Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources
Abstract
:1. Introduction
1.1. Flavonoids
1.2. Deep Eutectic Solvents
1.3. Application of DES on Flavonoid Extractions
2. Factors Affecting the Extraction of Flavonoids Using DES Separation Techniques
2.1. Temperature
2.2. Molecular Structure and Composition of the DES
2.3. Toxicity
2.4. Viscosity
2.5. Extraction Time
2.6. Water Content
2.7. DES as Additives, or Additives to DES
2.8. Solvent/Sample Ratio
2.9. pH
2.10. Separation Techniques
3. Conclusions
Funding
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, E47. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.V.A.; Liu, D. Flavonoids and Cardiovascular Health. In Complementary and Alternative Therapies and the Aging Population; Watson, R.R., Ed.; Academic Press: Elsevier: Amsterdam, The Netherlands, 2009; pp. 371–392. [Google Scholar]
- Watson, R.; Preedy, V.; Zibadi, S. Polyphenols in Human Health and Disease; Academic Press: Elsevier: Amsterdam, The Netherlands, 2014; Volume 1–2. [Google Scholar]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiz, G.; Braun, L.; Lopez, R.; de Maria, P.D.; Breccia, J.D. Enzymatic deglycosylation of flavonoids in deep eutectic solvents aqueous mixtures Paving the way for sustainable flavonoid chemistry. J. Mol. Catal. B: Enzym. 2016, 130, 70–73. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multifunctioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents:application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Liu, Y.; Garzon, J.; Friesen, J.B.; Zhang, Y.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. Fitoterapia 2016, 112, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Fu, N.; Lv, R.; Guo, Z.; Guo, Y.; You, X.; Tang, B.; Han, D.; Yan, H.; Row, K.H. Environmentally friendly and non-polluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents. J. Chromatogr. A 2017, 1492, 1–11. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, J.-Z.; Wang, L.-T.; Kang, Y.-F.; Meng, Y.; Jiao, J.; Fu, Y.-J. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. J. Clean. Prod. 2018, 184, 826–835. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Espino, M.; de los Angeles Fernandez, M.; Raba, J.; Silva, M.F. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents. Anal. Chim. Acta 2016, 936, 91–96. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Clemente, A.; Summo, C.; Pasqualone, A.; Caponio, F. Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection. Food Chem. 2016, 212, 43–47. [Google Scholar] [CrossRef]
- Li, X.; Dai, Y.; Row, K.H. Preparation of two-dimensional magnetic molecularly imprinted polymers based on boron nitride and a deep eutectic solvent for the selective recognition of flavonoids. Analyst 2019, 144, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, L.; Tang, W.; Row, K.H.; Zhu, T. Optimization of the chromatographic behaviors of quercetin using choline chloride-based deep eutectic solvents as HPLC mobile-phase additives. Sep. Sci. Technol. 2018, 53, 397–403. [Google Scholar] [CrossRef]
- Taylor, K.M.; Taylor, Z.E.; Handy, S.T. Rapid synthesis of aurones under mild conditions using a combination of microwaves and deep eutectic solvents. Tetrahedron Lett. 2017, 58, 240–241. [Google Scholar] [CrossRef]
- Fu, N.; Li, L.; Liu, X.; Fu, N.; Zhang, C.; Hu, L.; Li, D.; Tang, B.; Zhu, T. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. J. Chromatogr. A 2017, 1530, 23–34. [Google Scholar] [CrossRef]
- Unlu, A.E.; Prasad, B.; Anavekar, K.; Bubenheim, P.; Liese, A. Investigation of a green process for the polymerization of catechin. Prep. Biochem. Biotechnol. 2017, 47, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Greiner, R.; Orlien, V.; Lebovka, N.I. Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends Food Sci. Technol. 2016, 52, 98–108. [Google Scholar] [CrossRef]
- Mulia, K.; Muhammad, F.; Krisanti, E. Extraction of vitexin from binahong (Anredera cordifolia (Ten.) Steenis) leaves using betaine -1,4 butanediol natural deep eutectic solvent (NADES). AIP Conf. Proc. 2017, 1823, 020018-1–020018-4. [Google Scholar]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Yao, X.-H.; Zhang, D.-Y.; Duan, M.-H.; Cui, Q.; Xu, W.-J.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Fu, Y.-J. Preparation and determination of phenolic coumpounds from Pyrola Incarnata Fisch. with a green polyols based-deep eutectic solvent. Sep. Purif. Technol. 2015, 149, 116–123. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, J.; Duan, H.; Guan, H.; Zhao, L. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. J. Pharm. Biomed. Anal. 2018, 161, 246–253. [Google Scholar] [CrossRef]
- Shang, X.; Tan, J.-N.; Du, Y.; Liu, X.; Zhang, Z. Environmentally-Friendly Extraction of Flavonoids from Cyclocarya paliurus (Batal.) Iljinskaya Leaves with Deep Eutectic Solvents and Evaluation of Their Antioxidant Activities. Molecules 2018, 23, 2110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, Y.; Wu, W.; Liu, D.; Ji, Y.; Ren, S. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem. 2016, 18, 3089–3097. [Google Scholar] [CrossRef]
- Hayyan, M.; Hashim, M.; Hayyan, A.; Al-Saadi, M.A.; Al Nashef, I.M.; Mirghani, M.E.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere 2013, 90, 2193–2195. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents-solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Ahmadi, R.; Hemmateenejad, B.; Safavi, A.; Shojaeifard, Z.; Mohabbati, M.; Firuzi, O. Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: A QSAR analysis. Chemosphere 2018, 209, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Radošević, K.; Bubalo, M.C.; Srček, V.G.; Grgas, D.; Dragičević, T.L.; Redovniković, I.R. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 2015, 112, 46–53. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Cvjetko Bubalo, M.; Frece, J.; Gaurina Srček, V.; Radojčić Redovniković, I. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef] [PubMed]
- Macário, I.P.E.; Oliveira, H.; Menezes, A.C.; Ventura, S.P.M.; Pereira, J.L.; Gonçalves, A.M.M.; Coutinho, J.A.P.; Gonçalves, F.J.M. Cytotoxicity profiling of deep eutectic solvents to human skin cells. Sci. Rep. 2019, 9, 3932. [Google Scholar] [CrossRef] [Green Version]
- Hayyan, M.; Looi, C.Y.; Hayyan, A.; Wong, W.F.; Hashim, M.A. In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS ONE 2015, 10, 2. [Google Scholar] [CrossRef]
- Mbous, Y.P.; Hayyan, M.; Wong, W.F.; Looi, C.Y.; Hashim, M.A. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci.Rep. 2017, 7, 41257. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Liu, M.; Zhang, L. The effect of deep eutectic solvent on the pharmacokinetics of salvianolic acid B in rats and its acute toxicity test. J. Chromatogr. B 2017, 1063, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Belebna, M.; Ruesgas-Ramón, M.; Bonafos, B.; Fouret, G.; Casas, F.; Coudray, C.; Durand, E.; Cruz Figueroa-Espinoza, M.; Feillet-Coudray, C. Toxicity of natural deep eutectic solvent betaine: Glycerol in rats. J. Agric. Food Chem. 2018, 66, 6205–6212. [Google Scholar] [CrossRef] [PubMed]
- Alcalde, R.; Atilhan, M.; Aparicio, S. On the properties of (choline chloride+ lactic acid) deep eutectic solvent with methanol mixtures. J. Mol. Liq. 2018, 272, 815–820. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Koutsoukos, S.; Tsiaka, T.; Tzani, A.; Zoumpoulakis, P.; Detsi, A. Choline Chloride and Tartaric Acid, a Natural Deep Eutectic Solvent for the Efficient Extraction of Phenolic and Carotenoid Compounds. J. Clean. Prod. 2019, in press. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Kou, W.-Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.; Marrucho, I.M. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Florindo, C.; Branco, L.; Marrucho, I. Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib. 2017, 448, 135–142. [Google Scholar] [CrossRef]
- Florindo, C.; Romero, L.; Rintoul, I.; Branco, L.C.; Marrucho, I.M. From phase change materials to green solvents: Hydrophobic low viscous fatty acid–based deep eutectic solvents. ACS Sustain. Chem. Eng. 2018, 6, 3888–3895. [Google Scholar] [CrossRef]
- Wei, Z.-F.; Wang, X.-Q.; Peng, X.; Wang, W.; Zhao, C.-J.; Gang Zu, Y.; Fu, Y.-J. Fast and Green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crop. Prod. 2015, 63, 175–181. [Google Scholar] [CrossRef]
- Ma, W.; Row, K.H. Optimized extraction of bioactive compounds from Herba Artemisiae Scopariae with ionic liquids and deep eutectic solvents. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 459–466. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 2017, 168, 329–335. [Google Scholar] [CrossRef]
- Georgantzi, C.; Lioliou, A.-E.; Paterakis, N.; Makris, D.P. Combination of Lactic Acid-based Deep Eutectic Solvents (DES) with β-cyclodextrin: Performance screening using ultrasound-assisted extraction of Polyphenols from selected native Greek medicinal plants. Agronomy 2017, 7, 54. [Google Scholar] [CrossRef]
- Tang, B.; Park, H.E.; Row, K.H. Simultaneous Extraction of Flavonoids from Chamaecyparis obtusa Using Deep Eutectic solvents as Additives of Conventional Extractions Solvents. J. Chromatogr. Sci. 2015, 53, 836–840. [Google Scholar] [CrossRef]
- Tang, W.; Li, G.; Chen, B.; Zhu, T.; Row, K.H. Evaluating ternary deep eutectic solvents as novel media for extraction of flavonoids from Ginkgo biloba. Sep. Sci. Technol. 2017, 52, 91–99. [Google Scholar] [CrossRef]
- Kanberoglu, G.S.; Yilmaz, E.; Soylak, M. Application of Deep Eutectic Solvent in ultrasound-assisted emulsification microextraction of quercetin from some fruits and vegetables. J. Mol. Liq. 2019, 279, 571–577. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef]
- Stefou, I.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Development of sodium propionate-based deep eutectic solvents for polyphenol extraction from onion solid wastes. Clean Technol. Environ. Policy 2019. [Google Scholar] [CrossRef]
- Jeong, K.M.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Kim, E.M.; Lee, J. One-step sample preparation for convenient examination of volatile monoterpenes and phenolic compounds in peppermint leaves using deep eutectic solvents. Food Chem. 2018, 251, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.-L.; Peng, X.; Huang, Y.-Y.; Li, L.; Wei, Z.-F.; Zu, Y.-G.; Fu, Y.-J. Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Ind. Crop. Prod. 2015, 70, 142–148. [Google Scholar] [CrossRef]
- Zhuang, B.; Dou, L.-L.; Li, P.; Liu, E.-H. Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J. Pharm. Biomed. Anal. 2017, 134, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, J.; Li, Y.; Bi, W.; Chen, D.D.Y. Recovery of Natural Products from Deep Eutectic Solvents by Mimicking Denaturation. ACS Sustain. Chem. Eng. 2019, 7, 9976–9983. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Zou, Y.; Yu, B. Efficient extraction of major catechins in Camellia sinensis leaves using green choline chloride-based deep eutectic solvents. RSC Adv. 2015, 5, 93937–93944. [Google Scholar] [CrossRef]
- Garcia, A.; Rodriguez-Juan, E.; Rodriguez-Gutierrez, G.; Rios, J.J.; Fernandez-Bolanos, J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, J.-Z.; Luo, M.; Wag, W.; Huang, Y.-Y.; Efferth, T.; Wang, H.-M.; Fu, Y.-J. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography. J. Chromatogr. B 2016, 1033–1034, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, L.; Li, M.; Cao, F.; Zhao, L.; Su, E. Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chem. 2018, 20, 1879–1886. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Cheng, Q.; Wang, L.; Zhang, L. Deep Eutectic Solvent—Based ultra-high pressure extraction of Baicalin from Scutellaria baicalensis Georgi. Molecules 2018, 23, 3233. [Google Scholar] [CrossRef]
- Yang, M.; Cao, J.; Cao, F.; Lu, C.; Su, E. Efficient Extraction of Bioactive Flavonoids from Ginkgo biloba Leaves Using Deep Eutectic Solvent/Water Mixture as Green Media. Chem. Biochem. Q. 2018, 32, 315–324. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinsons, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Hamany Djande, C.Y.; Piater, L.A.; Steenkamp, P.A.; Madala, N.E.; Dubery, I.A. Differential extraction of phytochemicals from the multipurpose tree, Moringa oleifera, using green extraction solvents. South. Afr. J. Bot. 2018, 115, 81–89. [Google Scholar] [CrossRef]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.C.F.R.; Ferreira, O. Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Ind. Crop. Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, M.; Guo, H.; Xu, J.; Ye, J.; Zhao, J.; Zhao, L. Ultrasound-assisted deep eutectic solvent as green and efficient media for the extraction of flavonoids from Radix scutellariae. NJC 2019, 43, 644–650. [Google Scholar] [CrossRef]
- Pavic, V.; Flacer, D.; Jakovljevic, M.; Maja, M.; Jokic, S. Assessment of total phenolic content in vitro antioxidant and antibacterial activity of Ruta graveolens L. Extracts obtained by choline chloride based natural deep eutectic solvents. Plants 2019, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, W.M.A.; Lorwirachsutee, A.; Theodoropoulos, C.; Gonzalez-Miquel, M. Polyol-Based Deep Eutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7, 5018–5026. [Google Scholar] [CrossRef]
- Mocan, A.; Diuzheva, A.; Badarau, S.; Cadmiel, M.; Andruch, V.; Carradori, S.; Campestre, C.; Tartaglia, A.; De Simone, M.; Vodnar, D.; et al. Liquid Phase and Microwave-Assisted Extractions for Multicomponent Phenolic Pattern Determination of Five Romanian Galium Species Coupled with Bioassays. Molecules 2019, 24, 1226. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Voroblev, E.; Maroun, R.G.; Louka, N. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges deep eutectic solvents and aqueous glycerol. Food Chem. 2019, 295, 165–171. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.-J.; Zheng, X.; Gao, M.-Z.; Meng, Y.; Wang, W. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. J. Pharm. Biomed. Anal. 2019, 170, 285–294. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, N.-E.; Jang, H.W.; Lim, T.-G.; Yoo, M.; Nam, T.G. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lavaud, A.; Laguerre, M.; Birtic, S.; Fabiano Tixier, A.S.; Roller, M.; Chemat, F.; Bily, A.C. Eutectic Extraction Solvents, Extraction Methods by eutecticgenesis using said solvents, and extracts derived from said extraction methods. U.S. Patent WO 2016/162703, 13 October 2016. [Google Scholar]
Hydrogen Bond Donors (HBD) | Hydrogen Bond Acceptors (HBA) |
---|---|
Urea | Choline Chloride |
Glycerol | Betaine Chloride |
Ethylene Glycol | L-Proline |
1,2-Butanediol | Sodium Propionate |
1,3-Butanediol | |
1,4-Butanediol | |
2,3-Butanediol | |
1,6-Hexanediol | |
Malic Acid | |
Malonic Acid | |
Citric acid | |
Levulinic Acid | |
Fructose | |
Glucose | |
Sucrose | |
Sorbitol |
Plant Source | DES | Target Flavonoids | Bioactivity | Ref. | |
---|---|---|---|---|---|
Chamaecyparis obtusa | ChCl (1:2) | Ethyl Glycol Glycerol 1,2-Butanediol 1,3-Butanediol 1,4-Butanediol 2,3-Butanediol 1,6-Butanediol | Myricetin Amentoflavone | Anti-oxidative phenols. | [38] |
Radix scutellariae | ChCl (1:2) | 1,4-Butanediol Glycerol Ethylene glycol Citric acid Malic acid Lactic acid (also 3:1,2:1,1:1,1:3 1:4) Glucose Sorbitol Sucrose Maltose | Baicalin Wogonoside Baicalein Wogonin | Antiviral, antitumor, anticonvulsant, anti-allergic, anti-inflammatory, anxiolytic, and anti-oxidant properties. | [44] |
Citric Acid (1:2) | Sucrose Glucose | ||||
Lactic Acid (1:2) | Sucrose | ||||
Chamaecyparis obtusa | ChCl (1:2) | Ethylene Glycol 1,2-Butanediol 1,6-Hexanediol | Quercetin, Myricetin, Amentoflavone | Myricetin: Potential anticancer activity and chemoprevention agent for bladder cancer. Quercetin: Antibacterial agent that inhibits the oxidation of low-density lipoproteins; anti-allergenic. Amentoflavone: Potential cancer growth and metastasis inhibitor; antibacterial, anti-inflammatory, and anti-oxidative. | [48] |
ZnCl2 (1:2) | Ethylene Glycol 1,2-Butanediol 1,6-Hexanediol | ||||
Et4NCl (1:2) | Phenol Urea Oxalic acid | ||||
Me(Ph)3PBr (1:4) | 1,2-Butanediol Glycerine | ||||
Me(Ph)3PBr | Ethylene Glycol (1:1,1:2,1:3,1:4,1:5) | ||||
Flos sophorae | ChCl | Glycerol (1:1) Xylitol (5:2) D-(+)-Glucose (1:1) | Rutin Quercetin Kaempferol Isorhamnetin glycosides | Rutin: Antiplatelet, anticarcinogen, vasodilatant. | [7] |
L-Proline | D-(+)-Glucose (5:3) | ||||
Citric Acid | D-(+)-Glucose (1:1) Adonitol (1:1) | ||||
Betaine | DL-Malic acid (1:1) | ||||
Pyrola incarnata | ChCl | Polyols in different ratios | Hyperin, 2′-O-galloylhyperin Quercitrin Quercetin-O-rhamnoside Chimaphilin | Hyperin, 2′-O-galloylhyperin: Anti-inflammatory activity, treatment for cough, blood pressure, and can lower cholesterol; protects the cardiovascular and cerebrovascular networks. Quercitrin, Quercetin-O-rhamnoside: Expectorant, cough and asthma ailment, can lower blood pressure and content of fat in the blood, can increase coronary artery blood flow and cause its expansion. Chimaphilin: Secondary metabolite of Pyroloideae drude, main component of antibacterial, anti-inflammatory. and analgesic products. | [21] |
Cajanus Cajan (L) Millsp. | ChCl (1:1) | Sucrose 1,2-Propanediol Glucose Sorbitol Glycol Glycerol 1,3-Butanediol 1,4-Butanediol 1,6-Butanediol (multiple ratios) | Genistin Genistein Apigenin | Genistein: Plant estrogen with anti-oxidant, anti-inflammatory, anticarcinogenic, and protein kinase inhibitory action. Genistin: A glycoside of genistein with anticancer, antiviral, anti-oxidant, anti-inflammatory, and free radical scavenging potential. Apigenin: A naturally occurring flavonoid, with anti-inflammatory action, blood pressure decreasing potential, anti-arteriosclerotic, anti-anxiety, antimicrobial, antiviral, anti-oxidant, and free radical scavenging actions. | [20] |
Glucose | L-Proline Lactic acid | ||||
Equisetum Palustre L. | ChCl | Glycerol 1,4-Butanediol 1,3-Butanediol Ethylene glycol | Nine glycosides | Gastroprotective effect, anti-oxidant, antimicrobial, and genotoxicity activity. | [54] |
Betaine | Glycerol 1,4-Butanediol 1,3-Butanediol Ethylene glycol | ||||
Camelia sinensis leaves | ChCl (1:2) | Ethylene glycol Glycerol 1,4-Butanediol Lactic acid Malic acid Citric acid Glucose Fructose Sucrose | Catechins | Anti-oxidant, antibacterial, antiviral, anti-inflammatory, anti-allergic, anti-hypertensive, anti-obesity, and antidiabetic activity. | [57] |
Sophora japonica | ChCl | Urea Acetamide Ethylene glycol Glycerol 1,4-Butanediol Triethylene glycol Xylitol D-Sorbitol p-tolunesulfonic acid Oxalic acid Levulinic acid Malonic acid Malic acid Citric acid Tartaric acid Xylose/water Sucrose/water Fructose/water Glucose/water Maltose/water | Rutin | Rutin: Treatment of hypertension and hemostatic for cerebral hemorrhage. | [39] |
Virgin Olive Oil | ChCl | Glycerol (1:2) Lactic acid (1:2) Urea (1:2) Sucrose (1:1) Sucrose (4:1) 1,4_Butanediol (1:5) Xylitol (2:1) 1,2_Propanediol (1:1) Malonic acid (1:1) Urea/Glycerol (1:1:1) | Several compounds | Oleocanthal: Anti-inflammatory activity, inhibits cyclooxygenase (COX-1 and COX-2) enzymes, similar to the function of ibuprofen (more bioactive roles mentioned). Oleacein: Prevents tumor cell proliferation and anti-oxidant properties. Oleuropein aglycon (Hy-EA) was found to be an anti-allergenic, to directly regulate HER-2 in breast cancer cells, and fortify against Alzheimer’s disease. Hydroxytyrosol: Inhibits tumor cell proliferation and promotes apoptosis, broad range of beneficial physiological activities in terms of plasma lipoproteins, oxidative damage, platelet and cellular function, and bone health, due to its anti-inflammatory, antimicrobial, and anti-oxidant activities Lignans: Phyto-estrogens; prevention and treatment of cancer, arteriosclerosis, and osteoporosis. | [58] |
D-(+)- Fructose | D-(+)-Glucose/Sucrose (1:1:1) | ||||
Dalbergia odorifera T. Chen leaves | ChCl | Ethylene Glycol Glycerol 1,2-butanediol 1,3-butanediol 1,4-butanediol 2,3-butanediol 1,6-hexylene glycol Lactic acid Citric acid Glucose Sucrose | Prunetin Tectorigenin Genistein Biochanin A | Anticancer, antiviral, anti-oxidant, anti-inflammatory, anti-osteoporosis, cardioprotective, hypoglycemic, anaphylaxis inhibitory activities. | [59] |
Ginko biloba | ChCl | Ethylene glycol Glycerol Propylene glycol | Quercetin Myricetin | Anticarcinogenic activity, anti-oxidant, and antiplatelet activities. | [49] |
Anredera cordifolia Steenis | Betaine | 1,4-butanediol | Vitexin | N/A | [19] |
Platycladi Cacumen | ChCl | Laevulinic acid (1:2) Ethylene Glycol (1:2) N,N′ Dimethylurea (1:1) -D- Glucose (1:1) | Multiple flavonoids and aglycones | Spasmolytic, antiphlogistic, anti-oxidative, anti-allergenic, and diuretic properties (attributed to the flavonoids of the plant as a whole). | [55] |
Betaine | Laevulinic acid (1:2) Ethylene Glycol (1:2) 1-Methylurea (1:1) -d-Glucose (1:1) | ||||
L-Proline | Laevulinic acid (1:2) Glycerol (1:2.5) Acetamide (1:1) d-Glucose (1:1) | ||||
Camelia sinensis leaves | Multiple based on betaine, citric acid, and glycerol | Catechins | Anti-oxidant, anticancer, anti-inflammatory, antibacterial, antiviral, and anti-angiogenic properties. | [6] | |
Ginkgo Biloba leaves | Hydrophobic phase Methyl trioctyl ammonium, capryl alcohol, and octylic acid (1:2:3). | Hydrophilic phase Ch-Laevulinic acid, Betaine-Etheylene Glycol Ch- Malonic acid | Flavonoids Terpene Trilactones Procyanidine Polyprenyl Acetates | N/A | [60] |
Coridothymus capitatus, Origanum vulgare, Salvia fruticosa (triloba), Salvia officinalis, Thymus vulgaris | Lactic Acid (7:1) With/without β-Cyclodextrin | Nicotinamide Ammonium Acetate Sodium Acetate L-Alanine Glycine ChCl | Multiple compounds | Anti-oxidant activity, antimicrobial activity, as well as chemoprotective potency. | [47] |
Products containing soy | Seventeen NaDES based on choline chloride and organic acids (e.g., citric acid) | Genistein Daidzein Genistin Daidzin Biochanin A | Isoflavones (the broader category of the target compounds) possess oestrogenic, anti-oxidant, and anti-allergic properties. In the cosmetics industry, they serve to delay the start of skin aging, stimulate collagen biosynthesis in fibroblasts, and accelerate the regeneration of skin cells. | [46] | |
Herba artemisiae scopariae | ChCl (1:2) | Formic acid Acetic acid Propionic acid Glycerol Urea 1,2-Butanediol 1,4-Butanediol | Rutin Quercetin Scoparone | Anti-inflammatory, antibacterial, and anti-oxidant properties. | [45] |
Mentha Piperita L. | Citric Acid | Glycerol (1:2) Xylitol (1:1) D-(+)-Glucose (1:1) | Phenolic compounds | N/A | [53] |
Urea | Glycerol (2:1) Xylitol (2:1) D-(+)-Glucose (2:1) | ||||
Scutellaria Baicalensis Georgi | ChCl (1:1) | Lactic acid Glucose Glycerol 1,4- Butanediol Ethylene Glycol | Baicalin | Blood pressure decrease, detoxifying, antifever action, and reduces the risk of cardiovascular diseases. | [61] |
Cyclocarya-paliurus (Batal.) Iljinskaja leaves | ChCl | Glucose (2:1) Citric acid (1:1) Glycerol (1:1) Urea(1:1) Citric Acid/Glycerol (1:1:1) 1,4-Butanediol (1:5) Lactic acid (1:1) Malonic acid (1:1) Malic Acid/Xylosic Alcohol (1:1:1) | Multiple flavonoids | N/A (bioactivity not directly attributed to flavonoids). | [23] |
Pollen typhae | ChCl | 1,4-Butanediol (1:4) Glucose (1:4) Glycerol (1:4) 1,4-Butanediol/Glycerol (1:2:2) Lactic acid (1:4) Ethylene Glycol (1:4) 1,2-Propanediol (1:4) | Quercetin Kaempferol Isorhamnetin Naringenin | Anti-oxidant, anti-inflammatory, antigenotoxic, antiprotozoal activity. | [22] |
L-proline | Glycerol (4:11) | ||||
Ginkgo Biloba | Multiple DES based on ChCl, betaine, proline, 1,3-Butanediol, 1,2-Propanediol and xylitol with numerous components | Multiple flavonoids | Protection against capillary fragility, anti-inflammatory agents, anti-oxidants, reduction of edema caused by tissue injury, free radical scavengers. | [62] | |
Orange Peels | ChCl | Glycerol (1:2,1:3,1:4) Ethylene Glycol (1:2,1:3,1:4) | Phenolic anti-oxidants (gallic acid, ferrulic acid, para-coumaric acid) | Antibiotics, antitumoral agents, anti-inflammatory, anti-allergic. | [63] |
Moringa Oleifera | ChCl | Citric acid | Flavonoids, among other compounds | Antidepressant, anti-oxidant, antibacterial, antidiabetic, renoprotective, hepatoprotetive, anti-inflammatory, and antilipidemic activities. | [64] |
Juglans Regia L. | ChCl (1:2) | Butyric acid Phenylpropionic acid | Quercetin and miscellaneous compounds | N/A | [65] |
Sea Buckweed Leeves | ChCl (1:1) | Citric acid Malic acid Lactic acid Ethylene Glycol 1,3-butanediol 1,4-butanediol 1,6-hexanediol 1,2-propanediol Glycerol Glucose Fructose Sucrose | Rutin Quercetin-3-O-glucoside Quercetin Kaempferol Isorhamnetin | Anti-oxidant, cytoprotective, immune-modulatory, cardioprotective, anti-inflammatory, and wound-healing activity. | [10] |
Radix Scutellariae | L-Proline | Glycerol(1:4) Glucose/H2O (5:3:8) Fructose / H2O (1:1:5) | Scutellarin Baicalin Wogonoside Baicalein Wogonin | Antibacterial and antiviral action. | [66] |
ChCl | Glycol(1:4) Glycerol(1:4) 1,2-Propylene(1:4) 1,2-Butanediol(1:4) Lactic acid(1:4) Malic acid/ H2O(1:1:3) Glucose/ H2O(1:1:2) | ||||
Onion solid waste | Sodium Propionate | Lactic acid Glycerol | Quercetin, Rutin | N/A | [52] |
Ruta graveolens L. | ChCl (2:1) | Citric acid | Total phenolic content (notably Rutin) | Rutin: Inhibition of vascular endothelial growth factor in subtotic concentrations in vitro, angiogenesis inhibitor, support and strengthening of blood vessels, eye strengthener, strong anti-oxidative action. | [67] |
Chlorella vulgaris | ChCl | Glycerol (1:2, 1:3, 1:4) Ethylene Glycol (1:2,1:3,1:4) 1,3-Propanediol (1:2,1:3,1:4) 1,4-Butanediol (1:2,1:3,1:4) | Total phenolic content | Anti-oxidant, anti-inflammatory, antimicrobial, and antitumoral properties. | [68] |
Five Gallium species | NaDES in combination with NaCl (NaDES structure not mentioned) using dispersive liquid–liquid microextraction | Catechin Rutin Quercetin | Total phenolic and flavonoid content, anti-oxidant capacity, and enzyme inhibitory effects of the extracts are mentioned. | [69] | |
Tomatoes, onions, grapes | Tetrabutylammonium chloride (TBACl) (1:2, 1:3 and 1:4) | Decanoic acid (DA) | Quercetin | N/A | [50] |
Tetrabutylammonium bromide (TBABr) (1:3) | Decanoic acid (DA) | ||||
Flos Sophorae | ChCl | Malic acid (1:1, 1:3) Citric acid (1:1, 1:3) Malonic acid (1:1, 1:3) Methylurea (1:1, 1:3) Urea (1:1, 1:3) N,N′-Dimethylurea (1:1, 1:3) 1,2-Butanediol (1:1, 1:3) Ethylene Glycol (1:1, 1:3) Glycerol (1:1, 1:3) | Flavonoids | N/A | [56] |
Grapefruit Peels | Lactic Acid | Sodium acetate Ammonium Acetate Glucose Glycine | Polyphenols (notably naringin) | Polyphenols: Use in the food industry to prevent the oxidation of lipids. Naringin: Food additive towards treating obesity and diabetes (among other uses). | [70] |
Flos Sophorae | ChCl | Glycol (1:1) Glycerol (1:1) Sucrose (1:1) 1,3-Butanediol (1:1) 1,4-Butanediol (1:1,2:1,3:1,4:1) Citric acid (1:1) Lactic acid (1:1) Glucose (1:1) Malic acid (1:1) | Rutin nicotiflorin narcissin quercetin kaempferol isorhamnetin | N/A | [71] |
Common buckwheat sprouts | ChCl | Acetamide (1:2) Triethylene glycol (1:4) 1,2-Propanediol (1:1) 1,4-Butanediol (1:3) Urea (1:2) Ethylene glycol (1:2) Glycerol (1:1) Oxalic acid (1:1) Malonic acid (1:1) | Orientin Isoorientin Vitexin Isovitexin Quercetin-3-O-robinobioside Rutin | Anti-oxidants. | [72] |
Lycium barbarum L. fruits | ChCl | 1,2-Propanediol (1:2) Glycerol (1:2) Ethylene Glycol (1:2) Malic acid (1:1) Malonic acid (1:1) p-Toluenesulfonic acid (1:2) Laevulinic acid (1:2) Oxalic acid (1:2) Resorcinol (1:3) Xylitol (1:1) Urea (1:2) | Myricetin Morin Rutin | Anti-oxidant, anticancer, anti-inflammatory, antimicrobial, antiviral, antitumor, neuroprotective properties, enhancement of the lipid metabolism against obesity complications. | [73] |
Citrus peel waste | Multiple based on ChCl | Compounds including flavonoids | Anti-oxidant, anti-inflammatory, anticarcinogenic, antiviral, and neuroprotective actions. | [51] | |
Brown Greek propolis | ChCl | Tartaric acid | Flavonoids and phenolics | Anti-oxidant. | [37] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skarpalezos, D.; Detsi, A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Appl. Sci. 2019, 9, 4169. https://doi.org/10.3390/app9194169
Skarpalezos D, Detsi A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Applied Sciences. 2019; 9(19):4169. https://doi.org/10.3390/app9194169
Chicago/Turabian StyleSkarpalezos, Dimitris, and Anastasia Detsi. 2019. "Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources" Applied Sciences 9, no. 19: 4169. https://doi.org/10.3390/app9194169
APA StyleSkarpalezos, D., & Detsi, A. (2019). Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Applied Sciences, 9(19), 4169. https://doi.org/10.3390/app9194169