Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef]
- Shaffer, E.A. Epidemiology and risk factors for gallstone disease: Has the paradigm changed in the 21st century? Curr. Gastroenterol. Rep. 2005, 7, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Jelínek, F.; Arkenbout, E.A.; Sakes, A.; Breedveld, P. Minimally invasive surgical instruments with an accessory channel capable of integrating fibre-optic cable for optical biopsy: A review of the state of the art. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Dremin, V.V.; Dunaev, A.V. How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation. J. Opt. Technol. 2016, 83, 43–48. [Google Scholar] [CrossRef]
- Kennedy, G.T.; Okusanya, O.T.; Keating, J.J.; Heitjan, D.F.; Deshpande, C.; Litzky, L.A.; Albelda, S.M.; Drebin, J.A.; Nie, S.; Low, P.S.; et al. The optical biopsy: A novel technique for rapid intraoperative diagnosis of primary pulmonary adenocarcinomas. Ann. Surg. 2015, 262, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Stelmashchuk, O.; Zherebtsov, E.; Zherebtsova, A.; Kuznetsova, E.; Vinokurov, A.; Dunaev, A.; Mamoshin, A.; Snimshchikova, I.; Borsukov, A.; Bykov, A.; et al. Noninvasive control of the transport function of fluorescent coloured liposomal nanoparticles. Laser Phys. Lett. 2017, 14, 065603. [Google Scholar] [CrossRef]
- Dremin, V.V.; Margaryants, N.B.; Volkov, M.V.; Zhukova, E.V.; Zherebtsov, E.A.; Dunaev, A.V.; Rafailov, E.U. Assessment of tissue ischemia of nail fold precapillary zones using a fluorescence capillaroscopy. Proc. SPIE 2017, 10412. [Google Scholar]
- Dunaev, A.V.; Dremin, V.V.; Zherebtsov, E.A.; Rafailov, I.E.; Litvinova, K.S.; Palmer, S.G.; Stewart, N.A.; Sokolovski, S.G.; Rafailov, E.U. Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow. Med. Eng. Phys. 2015, 37, 574–583. [Google Scholar] [CrossRef]
- Tuchin, V.V. Handbook of Optical Biomedical Diagnostics; SPIE Press: Bellingham, WA, USA, 2002; ISBN 9780819442383. [Google Scholar]
- Croce, A.C.; Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014, 58, 320–337. [Google Scholar] [CrossRef]
- Mayevsky, A. Mitochondrial Function In Vivo Evaluated by NADH Fluorescence; Springer: Cham, Germany, 2015; ISBN 9783319-166827. [Google Scholar]
- Bulgakova, N.; Ulijanov, R.; Vereschagin, K.; Sokolov, V.; Teplov, A.; Rusakov, I.; Chissov, V. In vivo local fluorescence spectroscopy in PDD of superficial bladder cancer. Med. Laser Appl. 2009, 24, 247–255. [Google Scholar] [CrossRef]
- Dremin, V.V.; Zherebtsov, E.A.; Sidorov, V.V.; Krupatkin, A.I.; Makovik, I.N.; Zherebtsova, A.I.; Zharkikh, E.V.; Potapova, E.V.; Dunaev, A.V.; Doronin, A.A.; et al. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus. J. Biomed. Opt. 2017, 22, 010101. [Google Scholar] [CrossRef] [PubMed]
- Hoff, D.A.L.; Gregersen, H.; Hatlebakk, J.G. Mucosal blood flow measurements using laser Doppler perfusion monitoring. World J. Gastroenterol. 2009, 15, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lloyd, W.R.; Chandra, M.; Wilson, R.H.; McKenna, B.; Simeone, D.; Scheiman, J.; Mycek, M.A. Characterizing human pancreatic cancer precursor using quantitative tissue optical spectroscopy. Biomed. Opt. Express 2013, 4, 2828–2834. [Google Scholar] [CrossRef] [PubMed]
- Mayevsky, A.; Chance, B. Oxidation-reduction states of NADH in vivo: From animals to clinical use. Mitochondrion 2007, 7, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Sun, N.; Mayevsky, A.; Zhang, Z.; Luo, Q. Early identification of acute hypoxia based on brain NADH fluorescence and cerebral blood flow. J. Innov. Opt. Health Sci. 2014, 7, 1450033. [Google Scholar] [CrossRef]
- Bartolomé, F.; Abramov, A.Y. Measurement of mitochondrial nadh and fad auto fluorescence in live cells. Methods Mol. Biol. 2015, 1264, 263–270. [Google Scholar]
- The International Commission on Non-Ionizing Radiation Protection. Giudelines on Limits of Exposure to Ultraviolet Radiation of Wavelengths Between 180 nm and 400 nm (Incoherent Optical Radiation). Health Phys. 2004, 87, 171–186. [Google Scholar] [CrossRef]
- Zherebtsov, E.A.; Kandurova, K.Y.; Seryogina, E.S.; Kozlov, I.O.; Dremin, V.V.; Zherebtsova, A.I.; Dunaev, A.V.; Meglinski, I. The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence. Proc. SPIE 2017, 10336. [Google Scholar]
- Zherebtsov, E.; Dremin, V.; Zharkikh, E.; Zherebtsova, A.; Rafailov, I.; Dunaev, A.; Bazieva, N.; Rafailov, E. Fibre optic probe for fluorescence diagnostics with blood influence compensation. Proc. SPIE 2018, 10493, 6. [Google Scholar]
- Dremin, V.V.; Zherebtsov, E.A.; Rafailov, I.E.; Vinokurov, A.Y.; Novikova, I.N.; Zherebtsova, A.I.; Litvinova, K.S.; Dunaev, A. V The development of attenuation compensation models of fluorescence spectroscopy signals. Proc. SPIE 2016, 9917. [Google Scholar]
- Christoforidis, E.C.; Hovendal, C.; Bjerring, P.; Kruse, A. Continuous measurement of gastric blood flow by laser-doppler flowmetry during gastroscopy. Scand. J. Gastroenterol. 1989, 24, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Krohg-Sørensen, K.; Lunde, O.C. Perfusion of the human distal colon and rectum evaluated with endoscopic laser doppler flowmetry: Methodologic aspects. Scand. J. Gastroenterol. 1993, 28, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.K.; Redaelli, C.; Friess, H.; Blum, B.; Signer, C.; Maurer, C.A.; Büchler, M.W. Evaluation of laser Doppler flowmetry for the study of benign and malignant gastric blood flow in vivo. Gut 1999, 45, 341–345. [Google Scholar] [CrossRef] [PubMed]
Area | Mean | Standard Deviation | ||
---|---|---|---|---|
365 nm | 450 nm | 365 nm | 450 nm | |
Common bile duct | 0.90 | 1.43 | 0.36 | 0.61 |
Gallbladder | 0.66 | 0.93 | 0.34 | 0.49 |
Liver | 0.67 | 0.63 | 0.45 | 0.39 |
Area | Mean | Standard Deviation |
---|---|---|
Common bile duct | 16.82 | 6.24 |
Gallbladder | 12.46 | 5.03 |
Liver | 11.34 | 5.72 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandurova, K.; Dremin, V.; Zherebtsov, E.; Potapova, E.; Alyanov, A.; Mamoshin, A.; Ivanov, Y.; Borsukov, A.; Dunaev, A. Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions. Appl. Sci. 2019, 9, 217. https://doi.org/10.3390/app9020217
Kandurova K, Dremin V, Zherebtsov E, Potapova E, Alyanov A, Mamoshin A, Ivanov Y, Borsukov A, Dunaev A. Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions. Applied Sciences. 2019; 9(2):217. https://doi.org/10.3390/app9020217
Chicago/Turabian StyleKandurova, Ksenia, Viktor Dremin, Evgeny Zherebtsov, Elena Potapova, Alexander Alyanov, Andrian Mamoshin, Yury Ivanov, Alexey Borsukov, and Andrey Dunaev. 2019. "Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions" Applied Sciences 9, no. 2: 217. https://doi.org/10.3390/app9020217
APA StyleKandurova, K., Dremin, V., Zherebtsov, E., Potapova, E., Alyanov, A., Mamoshin, A., Ivanov, Y., Borsukov, A., & Dunaev, A. (2019). Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions. Applied Sciences, 9(2), 217. https://doi.org/10.3390/app9020217