Isokinetic Strength in Peritoneal Dialysis Patients: A Reliability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Procedures
- Knee protocol: Participants were seated in a seatback tilt at 85°. The dynamometer orientation and dynamometer tilt were 45° and 0°, respectively. The participant’s axis of rotation of the knee was aligned with the dynamometer shaft. All patients were informed about the tasks they were going to perform and performed two familiarization and warm-up repetitions. The weight of the leg was recorded using the dynamometer software, and gravity adjustments were made. All participants were asked to perform three concentric movements of the knee involving alternative extension and flexion at 60°/s. Reliability was calculated between the second and the third repetition. The rest interval was 2 min long. This protocol has been used previously in the scientific literature [14,15]. The participants were verbally encouraged during the tests.
- Elbow protocol: Participants were seated in a seatback tilt at 85°. The seat orientation was 15°. The dynamometer orientation and dynamometer tilt were 15° and 0°, respectively. Participants were stabilized with shoulder, waist, and thigh straps. They were informed about the tasks and performed two repetitions, aimed to warm-up and also to get used to the position, the angular speed, and the proposed task. The weight of the arm was recorded using the dynamometer software, and gravity adjustments were made. All participants were asked to perform three concentric movements of the elbow involving alternative extension and flexion at 60°/s. Reliability was calculated between the second and the third repetition. The rest interval was 2 min long. The participants were verbally encouraged during the tests.
2.4. Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J. Renal Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Broers, N.J.; Martens, R.J.; Cornelis, T.; van der Sande, F.M.; Diederen, N.M.; Hermans, M.M.; Wirtz, J.J.; Stifft, F.; Konings, C.J.; Dejagere, T. Physical Activity in End-Stage Renal Disease Patients: The Effects of Starting Dialysis in the First 6 Months after the Transition Period. Nephron 2017, 137, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.A.; Cheung, W.W.; Toma, K.G.; Mak, R.H. Muscle wasting in chronic kidney disease. Pediatr. Nephrol. 2018, 33, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.S.; Bueno, D.R.; Souza, G.D.; Gobbo, L.A.; Freitas, I.F.; Sakkas, G.K.; Monteiro, H.L. Factors associated with leisure-time physical activity among patients undergoing hemodialysis. BMC Nephrol. 2015, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Kalantar-Zadeh, K. Resistance exercise: An effective strategy to reverse muscle wasting in hemodialysis patients? J. Cachexia Sarcopenia Muscle 2014, 5, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Van Den Ham, E.C.; Kooman, J.P.; Schols, A.M.; Nieman, F.H.; Does, J.D.; Franssen, F.M.; Akkermans, M.A.; Janssen, P.P.; Van Hooff, J.P. Similarities in skeletal muscle strength and exercise capacity between renal transplant and hemodialysis patients. Am. J. Transplant. 2005, 5, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.-M.; Sea, M.M.-M.; Ho, Z.S.-Y.; Lui, S.-F.; Li, P.K.-T.; Woo, J. Evaluation of handgrip strength as a nutritional marker and prognostic indicator in peritoneal dialysis patients. Am. J. Clin. Nutr. 2005, 81, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziubek, W.; Bulińska, K.; Rogowski, Ł.; Gołębiowski, T.; Kusztal, M.; Grochola, M.; Markowska, D.; Zembroń-Łacny, A.; Weyde, W.; Klinger, M. The effects of aquatic exercises on physical fitness and muscle function in dialysis patients. Bio. Med. Res. Int. 2015, 2015, 912980. [Google Scholar] [CrossRef]
- Blake, C.; O’meara, Y.M. Subjective and objective physical limitations in high-functioning renal dialysis patients. Nephrol. Dial. Transplant. 2004, 19, 3124–3129. [Google Scholar] [CrossRef] [Green Version]
- Sole, G.; Hamrén, J.; Milosavljevic, S.; Nicholson, H.; Sullivan, S.J. Test-retest reliability of isokinetic knee extension and flexion. Arch. Phys. Med. Rehabil. 2007, 88, 626–631. [Google Scholar] [CrossRef]
- Perrin, D.H. Isokinetic Exercise and Assessment; Human Kinetics: Charlottesville, VA, USA, 1993. [Google Scholar]
- Adsuar, J.C.; Olivares, P.R.; Parraca, J.A.; Hernández-Mocholí, M.A.; Gusi, N. Applicability and test-retest reliability of isokinetic shoulder abduction and adduction in women fibromyalgia patients. Arch. Phys. Med. Rehabil. 2013, 94, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191. [Google Scholar]
- Collado-Mateo, D.; Dominguez-Munoz, F.J.; Batalha, N.; Parraca, J.; Tomas-Carus, P.; Adsuar, J.C. Test-Retest Reliability of Isokinetic Arm Strength Measurements in Competitive Swimmers. J. Hum. Kinet. 2018, 65, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adsuar, J.C.; Olivares, P.R.; del Pozo-Cruz, B.; Parraca, J.A.; Gusi, N. Test-retest reliability of isometric and isokinetic knee extension and flexion in patients with fibromyalgia: Evaluation of the smallest real difference. Arch. Phys. Med. Rehabil. 2011, 92, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P.; Beynnon, B. Peak torque occurrence in the range of motion during isokinetic extension and flexion of the knee. Int. J. Sports Med. 1993, 14, 422–426. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Munro, B.H.; Visintainer, M.A.; Page, E.B. Statistical Methods for Health Care Research; JB Lippincott: Philadelphia, PA, USA, 1986. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Segura-Orti, E.; Martinez-Olmos, F.J. Test-retest reliability and minimal detectable change scores for sit-to-stand-to-sit tests, the six-minute walk test, the one-leg heel-rise test, and handgrip strength in people undergoing hemodialysis. Phys. Ther. 2011, 91, 1244–1252. [Google Scholar] [CrossRef]
- Wilkinson, T.J.P.; Xenophontos, S.M.; Gould, D.W.P.; Vogt, B.P.P.; Viana, J.L.P.; Smith, A.C.P.; Watson, E.L.P. Test-retest reliability, validation, and “minimal detectable change” scores for frequently reported tests of objective physical function in patients with non-dialysis chronic kidney disease. Physiother. Theor. Pract. 2019, 35, 565–576. [Google Scholar] [CrossRef]
- Pereira, R.A.; Cordeiro, A.C.; Avesani, C.M.; Carrero, J.J.; Lindholm, B.; Amparo, F.C.; Amodeo, C.; Cuppari, L.; Kamimura, M.A. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol. Dial. Transplant. 2015, 30, 1718–1725. [Google Scholar] [CrossRef]
- Cheema, B.S.; Singh, M.A. Exercise training in patients receiving maintenance hemodialysis: A systematic review of clinical trials. Am. J. Nephrol. 2005, 25, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Zuo, M.L.; Yue, W.S.; Yip, T.; Ng, F.; Lam, K.F.; Yiu, K.H.; Lui, S.L.; Tse, H.F.; Siu, C.W.; Lo, W.K. Prevalence of and associations with reduced exercise capacity in peritoneal dialysis patients. Am. J. Kidney Dis. 2013, 62, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Washida, N.; Muraoka, K.; Morimoto, K.; Kasai, T.; Yamaki, K.; Miyashita, K.; Wakino, S.; Itoh, H. Exercise Capacity and Association with Quality of Life in Peritoneal Dialysis Patients. Peritoneal. Dial. Int. 2019, 39, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Iyasere, O.U.; Brown, E.A.; Johansson, L.; Huson, L.; Smee, J.; Maxwell, A.P.; Farrington, K.; Davenport, A. Quality of Life and Physical Function in Older Patients on Dialysis: A Comparison of Assisted Peritoneal Dialysis with Hemodialysis. Clin. J. Am. Soc. Nephrol. 2016, 11, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Do, J.Y.; Lee, S.Y.; Kim, J.C. Effect of dialysis modality on frailty phenotype, disability, and health-related quality of life in maintenance dialysis patients. PLOS ONE 2017, 12, e0176814. [Google Scholar] [CrossRef] [PubMed]
- Dvir, Z.; Muller, S. Multiple-Joint Isokinetic Dynamometry: A Critical Review. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. PM R J. 2011, 3, 472–479. [Google Scholar] [CrossRef]
- Eitzen, I.; Hakestad, K.A.; Risberg, M.A. Inter- and intrarater reliability of isokinetic thigh muscle strength tests in postmenopausal women with osteopenia. Arch. Phys. Med. Rehabil. 2012, 93, 420–427. [Google Scholar] [CrossRef]
- Kean, C.O.; Birmingham, T.B.; Garland, S.J.; Bryant, D.M.; Giffin, J.R. Minimal detectable change in quadriceps strength and voluntary muscle activation in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2010, 91, 1447–1451. [Google Scholar] [CrossRef]
- Ekstrand, E.; Lexell, J.; Brogardh, C. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. J. Rehabil. Med. 2015, 47, 706–713. [Google Scholar] [CrossRef] [Green Version]
All | Men (N = 19) | Women (N = 12) | |
---|---|---|---|
Anthropometric and Body Composition Measurements | |||
Age (years) | 48.45 ± 13.39 | 52.42 ± 11.54 * | 42.16 ± 14.16 |
Height (cm) | 162.19 ± 9.67 | 167.63 ± 6.80 * | 153.58 ± 6.89 |
Weight (kg) | 64.29 ± 9.45 | 67.40 ± 7.88 * | 59.37 ± 9.95 |
BMI (kg/m2) | 24.35 ± 3.67 | 23.82 ± 3.37 | 25.20 ± 4.10 |
Body fat percentage | 27.79 ± 8.49 | 23.23 ± 5.25 | 35.01 ± 7.65 * |
Body lean percentage | 68.58 ± 8.23 | 72.92 ± 5.14 * | 61.70 ± 7.58 |
Physical Activity Levels | |||
Sedentary time (h/day) | 19.34 ± 1.61 | 19.44 ± 1.86 | 19.15 ± 1.11 |
Light physical activities (h/day) | 3.50 ± 1.54 | 3.43 ± 1.77 | 3.63 ± 1.09 |
Moderate and vigorous activities (h/day) | 0.28 ± 0.26 | 0.27 ± 0.26 | 0.29 ± 0.27 |
Number of daily steps | 5157.18 ± 2483.80 | 5005.63 ± 2698.69 | 5429.98 ± 2149.99 |
Lipid Profile and Other Parameters | |||
Serum cholesterol (mg/dL) | 182.12 ± 31.42 | 183.00 ± 31.22 | 180.75 ± 33.09 |
Serum high-density lipoprotein (mg/dL) | 45.35 ± 13.63 | 45.42 ± 14.08 | 45.25 ± 13.49 |
Serum low-density lipoprotein (mg/dL) | 107.64 ± 39.05 | 112.68 ± 34.71 | 99.66 ± 45.53 |
Serum triglycerides (mg/dL) | 167.29 ± 70.94 | 171.68 ± 74.31 | 160.33 ± 67.84 |
Haemoglobin, (g/dL) | 11.66 ± 1.47 | 11.98 ± 1.51 | 11.15 ± 1.32 |
Serum albumin (g/dL) | 3.90 ± 0.41 | 3.94 ± 0.41 | 3.83 ± 0.43 |
Serum sodium (mEq/L) | 137.58 ± 3.91 | 137.73 ± 3.44 | 137.33 ± 4.71 |
Serum potassium (mEq/L) | 4.34 ± 0.75 | 4.36 ± 0.64 | 4.30 ± 0.92 |
Test Measurement | Peak Torque (Nm) | Work (J) | ||||||
---|---|---|---|---|---|---|---|---|
Repetition 2 | Repetition 3 | p * | Repetition 2 | Repetition 3 | p * | |||
General (n = 31) | Knee | Concentric Extension | 77.57 ± 31.40 | 78.27 ± 32.56 | 0.747 | 76.89 ± 34.98 | 79.06 ± 36.34 | 0.258 |
Concentric Flexion | 43.32 ± 21.57 | 43.43 ± 22.93 | 0.922 | 43.80 ± 29.92 | 44.85 ± 31.17 | 0.448 | ||
Elbow | Concentric Extension | 20.77 ± 8.00 | 19.92 ± 7.26 | 0.061 | 26.86 ± 13.48 | 25.66 ± 12.64 | 0.055 | |
Concentric Flexion | 35.69 ± 9.65 | 35.57 ± 10.18 | 0.842 | 51.62 ± 13.39 | 49.63 ± 15.90 | 0.170 | ||
Men (n = 19) | Knee | Concentric Extension | 80.77 ± 34.03 | 83.86 ± 32.95 | 0.317 | 82.25 ± 38.69 | 87.45 ± 37.62 | 0.062 |
Concentric Flexion | 48.67 ± 23.85 | 49.48 ± 25.56 | 0.626 | 50.18 ± 34.26 | 51.83 ± 36.16 | 0.437 | ||
Elbow | Concentric Extension | 24.84 ± 6.95 | 23.88 ± 5.78 | 0.182 | 33.25 ± 12.38 | 31.66 ± 11.55 | 0.116 | |
Concentric Flexion | 39.93 ± 9.41 | 40.31 ± 9.49 | 0.697 | 58.27 ± 11.93 | 55.77 ± 16.52 | 0.280 | ||
Women (n = 12) | Knee | Concentric Extension | 72.50 ± 27.35 | 69.40 ± 31.24 | 0.244 | 68.40 ± 27.57 | 65.77 ± 31.15 | 0.203 |
Concentric Flexion | 34.85 ± 14.50 | 33.85 ± 14.19 | 0.364 | 33.69 ± 18.42 | 33.80 ± 17.14 | 0.939 | ||
Elbow | Concentric Extension | 14.33 ± 4.65 | 13.65 ± 4.39 | 0.063 | 16.75 ± 7.91 | 16.15 ± 7.52 | 0.122 | |
Concentric Flexion | 28.98 ± 5.37 | 28.07 ± 5.95 | 0.072 | 41.09 ± 7.65 | 39.91 ± 8.63 | 0.242 |
Peak Torque (Nm) | |||||||
Test | ICC (95% CI) | SEM (Nm) | SEM (%) | SRD (Nm) | SRD (%) | ||
General (n = 31) | Knee | Concentric Extension | 0.933 (0.868–0.967) | 8.27 | 10.62 | 22.94 | 29.44 |
Concentric Flexion | 0.965 (0.930–0.983) | 4.16 | 9.59 | 11.53 | 26.60 | ||
Elbow | Concentric Extension | 0.945 (0.890–0.973) | 1.78 | 8.79 | 4.95 | 24.37 | |
Concentric Flexion | 0.943 (0.887–0.972) | 2.36 | 6.64 | 6.56 | 18.41 | ||
Men (n = 19) | Knee | Concentric Extension | 0.923 (0.816–0.970) | 9.29 | 11.28 | 25.75 | 31.29 |
Concentric Flexion | 0.961 (0.903–0.985) | 4.87 | 9.94 | 13.52 | 27.55 | ||
Elbow | Concentric Extension | 0.885 (0.730–0.954) | 2.15 | 8.86 | 5.98 | 24.56 | |
Concentric Flexion | 0.909 (0.784–0.964) | 2.85 | 7.10 | 7.90 | 19.69 | ||
Women (n = 12) | Knee | Concentric Extension | 0.954 (0.855–0.986) | 6.28 | 8.85 | 17.41 | 24.54 |
Concentric Flexion | 0.968 (0.897–0.990) | 2.56 | 7.47 | 7.11 | 20.70 | ||
Elbow | Concentric Extension | 0.960 (0.872–0.988) | 0.90 | 6.46 | 2.50 | 17.91 | |
Concentric Flexion | 0.952 (0.849–0.986) | 1.24 | 4.27 | 3.43 | 11.84 | ||
Work (J) | |||||||
Test | ICC (95% CI) | SEM (J) | SEM (%) | SRD (J) | SRD (%) | ||
General (n = 31) | Knee | Concentric Extension | 0.957 (0.913–0.979) | 7.39 | 9.48 | 20.49 | 26.28 |
Concentric Flexion | 0.969 (0.938–0.985) | 5.37 | 12.13 | 14.90 | 33.63 | ||
Elbow | Concentric Extension | 0.964 (0.927–0.982) | 2.47 | 9.43 | 6.86 | 26.15 | |
Concentric Flexion | 0.853 (0.719–0.926) | 5.61 | 11.09 | 15.56 | 30.74 | ||
Men (n = 19) | Knee | Concentric Extension | 0.949 (0.875–0.980) | 8.61 | 10.15 | 23.88 | 28.14 |
Concentric Flexion | 0.968 (0.920–0.987) | 6.29 | 12.34 | 17.45 | 34.22 | ||
Elbow | Concentric Extension | 0.934 (0.839–0.974) | 3.07 | 9.47 | 8.52 | 26.25 | |
Concentric Flexion | 0.767 (0.498–0.903) | 6.86 | 12.04 | 19.03 | 33.37 | ||
Women (n = 12) | Knee | Concentric Extension | 0.972 (0.910–0.992) | 4.91 | 7.32 | 13.61 | 20.29 |
Concentric Flexion | 0.967 (0.894–0.990) | 3.22 | 9.57 | 8.95 | 26.53 | ||
Elbow | Concentric Extension | 0.985 (0.952–0.996) | 0.94 | 5.74 | 2.61 | 15.92 | |
Concentric Flexion | 0.915 (0.743–0.974) | 2.37 | 5.85 | 6.57 | 16.24 |
Age | Height | Weight | BMI | Fat Mass % | Lean Mass % | |
---|---|---|---|---|---|---|
Knee Concentric Extension Peak Torque | −0.314 | 0.450 * | 0.015 | −0.327 | −0.290 | 0.279 |
Knee Concentric Extension Work | −0.199 | 0.554 ** | 0.143 | −0.279 | −0.337 | 0.319 |
Knee Concentric Flexion Peak Torque | −0.040 | 0.436 * | 0.268 | −0.082 | −0.258 | 0.249 |
Knee Concentric Flexion Work | −0.071 | 0.455 * | 0.221 | −0.150 | −0.297 | 0.285 |
Elbow Concentric Extension Peak Torque | 0.087 | 0.748 ** | 0.455* | −0.185 | −0.522 ** | 0.508** |
Elbow Concentric Extension Work | 0.075 | 0.647 ** | 0.396* | −0.129 | −0.414 * | 0.393* |
Elbow Concentric Flexion Peak Torque | 0.266 | 0.506 ** | 0.529** | 0.041 | −0.269 | 0.274 |
Elbow Concentric Flexion Work | 0.132 | 0.634 ** | 0.509** | −0.021 | −0.363 * | 0.342 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collado-Mateo, D.; Dominguez-Muñoz, F.J.; Charrua, Z.; Adsuar, J.C.; Batalha, N.; Merellano-Navarro, E.; Raimundo, A.M. Isokinetic Strength in Peritoneal Dialysis Patients: A Reliability Study. Appl. Sci. 2019, 9, 3542. https://doi.org/10.3390/app9173542
Collado-Mateo D, Dominguez-Muñoz FJ, Charrua Z, Adsuar JC, Batalha N, Merellano-Navarro E, Raimundo AM. Isokinetic Strength in Peritoneal Dialysis Patients: A Reliability Study. Applied Sciences. 2019; 9(17):3542. https://doi.org/10.3390/app9173542
Chicago/Turabian StyleCollado-Mateo, Daniel, Francisco Javier Dominguez-Muñoz, Zelinda Charrua, José Carmelo Adsuar, Nuno Batalha, Eugenio Merellano-Navarro, and Armando Manuel Raimundo. 2019. "Isokinetic Strength in Peritoneal Dialysis Patients: A Reliability Study" Applied Sciences 9, no. 17: 3542. https://doi.org/10.3390/app9173542
APA StyleCollado-Mateo, D., Dominguez-Muñoz, F. J., Charrua, Z., Adsuar, J. C., Batalha, N., Merellano-Navarro, E., & Raimundo, A. M. (2019). Isokinetic Strength in Peritoneal Dialysis Patients: A Reliability Study. Applied Sciences, 9(17), 3542. https://doi.org/10.3390/app9173542