Y.; Hirata, K.; Suzuki, H.; Miyazaki, Y.; et al. Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2007, 20, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, Y.J.; Wakayama, Y.; et al. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 2010, 15, 9–17. [Google Scholar] [CrossRef]
- Geron, C.D.; Pierce, T.E.; Guenther, A.B. Reassessment of biogenic volatile organic compound emissions in the Atlanta area. Atmos. Environ. 1995, 29, 1573–1578. [Google Scholar] [CrossRef]
- Bouvier-Brown, N.C.; Goldstein, A.H.; Gilman, J.B.; Kuster, W.C.; De Gouw, J.A. In-situ ambient quantification of monoterpenes, sesquiterpenes and related oxygenated compounds during BEARPEX 2007: Implications for gas-and particle-phase chemistry. Atmos. Chem. Phys. 2009, 9, 5505–5518. [Google Scholar] [CrossRef]
- Hakola, H.; Laurila, T.; Rinne, J.; Puhto, K. The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site. Atmos. Environ. 2000, 34, 4971–4982. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Chang, K.-H.; Wang, L.-T. Ambient concentrations of biogenic volatile organic compounds in Southern Taiwan. Chemosphere 1999, 39, 731–744. [Google Scholar] [CrossRef]
- Kalabokas, P.; Bartzis, J.G.; Bomboi, T.; Ciccioli, P.; Cieslik, S.; Dlugi, R.; Foster, P.; Kotzias, D.; Steinbrecher, R. Ambient atmospheric trace gas concentrations and meteorological parameters during the first BEMA measuring campaign on May 1994 at Castelporziano, Italy. Atmos. Environ. 1997, 31, 67–77. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Kuhn, U.; Wolf, A.; Andreae, M.O.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Guenther, A.; Greenberg, J.; De Castro Vasconcellos, P.; et al. Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos. Environ. 2000, 34, 4063–4072. [Google Scholar] [CrossRef]
- Kim, J.C.; Kim, K.H. Seasonal variations of Monoterpene concentrations in a Pine forest in Florida, USA. J. Korean Soc. Atmos. Environ. 2002, 18, 175–180. [Google Scholar]
- Saxton, J.E.; Lewis, A.C.; Kettlewell, J.H.; Ozel, M.Z.; Gogus, F.; Boni, Y.; Korogone, S.O.U.; Serça, D. Isoprene and monoterpene measurements in a secondary forest in northern Benin. Atmos. Chem. Phys. 2007, 7, 4095–4106. [Google Scholar] [CrossRef]
- Tani, A.; Nozoe, S.; Aoki, M.; Hewitt, C.N. Monoterpene fluxes measured above a Japanese red pine forest at Oshiba plateau, Japan. Atmos. Environ. 2002, 36, 3391–3402. [Google Scholar] [CrossRef]
- Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME. Atmos. Meas. Tech. 2010, 3, 1615–1627. [Google Scholar] [CrossRef]
- Oh, G.Y.; Park, G.H.; Kim, I.S.; Bae, J.S. Comparison of Major Monoterpene Concentrations in the Ambient Air of South Korea Forests. J. Korean. Soc. 2010, 99, 698–705. [Google Scholar]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Wang, Z.P. Uptake, distribution and elimination of alpha-pinene in man after exposure by inhalation. Scand. J. Work. Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef]
- Komori, T.; Fujiwara, R.; Tanida, M.; Nomura, J.; Yokoyama, M.M. Effects of citrus fragrance on immune function and depressive states. Neuroimmunomodulation 1995, 2, 174–180. [Google Scholar] [CrossRef]
- Li, Q.; Nakadai, A.; Ishizaki, M.; Morimoto, K.; Ueda, A.; Krensky, A.M.; Kawada, T. Dimethyl 2,2-dichlorovinyl phosphate (DDVP) markedly decreases the expression of perforin, granzyme A and granulysin in human NK-92CI cell line. Toxicology 2005, 213, 107–116. [Google Scholar] [CrossRef]
- Li, Q.; Kobayashi, M.; Kawada, T. DDVP markedly decreases the expression of granzyme B and granzyme 3/K in human NK cells. Toxicology 2008, 243, 294–302. [Google Scholar] [CrossRef]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Li, Y.J.; Wakayama, Y.; et al. A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in female subjects. J. Biol. Regul. Homeost. Agents 2008, 22, 45–55. [Google Scholar]
- Wolkoff, P.; Nielsen, G.D. Effects by inhalation of abundant fragrances in indoor air—An overview. Environ. Int. 2017, 101, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Tsunetsugu, Y.; Park, B.J.; Miyazaki, Y. Trends in research related to “shinrin-yoku” (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med. 2010, 15, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Dayawansa, S.; Umeno, K.; Takakura, H.; Hori, E.; Tabuchi, E.; Nagashima, Y.; Oosu, H.; Yada, Y.; Suzuki, T.; Ono, T.; et al. Autonomic responses during inhalation of natural fragrance of “Cedrol” in humans. Auton. Neurosci. Basic Clin. 2003, 108, 79–86. [Google Scholar] [CrossRef]
- Hiruma, T.; Yabe, H.; Sato, Y.; Sutoh, T.; Kaneko, S. Differential effects of the hiba odor on CNV and MMN. Biol. Psychol. 2002, 61, 321–331. [Google Scholar] [CrossRef]
- Itai, T.; Amayasu, H.; Kuribayashi, M.; Kawamura, N.; Okada, M.; Momose, A.; Tateyama, T.; Narumi, K.; Uematsu, W.; Kaneko, S. Psychological effects of aromatherapy on chronic hemodialysis patients. Psychiatry Clin. Neurosci. 2000, 54, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Miyazak, Y.; Morikawa, T.; Yamamoto, N. Effect of wooden odoriferous substance on humans. Jpm. J. Physiol. Anthropol. 1999, 4, 49–50. [Google Scholar]
- Miyazaki, Y.; Motohashi, Y.; Kobayyashi, S. Changes in mood by inhalation of essential oils in humansII. Effect of essential oils on blood-pressure, heart-rate, R-R intervals, performance, sensory evaluation and POMS. Mokuzai Gakkaishi 1992, 38, 909–913. [Google Scholar]
- Tsunetsugu, Y.; Morikawa, T.; Miyazak, Y. The relaxing effects of the smell of wood. Wood Ind. 2005, 60, 598–602. [Google Scholar]
- Joung, D.; Song, C.; Ikei, H.; Okuda, T.; Igarashi, M.; Koizumi, H.; Park, B.J.; Yamaguchi, T.; Takagaki, M.; Miyazaki, Y. Physiological and psychological effects of olfactory stimulation with D-Limonene. Adv. Hortic. Sci. 2014, 2, 90–94. [Google Scholar]
- Lim, J.H.; Kim, J.C.; Kim, K.J.; Son, Y.S.; Sunwoo, Y.; Han, J.S. Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 2008, 73, 470–478. [Google Scholar] [CrossRef]
- Ghimenti, S.; Tabucchi, S.; Lomonaco, T.; Di Francesco, F.; Fuoco, R.; Onor, M.; Lenzi, S.; Trivella, M.G. Monitoring breath during oral glucose tolerance tests. J. Breath Res. 2013, 7, 017115. [Google Scholar] [CrossRef]
- Biagini, D.; Lomonaco, T.; Ghimenti, S.; Bellagambi, F.G.; Onor, M.; Scali, M.C.; Barletta, V.; Marzilli, M.; Salvo, P.; Trivella, M.G.; et al. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry. J. Breath Res. 2017, 11, 047110. [Google Scholar] [CrossRef]
- U.S. EPA. Reference Guide to Odor Thresholds for Hazardous Air Pollutants Listed in the Clean Air Act Amendments of 1990; U.S. EPA: Washington, DC, USA, 1990.
- Ghimenti, S.; Tabucchi, S.; Bellagambi, F.G.; Lomonaco, T.; Onor, M.; Trivella, M.G.; Fuoco, R.; Di Francesco, F. Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography–mass spectrometry for exposure assessment of hospital staff. J. Pharm. Biomed. Anal. 2015, 106, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Empson, J. Human Brainwaves: The Psychological Significance of the Electroencephalogram; Palgrave Macmillan: London, UK, 1986; ISBN 978-1-349-18312-8. [Google Scholar]
- Oliveira-Pinto, A.V.; Santos, R.M.; Coutinho, R.A.; Oliveira, L.M.; Santos, G.B.; Alho, A.T.L.; Leite, R.E.P.; Farfel, J.M.; Suemoto, C.K.; Grinberg, L.T.; et al. Sexual dimorphism in the human olfactory bulb: Females have more neurons and glial cells than males. PLoS ONE 2014, 9, e111733. [Google Scholar] [CrossRef] [PubMed]
- Cain, W.S.; Schmidt, R.; Wolkoff, P. Olfactory detection of ozone and d-limonene: Reactants in indoor spaces. Indoor Air 2007, 17, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y. Odor Intensity and Odor Threshold Value. J. Jpn. Air Clean. Assoc. 2003, 41, 17–25. [Google Scholar]
- Doty, R.L.; Cometto-Muñiz, J.E.; Jalowayski, A.A.; Dalton, P.; Kendal-Reed, M.; Hodgson, M. Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit. Rev. Toxicol. 2004, 34, 85–142. [Google Scholar] [CrossRef] [PubMed]
Site | α-Pinene | β-Pinene | d-Limonene | 3-Carene | Myrcene | Camphene | etc. | ΣM. Terpene | Ref. |
---|---|---|---|---|---|---|---|---|---|
Castelporziano, Italy | 97 (33%) | 36 (12%) | 162 (55%) | bdl | bdl | bdl | 0 | 295 | [8,9] |
Chiaotou, Taiwan | 100 (28%) | 253 (72%) | bdl | bdl | bdl | bdl | 0 | 353 | [8] |
Balbina, Amazonia, Brazil | 1100 (44%) | 500 (20%) | 350 (14%) | bdl | 50 (2%) | 100 (4%) | 400 (16%) | 2500 | [10] |
Ilomantsi, Finland | 100 (64%) | 16 (10%) * | 10 (6%) | 22 (14%) | - | 2 (1%) | 6 (4%) | 156 | [7] |
Austin Cary Forest, FL, USA | 125 (59%) | 86 (41%) | bdl | bdl | bdl | bdl | bdl | 211 | [11] |
Blodgett Forest, CA, USA | 104 (14%) | 311 (43%) | 76 (11%) ** | 210 (29%) | 10 (1%) | 6 (1%) | 5 (1%) | 722 | [6] |
Mainz, Germany | 117 (28%) | 98 (23%) | 74 (18%) | 49 (12%) | 24 (6%) | bdl | 59 (14%) | 421 | [14] |
Djougou, Benin | 300 (55%) | 200 (36%) | 50 (9%) ** | bdl | bdl | bdl | 0 | 550 | [12] |
Oshiba plareau, Japan | 70 (41%) | 26 (15%) | 74 (44%) ** | bdl | bdl | bdl | 0 | 170 | [13] |
Jönköping, Sweden | 9730 (50%) | 320 (2%) | 1300 (7%) | 7000 (36%) | 210 (1%) | 700 (4%) | 340 (2%) | 19,600 | [5] |
Odae Chanamu forest, Korea | 133 (45%) | 55 (19%) | 61 (21%) | bdl | bdl | 44 (15%) | bdl | 293 | [15] |
Seonam temple forest, Korea | 32 (31%) | 38 (37%) * | 13 (13%) | bdl | - | 7 (7%) | 11 (11%) | 107 | [15] |
Juknokwon forest, Korea | 77 (27%) | 103 (36%) * | 74 (26%) | bdl | - | 12 (4%) | 24 (8%) | 291 | [15] |
1. What is your gender? ① Male ② Female |
2. Do you smoke? ① Yes ② No |
3. How is your current physical condition? ① Excellent ② Fine ③ Good ④ Not good ⑤ Not very good |
4. What do you think about sample 1 smell? ① Very refresh ② Refresh ③ Normally ④ Uncomfortable ⑤ Very uncomfortable |
5. What do you think about sample 2 smell? ① Very refresh ② Refresh ③ Normally ④ Uncomfortable ⑤ Very uncomfortable |
6. What do you think about sample 3 smell? ① Very refresh ② Refresh ③ Normally ④ Uncomfortable ⑤ Very uncomfortable |
7. What level can you smell clearly? Sample 1: ① 2ppbv ② 3ppbv ③ 5ppbv ④ 7ppbv Sample 2: ① 2ppbv ② 3ppbv ③ 5ppbv ④ 7ppbv Sample 3: ① 2ppbv ② 3ppbv ③ 5ppbv ④ 7ppbv |
8. Which sample do you think has the best odor? ① Sample 1 ② Sample 2 ③ Sample 3 |
9. Which sample has the worst odor among the three kinds of samples? ① Sample 1 ② Sample 2 ③ Sample 3 |
10. After the experiment, how is your physical condition? ① Excellent ② Fine ③ Good ④ Not good ⑤ Not very good |
11. What do you think about your psychology state (stress, anger, sleepy) after smelling? ① Very stable ② Stable ③ Normally ④ Unstable ⑤ Very Unstable |
12. Please write if you are suffering from diseases or symptoms. (Example: Nose allergies, Sinusitis, etc.) |
13. Please write a comment about the experiments. |
No. | Total Concentration (ppbv) | Mixing Ratio | ||
---|---|---|---|---|
α-Pinene | β-Pinene | d-Limonene | ||
1 | 0 | 0.0 | 0.0 | 0.0 |
2 | 7 | 1.0 | 0.5 | 0.5 |
3 | 15 | 1.0 | 0.5 | 0.5 |
4 | 20 | 1.0 | 0.5 | 0.5 |
1. What is your gender? ① Male ② Female |
2. Do you smoke? ① Yes ② No |
3. Currently, do you have rhinitis symptoms? ① Yes ② No |
4. How is your psychological stability condition? ① Very comfortable ② Comfortable ③ Normal ④ Uncomfortable ⑤ Very uncomfortable |
5. After the experiment, how is your psychological stability condition? ① Very comfortable ② Comfortable ③ Normal ④ Uncomfortable ⑤ Very uncomfortable |
6. Please write if you are suffering from diseases or symptoms. (Ex: Nose allergies, Sinusitis, etc.) |
7. Please write a comment about the experiments. |
Concentration (ppbv) | Ratio of Participants % (Ratio of Gender %) | ||||||||
---|---|---|---|---|---|---|---|---|---|
α-Pinene | β-Pinene | d-Limonene | |||||||
Male | Female | Total | Male | Female | Total | Male | Female | Total | |
2 | 0.00 (0.00) | 3.45 (16.7) | 3.45 | 0.00 (0.00) | 0.00 (0.00) | 0.00 | 0.00 (0.00) | 0.00 (0.00) | 0.00 |
3 | 17.2 (21.7) | 3.45 (16.7) | 20.7 | 10.3 (13.0) | 3.45 (16.7) | 13.8 | 13.8 (17.4) | 3.45 (16.7) | 17.2 |
5 | 44.8 (56.5) | 20.7 (100) | 65.5 | 31.0 (39.1) | 20.7 (100) | 51.7 | 48.3 (60.9) | 20.7 (100) | 69.0 |
7 | 79.3 (100) | 20.7 (100) | 100 | 79.3 (100) | 20.7 (100) | 100 | 79.3 (100) | 20.7 (100) | 100 |
Parameter | Gender | n | Background | 7 ppbv | 15 ppbv | 20 ppbv |
---|---|---|---|---|---|---|
Alpha wave | Male | 3 | 9.3 (± 3.2) | 11.3 (± 3.1) | 13.1 (± 3.3) | 15.4 (± 4.2) |
Female | 3 | 10.4 (± 2.7) | 11.8 (± 3.0) | 13.5 (± 3.6) | 14.7 (± 3.8) | |
p-value 1 | 0.319 | 0.696 | 0.746 | 0.626 | ||
Stress index | Male | 3 | 45.8 (± 5.5) | 41.5 (± 3.7) | 38.9 (± 4.4) | 35.3 (± 4.8) |
Female | 3 | 46.5 (± 7.0) | 41.3 (± 6.3) | 37.0 (± 4.4) | 34.1 (± 5.6) | |
p-value 1 | 0.752 | 0.916 | 0.257 | 0.533 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-C.; Dinh, T.-V.; Oh, H.-K.; Son, Y.-S.; Ahn, J.-W.; Song, K.-Y.; Choi, I.-Y.; Park, C.-R.; Szulejko, J.E.; Kim, K.-H. The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels. Appl. Sci. 2019, 9, 4507. https://doi.org/10.3390/app9214507
Kim J-C, Dinh T-V, Oh H-K, Son Y-S, Ahn J-W, Song K-Y, Choi I-Y, Park C-R, Szulejko JE, Kim K-H. The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels. Applied Sciences. 2019; 9(21):4507. https://doi.org/10.3390/app9214507
Chicago/Turabian StyleKim, Jo-Chun, Trieu-Vuong Dinh, Hong-Keun Oh, Youn-Suk Son, Ji-Won Ahn, Kyu-Yong Song, In-Young Choi, Chan-Ryul Park, JanJan E. Szulejko, and Ki-Hyun Kim. 2019. "The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels" Applied Sciences 9, no. 21: 4507. https://doi.org/10.3390/app9214507
APA StyleKim, J.-C., Dinh, T.-V., Oh, H.-K., Son, Y.-S., Ahn, J.-W., Song, K.-Y., Choi, I.-Y., Park, C.-R., Szulejko, J. E., & Kim, K.-H. (2019). The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels. Applied Sciences, 9(21), 4507. https://doi.org/10.3390/app9214507