Selection of Co-Belonging Ceramic Fragments from Archaeological Excavations and Their Location in Vase Bodies from Thermoremanent Magnetization
Abstract
:1. Introduction
2. Detection of the Weak Magnetic Field of Ceramic Fragments and Its Direction Using a Fluxgate Sensor
3. Magnetic Field Measurements of Ceramic Fragments by 3 Fluxgate Sensors in 3 Orthogonal Axes
4. Experimental Results: Modelling the Ceramic Region generating the Magnetic Field detected by the Sensors for the Calculation of Magnetization in Base Vase Specimens
- The sensors detect the axial field B at the edge of a cylindrical region of ceramic material (Appendix B.1, Appendix B.2 and Appendix B.5) in the direction of the remanent magnetization, M.
- The measured magnetic field is only due to the remanent magnetization of the ceramic material (Appendix B.2), and it is not altered by its induced magnetization.
- The height, ℓ, of the magnetically detecting area of the ceramic material by the sensors (Appendix B.2, Appendix B.3, Appendix B.4, Appendix B.5 and Appendix B.7), depends of the angle, γ, between the magnetization M and the vertical z-axis on specimens’ surface, each specimen thickness, L, and the distance, D, between the sensors and the fragment edge along Bxy, when the vertical z-sensor reading is doubled:
- When D > d = L.tanθB the height, ℓ = L/cosθB, depends on the thickness, L, of the fragment.
- When D < d the height, ℓ =D/sinθB is dependent on the distance D.
- The radii (Appendix B.5), ri = 2αi.cosγ (i = ˪,//), of the ceramic cylindrical areas depends on the directionality (γ) of magnetization and of the parameters α˪,α//, which, geometrically, are the sensitivity radius of sensors around the measurement position of the vertical and the parallel sensors, respectively.
- •
- The sensor readings display similar values when the ratios r/ℓ, of the cylindrical detecting areas of the ceramic material by the sensors, as does the measured axial field at the end of the solenoids with the same current and number of spirals, where the ratio of the radius, r, to their height, ℓ, is kept constant. The measured magnetic field B of the ceramic cylindrical areas is approximated by the magnetic field of a solenoid with the same dimensions.
- -
- If D ≥ d = L.tanγ (Figure 11a), the height, ℓ = L/cosγ, depends on the thickness, L, of the fragment and the components, Mi (i = xy,z), are approximated by the sufficient length relationships:
- -
- If D ≤ d (Figure 11b), the height ℓ=D/sinθ depends on the distance, D, of the measurement position from the fragment edge in the magnetization direction, M. The components Mi (i = xy,z) are approximated by the insufficient length relationships:
5. Computation of Magnetization in Irregular Fragments of the Vase Base 1, 2 & 3
6. Aggregate Results and Conclusions of Calculating Magnetization from Magnetic Field Measurements on Samples and Fragments of the Base of Vases 1–6
7. Computation of Magnetization in Body Fragments from Vases 1–6
- -
- If θL > θD, then D > d = L.tanθL and θ = θL. For the computation of the components of the magnetization, M, the sufficient length Equations (4) are used.
- -
- -If θL < θD, then D < d = L.tanθD and θ = θD. For the computation of the components of the magnetization, M, the insufficient length Equations (5) are used.
8. Position Localization of Fragments in the Body of a Vase from the Directivity of the Remanent Magnetization
8.1. Formation of Remanent Magnetization in Vases with Cylindrical Symmetry
8.2. Formulation of Remanent Magnetization in Vases with Arbitrary Rotational Symmetry
8.3. Experimental Results: Screening of Co-Belonging Fragments and Determination of Their Position in the Body of a Vase from Their Magnetization
9. Conclusions and Proposals for Future Research
- -
- Finding co-belonging fragments of the vase base is essential for calculating the magnetization deviation angle, γ, and the parameters α˪, α//, λ from measurements of their magnetic field. This is not a problem, because in the usual process of screening co-belonging fragments, the base fragments, which are easily identified, are initially collected and the neighboring fragments of the vase body are then searched.
- -
- In the fragment reference system, where measurements are taken, the x-axis is oriented in the direction of the vase grooves while the y-axis is perpendicular to the surface and directed towards the inside of the fragments. To take measurements on all fragments in relation to the same reference system, the z-axis must be oriented towards the base (or the aperture) of the vase. The orientation of each fragment with respect to the base or the aperture of the vase can be done easily, on the basis of its shape and the curvature of the grooves on its surface.
- -
- Construction of ceramic specimens from the same raw material, fired in the same kiln, with the same slope, but under different oxidative conditions and at different temperatures.
- -
- Analysis of the composition of the specimens and their content in magnetic oxides.
- -
- -Investigation of the mode, the sensors’ degree of excitation, and of the dependence of the normalization constant, λ, of the vertical and parallel sensor readings as well as of α˪, α//, on measurements of the same specimens at different distances from their surface. A prerequisite for these are magnetic field measurements in ceramic materials with higher thermoremanent magnetization, so that their magnetic field is attenuated at longer distances from their surface.
- -
- Investigation of the dependence of the normalization constant, λ, of the vertical and parallel sensor readings and their correlation with the dimensions and technical characteristics of the sensors from measurements of the same specimens with different types of fluxgate sensors.
- -
- Investigation of the possibility of constructing a handy instrument for local surface measurements of induced magnetization of ceramic materials from an alternating magnetic field for archaeological use for the purpose of screening the co-belonging excavation fragments.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Remanent Magnetization in Ceramic Fractures
Types of Oxides | Basic Oxides of Firing Clay | Typical Clay Content of Oxides (Ci % w/w) | Mass Magnetic Susceptibility χm(10−6 m3/Kg) | Reduced Magnetic Susceptibility Ai = χ.Ci/100 | Percentage Content of Mass Magnetic Susceptibility A(%) = (Ai/ΣAi).100 |
---|---|---|---|---|---|
d | SiO2 | 59 | −0.0058 | −0.0034 | −1.7 |
d | Al2O3 | 16 | −0.0046 | −0.00074 | −0.37 |
d | CaO | 9 | −0.0034 | −0.00031 | −0.16 |
a | αFe2O3 | 7 | +1.7 | +0.12 | +60 |
f | Fe3O4 | 0.01 | +800 | +0.08 | +40 |
d | MgO | 3.2 | −0.0032 | −0.00010 | −0.050 |
- | K2O | 3 | - | - | - |
d | Nα2O | 1.2 | −0.0040 | −0.000048 | −0.0024 |
p | ΤiO2 | 1 | +0.00093 | +0.0000093 | +0.0047 |
- | P2O5 | 0.5 | - | - | - |
a | MnO | 0.1 | +0.86 | +0.00086 | +0.43 |
Σύνολο | 100 | ΣAi = 0.20 | 98 |
Appendix B. Experimental Investigation of the Measured Magnetic Field Dependence on the Ceramic Material Remanent Magnetization in Base Vase Specimens
Appendix B.1. Investigation of the Range and Anisotropy Degree of the Ceramic Region that Produces the Magnetic Field, Which Is Detected by the Sensors
| ||||
Vase 1 | ||||
Base | Body | |||
φδ | β3 | δ3 | B1 | Z7 |
(±1°) | φ (±1°) | φ | ||
±2° | ±1° | |||
0 | 0 | 0 | 0 | 0 |
30 | 31 | 33 | 25 | 32 |
60 | 63 | 60 | 63 | 63 |
90 | 89 | 88 | 92 | 91 |
120 | 121 | 117 | 122 | 117 |
150 | 148 | 152 | 155 | 150 |
180 | 178 | 179 | 180 | 181 |
210 | 209 | 213 | 215 | 212 |
240 | 241 | 243 | 245 | 243 |
270 | 271 | 271 | 272 | 271 |
300 | 299 | 301 | 299 | 300 |
330 | 329 | 334 | 330 | 329 |
Appendix B.2. Investigation of the Contribution of the Ceramic Material Induced Magnetization in the Magnetic Field Measurements
R (Ω) | Rtotal (Ω) | Bcoil (nT) | Bearth (nT) | Total Axonal Field in the Coil Center (nT) |
---|---|---|---|---|
5.924 | 83.924 | 42,161.4 | 42160.7 | 0.7 |
5.925 | 83.925 | 42,160.9 | 0.2 | |
5.926 | 83.926 | 42,160.4 | −0.3 | |
5.927 | 83.927 | 42,159.9 | −0.8 |
Base Specimen | Magnetic Field Measurements from the Cylindrical Specimens of Vase 5 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 22 ±1 mm | φδ (±0.5°) | 0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | |
By (±1)nT | 0 | 28 | 51 | 60 | 53 | 31 | 1 | −31 | −53 | −60 | −53 | −32 | ||
Bz (±1)nT | 16 | 16 | 17 | 16 | 17 | 16 | 17 | 17 | 16 | 17 | 17 | 17 | ||
B (±1)nT | 63 | 61 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | ||
θB (±1°) | 75 | 75 | 74 | 75 | 74 | 75 | 74 | 74 | 75 | 74 | 74 | 74 | ||
φ (±1°) | 0 | 28 | 60 | 90 | 118 | 149 | 179 | 211 | 242 | 269 | 298 | 327 | ||
Column of m tiles | ||||||||||||||
Lm(±0.2)mm | φδ (±0.5°) | 0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | |
m | 3.0 | Bx (±1) nT | 43 | 37 | 21 | 1 | −23 | −39 | −44 | −36 | −20 | −2 | 21 | 38 |
1 | By (±1) nT | 0 | 22 | 39 | 43 | 36 | 22 | −1 | −23 | −38 | −45 | −38 | −21 | |
Bz (±1)nT | 14 | 14 | 14 | 14 | 15 | 15 | 14 | 14 | 14 | 14 | 15 | 15 | ||
B (±1)nT | 45 | 45 | 46 | 45 | 45 | 47 | 46 | 45 | 45 | 47 | 46 | 46 | ||
θB (±1°) | 72 | 72 | 72 | 72 | 71 | 71 | 72 | 72 | 72 | 73 | 71 | 71 | ||
φ (±1°) | 0 | 31 | 62 | 89 | 123 | 151 | 181 | 213 | 242 | 267 | 299 | 331 | ||
2 | 6.0 | Bx (±1) nT | 56 | 48 | 29 | −1 | −25 | −48 | −55 | −46 | −25 | 1 | 28 | 49 |
By (±1) nT | 0 | 27 | 47 | 55 | 48 | 27 | 1 | −29 | −49 | −55 | −47 | −29 | ||
Bz (±1)nT | 16 | 16 | 17 | 16 | 16 | 17 | 16 | 16 | 16 | 15 | 16 | 16 | ||
B (±1)nT | 58 | 57 | 58 | 57 | 56 | 58 | 57 | 57 | 57 | 57 | 57 | 59 | ||
θB (±1°) | 74 | 74 | 73 | 74 | 74 | 73 | 74 | 74 | 74 | 75 | 74 | 74 | ||
φ (±1°) | 0 | 29 | 58 | 91 | 118 | 151 | 179 | 212 | 243 | 271 | 301 | 329 | ||
3 | 9.0 | Bx (±1) nT | 59 | 51 | 28 | 0 | −29 | −51 | −59 | −50 | −31 | 1 | 28 | 53 |
By (±1) nT | 0 | 28 | 52 | 59 | 50 | 30 | −1 | −31 | −50 | −59 | −53 | −28 | ||
Bz (±1)nT | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 17 | 16 | 16 | ||
B (±1)nT | 61 | 60 | 61 | 61 | 60 | 61 | 61 | 61 | 61 | 61 | 62 | 62 | ||
θB (±1°) | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 74 | 74 | 75 | 75 | ||
φ (±1°) | 0 | 29 | 62 | 90 | 120 | 150 | 181 | 212 | 238 | 271 | 298 | 332 | ||
4 | 12.0 | Bx (±1) nT | 60 | 51 | 31 | −1 | −29 | −50 | −60 | −52 | −30 | 0 | 31 | 51 |
Bψ (±1) nT | 0 | 32 | 51 | 59 | 52 | 30 | −2 | −28 | −51 | −60 | −50 | −31 | ||
Bz (±1)nT | 17 | 16 | 16 | 17 | 17 | 16 | 16 | 16 | 17 | 16 | 16 | 16 | ||
B (±1)nT | 62 | 62 | 62 | 61 | 62 | 60 | 62 | 61 | 62 | 62 | 61 | 62 | ||
θB (±1°) | 74 | 75 | 75 | 74 | 74 | 75 | 75 | 75 | 74 | 75 | 75 | 75 | ||
φ (±1°) | 0 | 32 | 59 | −89 | 119 | 149 | 182 | 208 | 240 | 270 | 302 | 329 | ||
5 | 15.0 | Bx (±1) nT | 60 | 51 | 27 | 1 | −30 | −51 | −51 | −53 | −30 | 1 | 28 | 52 |
By (±1) nT | 0 | 31 | 53 | 59 | 52 | 31 | −1 | −29 | −52 | −61 | −53 | −29 | ||
Bz (±1)nT | 16 | 16 | 17 | 16 | 16 | 16 | 17 | 17 | 17 | 17 | 17 | 16 | ||
B (±1)nT | 62 | 62 | 62 | 61 | 62 | 62 | 54 | 63 | 62 | 63 | 62 | 62 | ||
θB (±1°) | 75 | 75 | 74 | 75 | 75 | 75 | 72 | 74 | 74 | 74 | 74 | 75 | ||
φ (±1°) | 0 | 31 | 63 | 89 | 120 | 149 | 181 | 209 | 240 | 271 | 298 | 331 | ||
6 | 18.0 | Bx (±1) nT | 60 | 51 | 31 | −1 | −30 | −52 | −60 | −51 | −30 | 0 | 29 | 51 |
By (±1) nT | 0 | 30 | 51 | 60 | 52 | 29 | 0 | −31 | −51 | −60 | −52 | −32 | ||
Bz (±1)nT | 16 | 16 | 16 | 17 | 16 | 17 | 16 | 16 | 16 | 17 | 17 | 17 | ||
B (±1)nT | 62 | 61 | 62 | 62 | 62 | 62 | 62 | 62 | 61 | 62 | 62 | 63 | ||
θB (±1°) | 75 | 75 | 75 | 74 | 75 | 74 | 75 | 75 | 75 | 74 | 74 | 74 | ||
φ (±1°) | 0 | 30 | 59 | 91 | 120 | 151 | 180 | 211 | 240 | 270 | 299 | 328 | ||
7 | 21.0 | Bx (±1) nT | 60 | 51 | 28 | −1 | −28 | −51 | −60 | −52 | −31 | 1 | 32 | 51 |
By (±1) nT | 0 | 31 | 51 | 60 | 52 | 32 | −1 | −30 | −51 | −60 | −51 | −30 | ||
Bz (±1)nT | 17 | 16 | 16 | 16 | 16 | 17 | 16 | 16 | 16 | 16 | 16 | 17 | ||
B (±1)nT | 62 | 62 | 60 | 62 | 61 | 63 | 62 | 62 | 62 | 62 | 62 | 62 | ||
θB (±1°) | 74 | 75 | 75 | 75 | 75 | 74 | 75 | 75 | 75 | 75 | 75 | 74 | ||
φ (±1°) | 0 | 31 | 61 | 91 | 118 | 148 | 181 | 210 | 239 | 271 | 302 | 330 | ||
8 | 24.0 | Bx (±1) nT | 60 | 52 | 29 | 1 | −27 | −53 | −60 | −51 | −31 | −1 | 28 | 51 |
By (±1) nT | 0 | 30 | 52 | 60 | 53 | 28 | −1 | −32 | −51 | −59 | −53 | −32 | ||
Bz (±1)nT | 16 | 16 | 17 | 16 | 16 | 17 | 16 | 16 | 17 | 17 | 17 | 16 | ||
B (±1)nT | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 61 | 62 | 62 | ||
θB (±1°) | 75 | 75 | 74 | 75 | 75 | 74 | 75 | 75 | 74 | 74 | 74 | 75 | ||
φ (±1°) | 0 | 30 | 61 | 269 | 117 | 152 | 181 | 212 | 239 | 269 | 298 | 328 |
Appendix B.3. Investigation of the Dependence of the Magnetically Detecting Area by the Sensors on the Shell Thickness
Vase | m | Measured Thickness Lm = m.Lo (±0.5mm) | Bxy (±0.2nT) | <Bz > (nT) | Computed Thickness Lm (mm) |
---|---|---|---|---|---|
4 | 6 | 18.0 | 38.0 | 17.6 ± 0.1 | 18.5 ± 0.2 |
5 | 4 | 12.0 | 59.8 | 16.4 ± 0.1 | 11.1 ± 0.2 |
6 | 8 | 24.0 | 24.2 | 14.0 ± 0.2 | 23.1 ± 0.5 |
Appendix B.4. Investigation of the Dependence of the Cylindrical Area Detected by the Sensors, on Their Position on the Surface of the Shells and the Directionality of Their Magnetization
- -
- When Dn > d = L.tanθB (Figure A9b) the height depends on the thickness, L, of the specimen, and the measure B does not change, because the dimensions of the magnetic detecting area remain constant.
- -
- When Dn<d (Figure A9d) the height, ℓn, is dependent on the distance Dn, and field B decreases as the sensors move towards the end of the sample, because the height of the magnetic detecting area is reduced.
Vase | L(±0.2)mm | Dn = d (±0.2)mm (Measured) | Bxy (±0.2)nT | Bz (±0.2)nT | B (±0.2)nT | θ° | d(mm) (Computed) |
---|---|---|---|---|---|---|---|
4 | 20.0 | 22.0 | 38.2 | 17.7 | 42.1 | 65.1 ± 0.3 | 21.6 ± 0.3 |
5 | 12.0 | 22.0 | 60.1 | 16.6 | 62.4 | 74.6 ± 0.2 | 21.7 ± 0.3 |
6 | 21.0 | 20.0 | 24.2 | 13.2 | 27.6 | 61.4 ± 0.5 | 19.3 ± 0.3 |
Appendix B.5. Investigation of the Dependence of the Measured Magnetic Field on the Sensor Orientation on the Fragments’ Surface. Theoretical Approach of the Cylindrical Magnetically Detected Area by the Sensors
- If the directionality of the field is constant throughout the ceramic mass, as the result of its uniform magnetization, then the computed angles at the measurement positions of the base (θB) should display similar values. The same must be true for the angles (θs) at the specimen sides.
- If, in addition, the differently oriented sensors on the surface of the specimens are excited to the same extent, then due to the fact that the same component of the field is measured by the vertical and parallel sensors at the equally-distanced positions, by Dn, on the base and on the side of the specimens, the computed angles θB, θs must be complementary. In this case, the deviations in the value of the sum θB + θs ≈ 90° can be computed, since they are due solely to the different height, ℓB ≠ ℓs of the cylindrical magnetically detection areas of the sensors, which change in measurable way.
VASE 5 | | | ||||||||||||
Table (a) | ||||||||||||||
L = 40.4 ± 0.2 (mm) | Measurements by the Vertical and Parallel Sensors at the Same Position | |||||||||||||
Vase(b) | Side(s) | |||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | Bz˪ ±0.2 | BB ±0.2 | θB ±0.2° | Bxy˪ ±0.2 | Bz// ±0.2 | Bs ±0.2 | θs ±0.3° | λxy | <λxy> ±0.01 | λz | <λz> ±0.01 | |
1 | 14.0 | 56.9 | 15.9 | 59.1 | 74.4 | 29.2 | 31.4 | 42.9 | 47.1 | 1.95 | 1.98 | 1.97 | 1.99 | |
2 | 15.4 | 58.1 | 16.1 | 60.3 | 74.5 | 29.5 | 31.7 | 43.3 | 47.1 | 1.97 | 1.97 | |||
3 | 16.8 | 58.6 | 16.2 | 60.8 | 74.5 | 29.7 | 32.0 | 43.7 | 47.1 | 1.97 | 1.98 | |||
4 | 18.2 | 59.1 | 16.2 | 61.3 | 74.7 | 29.8 | 32.4 | 44.0 | 47.4 | 1.98 | 2.00 | |||
5 | 19.6 | 59.2 | 16.3 | 61.4 | 74.6 | 29.9 | 32.5 | 44.2 | 47.4 | 1.98 | 1.99 | |||
6 | 21.0 | 59.7 | 16.3 | 61.9 | 74.7 | 30.0 | 32.6 | 44.3 | 47.4 | 1.99 | 2.00 | |||
7 | 22.4 | 59.9 | 16.4 | 62.1 | 74.7 | 30.0 | 32.8 | 44.5 | 47.6 | 2.00 | 2.00 | |||
8 | 23.8 | 60.2 | 16.4 | 62.4 | 74.8 | 30.1 | 32.9 | 44.6 | 47.5 | 2.00 | 2.01 | |||
9 | 25.2 | 60.4 | 16.5 | 62.6 | 74.7 | 30.2 | 33.2 | 44.9 | 47.7 | 2.00 | 2.01 | |||
10 | 26.6 | 60.6 | 16.5 | 62.8 | 74.8 | 30.2 | 33.3 | 45.0 | 47.8 | 2.01 | 2.02 | |||
Table (b) | Measurements by the same oriented sensors on the base(b) and on the side(s) of specimens | |||||||||||||
(b) | (s) | (s) | (b) | |||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | Bz// ±0.2 | B// ±0.2 | θ// ±0.2° | <θ//> ±0.1° | d// ±0.4 | Bxy˪ ±0.2 | Bz˪ ±0.2 | B˪ ±0.2 | θ˪ ±0.3° | <θ˪> ±0.0° | d˪ ±0.4 | |
1 | 14.0 | 56.9 | 31.4 | 65.0 | 61.1 | 61.3° | 73.7 | 29.2 | 15.9 | 33.2 | 61.4 | 61.4° | 74.1 | |
2 | 15.4 | 58.1 | 31.7 | 66.2 | 61.4 | 29.5 | 16.1 | 33.6 | 61.4 | |||||
3 | 16.8 | 58.6 | 32.0 | 66.8 | 61.4 | 29.7 | 16.2 | 33.8 | 61.4 | |||||
4 | 18.2 | 59.1 | 32.4 | 67.4 | 61.3 | 29.8 | 16.2 | 33.9 | 61.5 | |||||
5 | 19.6 | 59.2 | 32.5 | 67.5 | 61.2 | 29.9 | 16.3 | 34.1 | 61.4 | |||||
6 | 21.0 | 59.7 | 32.6 | 68.0 | 61.4 | 30.0 | 16.3 | 34.1 | 61.5 | |||||
7 | 22.4 | 59.9 | 32.8 | 68.3 | 61.3 | 30.0 | 16.4 | 34.2 | 61.3 | |||||
8 | 23.8 | 60.2 | 32.9 | 68.6 | 61.3 | 30.1 | 16.4 | 34.3 | 61.4 | |||||
9 | 25.2 | 60.4 | 33.2 | 68.9 | 61.2 | 30.2 | 16.5 | 34.4 | 61.3 | |||||
10 | 26.6 | 60.6 | 33.3 | 69.1 | 61.2 | 30.2 | 16.5 | 34.4 | 61.3 | |||||
Table (c) | Corrected measurements | |||||||||||||
Vase(b) | Side(s) | |||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | *Bz˪ ±0.6 | BB ±0.3 | θBo | lB | *Bxy˪ ±0.9 | Bz// ±0.2 | Bs ±0.8 | θs ±0.2° | ls | |||
1 | 14.0 | 56.9 | 31.7 | 65.1 | 60.9 ± 0.5 | 16.0 ± 0.2 | 58.0 | 31.4 | 65.9 | 28.4 | 29.4 ± 0.5 | |||
2 | 15.4 | 58.1 | 32.1 | 66.4 | 61.1 ± 0.5 | 17.6 ± 0.2 | 58.6 | 31.7 | 66.6 | 28.4 | 32.3 ± 0.5 | |||
3 | 16.8 | 58.6 | 32.3 | 66.9 | 61.1 ± 0.4 | 19.2 ± 0.2 | 58.9 | 32.0 | 67.1 | 28.5 | 35.2 ± 0.5 | |||
4 | 18.2 | 59.1 | 32.3 | 67.4 | 61.3 ± 0.4 | 20.7 ± 0.2 | 59.1 | 32.4 | 67.4 | 28.7 | 37.9 ± 0.5 | |||
5 | 19.6 | 59.2 | 32.5 | 67.5 | 61.2 ± 0.4 | 22.4 ± 0.2 | 59.3 | 32.5 | 67.7 | 28.7 | 40.8 ± 0.5 | |||
6 | 21.0 | 59.7 | 32.5 | 68.0 | 61.4 ± 0.4 | 23.9 ± 0.2 | 59.5 | 32.6 | 67.9 | 28.7 | 43.7 ± 0.5 | |||
7 | 22.4 | 59.9 | 32.7 | 68.3 | 61.4 ± 0.4 | 25.5 ± 0.3 | 59.5 | 32.8 | 68.0 | 28.8 | 46.4 ± 0.5 | |||
8 | 23.8 | 60.2 | 32.7 | 68.5 | 61.5 ± 0.4 | 27.1 ± 0.3 | 59.7 | 32.9 | 68.2 | 28.8 | 49.3 ± 0.5 | |||
9 | 25.2 | 60.4 | 32.9 | 68.8 | 61.4 ± 0.4 | 28.7 ± 0.3 | 59.9 | 33.2 | 68.5 | 29.0 | 52.0 ± 0.5 | |||
10 | 26.6 | 60.6 | 32.9 | 69.0 | 61.5 ± 0.4 | 30.3 ± 0.3 | 59.9 | 33.3 | 68.6 | 29.1 | 54.8 ± 0.5 | |||
Table (d) | n | Dn | Bxy˪ ±0.2 | Bz˪ ±0.2 | Mz(mA/m) | Mxy(mA/m) | θ° | |||||||
10 | 26.6 ± 0.2 | 30.2 | 16.5 | 26.3 ± 0.3 | 48.1 ± 0.3 | 61.3 ± 0.3 |
- ❖
- The values of the computed angles (Table A7a) at the measurement positions, at the equally spaced positions by Dn, from the base (θB) and the side (θs) of the specimen show similar values. The directionality of the field B is constant but the degrees of sensor excitation (θB + θs ≠ 90o) are different.
- The parallel sensor (Bxy//,Bz//) readings, for the measurement of the same component of the field, are approximately double of those of the vertical (Bxy˪, Bz˪) sensor, which displays lower growth rate and range of values for each specimen from the vases 4, 5 and 6. For the correction of the readings, the ratios λxy = Bxy///Bxy∟, λz = Bz///Bz∟ and the average values <λxy>≈<λz>≈λ=2 are computed.
- •
- When, in the equally-distanced measuring positions at the base and side (Table A7b), the magnitude (B//,B˪) and directionality (θ//, θ˪) of the field are computed from only the readings of the parallel (//) or only the vertical (˪) sensor, it can be seen that B// ≠ B˪ and θ// ≈ θ˪. The parallel and vertical sensor readings for the measurement of the same field component are differentiated by the same factor, λ, such that:
- After the correction (*Bz˪ = < λz >.Bz˪, *Bxy˪ = < λxy >.Bxy˪) of the readings Bz˪, Bxy˪ of the vertical sensor in the equally-spaced positions on the base and side of the specimen (Table A7c), it can be seen that θB + θs ≈ 90o.
- However, the magnitude of the field at the same positions displays similar values (BB ≈ Bs) while the heights,, , of the cylindrical ceramic detection areas are different.
Appendix B.6. Computation of the Magnetization in Specimens from the Base of the Vases 4, 5 and 6
Vase 5 | Dn | Bz˪ | Bxy˪ | Bz// | Bxy// | |
---|---|---|---|---|---|---|
| n | (±0.2mm) | (±0.2nT) | |||
1 | 14.0 | 15.9 | 29.2 | 31.4 | 56.9 | |
2 | 15.4 | 16.1 | 29.5 | 31.7 | 58.1 | |
3 | 16.8 | 16.2 | 29.7 | 32.0 | 58.6 | |
4 | 18.2 | 16.2 | 29.8 | 32.4 | 59.1 | |
5 | 19.6 | 16.3 | 29.9 | 32.5 | 59.2 | |
6 | 21.0 | 16.3 | 30.0 | 32.6 | 59.7 | |
7 | 22.4 | 16.4 | 30.0 | 32.8 | 59.9 | |
8 | 23.8 | 16.4 | 30.1 | 32.9 | 60.2 | |
9 | 25.2 | 16.5 | 30.2 | 33.2 | 60.4 | |
10 | 26.6 | 16.5 | 30.2 | 33.3 | 60.6 |
Vase 5 | mA/m | Mz | Mxy | M | γ° | αz˪ | 1.06± 0.04 | α˪ (cm) | 1.04 ± 0.03 |
Mz// | 54.1 ± 0.1 | 54.0 ± 0.2 | 98.9 ± 0.3 | 112.7 ± 0.3 | 61.3 ± 0.3 | αxy˪ | 1.03± 0.02 | ||
Mz˪ | 26.6 ± 0.01 | αz// | 1.40± 0.04 | α// (cm) | 1.41 ± 0.03 | ||||
Mxy// | 98.8 ± 0.2 | αxy// | 1.42± 0.04 | ||||||
Mxy˪ | 48.7 ± 0.1 | λ | 2.03 ± 0.01 |
VASE 4 | | | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Table (a) | ||||||||||||||||||||
L = 40.5 ± 0.2 (mm) | Measurements by the Vertical and Parallel Sensors at the Same Position | |||||||||||||||||||
Vase(b) | Side(s) | |||||||||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | Bz˪ ±0.2 | BB ±0.2 | θB ±0.1° | Bxy ±0.2 | Bz// ±0.2 | Bs ±0.2 | θs° | λxy | <λxy> ±0.02 | λz | <λz> ±0.02 | |||||||
1 | 13.0 | 36.2 | 17.3 | 40.1 | 64.5 | 19.5 | 32.0 | 37.5 | 58.6 ± 0.2 | 1.86 | 1,91 | 1.85 | 1.91 | |||||||
2 | 14.6 | 36.8 | 17.4 | 40.7 | 64.7 | 19.6 | 32.9 | 38.3 | 59.2 ± 0.2 | 1.88 | 1.89 | |||||||||
3 | 16.2 | 37.1 | 17.5 | 41.0 | 64.7 | 19.6 | 33.2 | 38.6 | 59.4 ± 0.2 | 1.89 | 1.90 | |||||||||
4 | 17.8 | 37.6 | 17.6 | 41.5 | 64.9 | 19.7 | 33.5 | 38.9 | 59.5 ± 0.1 | 1.91 | 1.90 | |||||||||
5 | 19.4 | 37.9 | 17.6 | 41.8 | 65.1 | 19.8 | 33.7 | 39.1 | 59.6 ± 0.1 | 1.91 | 1.91 | |||||||||
6 | 21.0 | 38.1 | 17.6 | 42.0 | 65.2 | 19.8 | 33.9 | 39.3 | 59.7 ± 0.1 | 1.92 | 1.93 | |||||||||
7 | 22.6 | 38.3 | 17.7 | 42.2 | 65.2 | 19.8 | 34.0 | 39.3 | 59.8 ± 0.1 | 1.93 | 1.92 | |||||||||
8 | 242 | 38.4 | 17.7 | 42.3 | 65.3 | 19.9 | 34.1 | 39.5 | 59.7 ± 0.1 | 1.93 | 1.93 | |||||||||
9 | 25.8 | 38.7 | 17.7 | 42.6 | 65.4 | 20.0 | 34.2 | 39.6 | 59.7 ± 0.1 | 1.94 | 1.93 | |||||||||
10 | 27.4 | 38.8 | 17.7 | 42.6 | 65.5 | 20.0 | 34.3 | 39.7 | 59.8 ± 0.1 | 1.94 | 1.94 | |||||||||
Table (b) | Measurements by the same oriented sensors on the base(b) and on the side(s) of specimens | |||||||||||||||||||
(b) | (s) | (s) | (b) | |||||||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | Bz// ±0.2 | B// ±0.2 | θ//° | <θ//> ±0.1° | d// ±0.3 | Bxy˪ ±0.2 | Bz˪ ±0.2 | B˪ ±0.2 | θ˪° ±0.3° | <θ˪> ±0.1° | d˪ ±0.3 | |||||||
1 | 13.0 | 36.2 | 32.0 | 48.3 | 48.5 ± 0.2 | 48.4 | 45.6 | 19.5 | 17.3 | 26.1 | 48.4 | 48,4 | 45.5 | |||||||
2 | 14.6 | 36.8 | 32.9 | 49.4 | 48.2 ± 0.2 | 19.6 | 17.4 | 26.2 | 48.4 | |||||||||||
3 | 16.2 | 37.1 | 33.2 | 49.8 | 48.2 ± 0.2 | 19.6 | 17.5 | 26.3 | 48.2 | |||||||||||
4 | 17.8 | 37.6 | 33.5 | 50.4 | 48.3 ± 0.2 | 19.7 | 17.6 | 26.4 | 48.2 | |||||||||||
5 | 19.4 | 37.9 | 33.7 | 50.7 | 48.4 ± 0.2 | 19.8 | 17.6 | 26.5 | 48.4 | |||||||||||
6 | 21.0 | 38.1 | 33.9 | 51.0 | 48.3 ± 0.1 | 19.8 | 17.6 | 26.5 | 48.4 | |||||||||||
7 | 22.6 | 38.3 | 34.0 | 51.2 | 48.4 ± 0.1 | 19.8 | 17.7 | 26.6 | 48.2 | |||||||||||
8 | 242 | 38.4 | 34.1 | 51.4 | 48.4 ± 0.1 | 19.9 | 17.7 | 26.6 | 48.3 | |||||||||||
9 | 25.8 | 38.7 | 34.2 | 51.6 | 48.5 ± 0.1 | 20.0 | 17.7 | 26.7 | 48.5 | |||||||||||
10 | 27.4 | 38.8 | 34.3 | 51.8 | 48.5 ± 0.1 | 20.0 | 17.7 | 26.7 | 48.5 | |||||||||||
Table (c) | Corrected measurements | |||||||||||||||||||
Vase(b) | Side(s) | |||||||||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | *Bz˪ ±0.5 | BB ±0.4 | θB ±0.5o | lB | *Bxy˪ ±0.6 | Bz// ±0.2 | Bs ±0.5 | θs ±0.5° | ls | |||||||||
1 | 13.0 | 36.2 | 33.0 | 49.0 | 47.6 | 17.6 ± 0.3 | 37.3 | 32.0 | 49.1 | 40.6 | 20.0 ± 0.4 | |||||||||
2 | 14.6 | 36.8 | 33.2 | 49.6 | 47.9 | 19.7 ± 0.3 | 37.5 | 32.9 | 49.9 | 41.3 | 22.1 ± 0.4 | |||||||||
3 | 16.2 | 37.1 | 33.4 | 49.9 | 48.0 | 21.8 ± 0.3 | 37.5 | 33.2 | 50.1 | 41.5 | 24.4 ± 0.4 | |||||||||
4 | 17.8 | 37.6 | 33.6 | 50.4 | 48.2 | 23.9 ± 0.3 | 37.7 | 33.5 | 50.4 | 41.7 | 26.8 ± 0.4 | |||||||||
5 | 19.4 | 37.9 | 33.6 | 50.7 | 48.4 | 25.9 ± 0.3 | 37.8 | 33.7 | 50.7 | 41.7 | 29.2 ± 0.4 | |||||||||
6 | 21.0 | 38.1 | 33.6 | 50.8 | 48.6 | 28.0 ± 0.3 | 37.8 | 33.9 | 50.8 | 41.9 | 31.5 ± 0.4 | |||||||||
7 | 22.6 | 38.3 | 33.8 | 51.1 | 48.6 | 30.1 ± 0.3 | 37.8 | 34.0 | 50.9 | 41.9 | 33.8 ± 0.4 | |||||||||
8 | 242 | 38.4 | 33.8 | 51.2 | 48.6 | 32.2 ± 0.4 | 38.0 | 34.1 | 51.1 | 41.9 | 36.3 ± 0.4 | |||||||||
9 | 25.8 | 38.7 | 33.8 | 51.4 | 48.9 | 34.3 ± 0.4 | 38.2 | 34.2 | 51.3 | 41.8 | 38.7 ± 0.5 | |||||||||
10 | 27.4 | 38.8 | 33.8 | 51.5 | 48.9 | 36.3 ± 0.4 | 38.2 | 34.3 | 51.4 | 41.9 | 41.0 ± 0.5 | |||||||||
Table (d) | n | Dn | Bxy˪(±0.2) | Bz˪(±0.2) | Mz(mA/m) | Mxy(mA/m) | θ° | |||||||||||||
10 | 27.4 ± 0.2 | 20.0 | 17.7 | 28.2 ± 0.3 | 31.8 ± 0.3 | 48.5 ± 0.3 |
Vase 4 | mA/m | Mz | Mxy | M | γ° | αz˪ | 0.66 ± 0.02 | α˪ (cm) | 0.67 ± 0.03 |
Mz// | 55.8 ± 0.1 | 55.9 ±0.2 | 62.9 ±0.2 | 84.1 ±0.2 | 48.5 ±0.3 | αxy˪ | 0.68 ± 0.04 | ||
Mz˪ | 28.41 ± 0.03 | αz// | 1.13 ± 0.03 | α// (cm) | 1.15 ± 0.02 | ||||
Mxy// | 63.0 ± 0.1 | αxy// | 1.17 ± 0.01 | ||||||
Mxy˪ | 32.0 ± 0.1 | λ | 1.97 ± 0.01 |
Vase 6 | mA/m | Mz | Mxy | M | γ° | αz˪ | 0.75 ± 0.03 | α˪ (cm) | 0.71 ± 0.03 |
Mz// | 42.5 ± 0.2 | 42.5±0.2 | 39.8±0.2 | 58.3±0.2 | 43.3±0.3 | αxy˪ | 0.67 ± 0.04 | ||
Mz˪ | 22.41 ± 0.05 | αz// | 1.13 ± 0.03 | α// (cm) | 1.07 ± 0.02 | ||||
Mxy// | 39.8 ± 0.1 | αxy// | 1.00 ± 0.01 | ||||||
Mxy˪ | 21.0 ± 0.1 | λ | 1.90 ± 0.01 |
VASE 6 | | | ||||||||||||||||||||||
Table (a) | ||||||||||||||||||||||||
L=41.2 ± 0.2 (mm) | Measurements by the Vertical and Parallel Sensors at the Same Position | |||||||||||||||||||||||
Vase(b) | Side(s) | |||||||||||||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | Bz˪ ±0.2 | BB ±0.2 | θB ±0.2° | Bxy˪ ±0.2 | Bz// ±0.2 | Bs ±0.2 | θs ±0.2° | λxy | <λxy> ±0.02 | λz | <λz> ±0.03 | |||||||||||
1 | 11.0 | 22.9 | 13.3 | 26.5 | 59.9 | 12.7 | 23.9 | 27.1 | 62.0 | 1.80 | 1.85 | 1.80 | 1.85 | |||||||||||
2 | 13.0 | 23.4 | 13.6 | 27.1 | 59.8 | 12.8 | 24.2 | 27.4 | 62.1 | 1.83 | 1.78 | |||||||||||||
3 | 15.0 | 23.6 | 13.7 | 27.3 | 59.9 | 12.9 | 25.1 | 28.2 | 62.8 | 1.83 | 1.83 | |||||||||||||
4 | 17.0 | 24.0 | 13.7 | 27.6 | 60.3 | 12.9 | 25.4 | 28.5 | 63.1 | 1.86 | 1.85 | |||||||||||||
5 | 19.0 | 24.1 | 13.8 | 27.8 | 60.2 | 13.0 | 25.6 | 28.7 | 63.1 | 1.85 | 1.86 | |||||||||||||
6 | 21.0 | 24.3 | 13.8 | 27.9 | 60.4 | 13.0 | 25.8 | 28.9 | 63.3 | 1.87 | 1.87 | |||||||||||||
7 | 23.0 | 24.5 | 13.9 | 28.2 | 60.4 | 13.1 | 25.9 | 29.0 | 63.2 | 1.87 | 1.86 | |||||||||||||
8 | 25.0 | 24.6 | 13.9 | 28.3 | 60.5 | 13.1 | 26.0 | 29.1 | 63.3 | 1.88 | 1.87 | |||||||||||||
9 | 27.0 | 24.7 | 14.0 | 28.4 | 60.5 | 13.2 | 26.2 | 29.3 | 63.3 | 1.87 | 1.87 | |||||||||||||
10 | 29.0 | 24.8 | 14,0 | 28.5 | 60.6 | 13.2 | 26.3 | 29.4 | 63.3 | 1.88 | 1.88 | |||||||||||||
Table (b) | Measurements by the same oriented sensors on the base(b) and on the side(s) of specimens | |||||||||||||||||||||||
(b) | (s) | (s) | (b) | |||||||||||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | Bz// ±0.2 | B// ±0.2 | θ// ±0.2° | <θ//> ±0.2° | d// ±0.3 | Bxy˪ ±0.2 | Bz˪ ±0.2 | B˪ ±0.2 | θ˪ ±0.3° | <θ˪> ±0.1° | d˪ ±0.2 | |||||||||||
1 | 11.0 | 22.9 | 23.9 | 33.1 | 43.8 | 43.4 | 39,0 | 12.7 | 13.3 | 18.4 | 43.7 | 43.3 | 38.9 | |||||||||||
2 | 13.0 | 23.4 | 24.2 | 33.7 | 44.0 | 12.8 | 13.6 | 18.7 | 43.3 | |||||||||||||||
3 | 15.0 | 23.6 | 25.1 | 34.5 | 43.2 | 12.9 | 13.7 | 18.8 | 43.3 | |||||||||||||||
4 | 17.0 | 24.0 | 25.4 | 34.9 | 43.4 | 12.9 | 13.7 | 18.8 | 43.3 | |||||||||||||||
5 | 19.0 | 24.1 | 25.6 | 35.2 | 43.3 | 13.0 | 13.8 | 19.0 | 43.3 | |||||||||||||||
6 | 21.0 | 24.3 | 25.8 | 35.4 | 43.3 | 13.0 | 13.8 | 19.0 | 43.3 | |||||||||||||||
7 | 23.0 | 24.5 | 25.9 | 35.7 | 43.4 | 13.1 | 13.9 | 19.1 | 43.3 | |||||||||||||||
8 | 25.0 | 24.6 | 26.0 | 35.8 | 43.4 | 13.1 | 13.9 | 19.1 | 43.3 | |||||||||||||||
9 | 27.0 | 24.7 | 26.2 | 36.0 | 43.3 | 13.2 | 14.0 | 19.2 | 43.3 | |||||||||||||||
10 | 29.0 | 24.8 | 26.3 | 36.1 | 43.3 | 13.2 | 14.0 | 19.2 | 43.3 | |||||||||||||||
Table (c) | Corrected measurements | |||||||||||||||||||||||
Vase(b) | Side(s) | |||||||||||||||||||||||
n | Dn ±0.2 | Bxy// ±0.2 | *Bz˪ ±0.6 | BB ±0.3 | θB ±0.8o | lB | *Bxy˪ ±0.9 | Bz// ±0.2 | Bs ±0.8 | θs ±0.2° | ls ±0.3 | |||||||||||||
1 | 11.0 | 22.9 | 24.6 | 33.6 | 43.0 | 16.1 ± 0.4 | 23.5 | 23.9 | 33.6 | 45.4 | 15.4 | |||||||||||||
2 | 13.0 | 23.4 | 25.1 | 34.3 | 43.0 | 19.1 ± 0.4 | 23.7 | 24.2 | 33.9 | 45.6 | 18.2 | |||||||||||||
3 | 15.0 | 23.6 | 25.3 | 34.6 | 43.0 | 22.0 ± 0.4 | 23.9 | 25.1 | 34.7 | 46.4 | 20.7 | |||||||||||||
4 | 17.0 | 24.0 | 25.3 | 34.9 | 43.5 | 24.7 ± 0.5 | 23.9 | 25.4 | 34.9 | 46.7 | 23.4 | |||||||||||||
5 | 19.0 | 24.1 | 25.5 | 35.1 | 43.4 | 27.7 ± 0.5 | 24.1 | 25.6 | 35.2 | 46.7 | 26.1 | |||||||||||||
6 | 21.0 | 24.3 | 25.5 | 35.2 | 43.6 | 30.4 ± 0.5 | 24.1 | 25.8 | 35.3 | 46.9 | 28.7 | |||||||||||||
7 | 23.0 | 24.5 | 25.7 | 35.5 | 43.7 | 33.3 ± 0.6 | 24.3 | 25.9 | 35.5 | 46.8 | 31.5 | |||||||||||||
8 | 25.0 | 24.6 | 25.7 | 35.6 | 43.8 | 36.1 ± 0.6 | 24.3 | 26.0 | 35.6 | 46.9 | 34.2 | |||||||||||||
9 | 27.0 | 24.7 | 25.9 | 35.8 | 43.7 | 39.1 ± 0.6 | 24.5 | 26.2 | 35.9 | 46.9 | 36.9 | |||||||||||||
10 | 29.0 | 24.8 | 25.9 | 35,8 | 43.8 | 41.9 ± 0.7 | 24.5 | 26.3 | 35.9 | 47.1 | 39,6 | |||||||||||||
Table (d) | n | Dn | Bxy˪(±0.2) | Bz˪(±0.2) | Mz(mA/m) | Mxy(mA/m) | θ° | |||||||||||||||||
10 | 29.0 ± 0.2 | 13.2 | 14.0 | 42.6 ± 0.2 | 40.1 ± 0.2 | 43.3 ± 0.3 |
Appendix B.7. Computation of Magnetization in Irregular Fragments of the Vase Base 1,2 and 3
Vase 2 | |||
---|---|---|---|
Dn | λ.Bz˪ | Bxy// | |
n | (±0.2 mm) | (±0.2 nT) | |
1 | 26.0 | 66.0 | 78.0 |
2 | 25.0 | 65.6 | 78.6 |
3 | 24.0 | 65.2 | 78.4 |
4 | 23.0 | 65.2 | 77.9 |
5 | 22.0 | 65.0 | 77.4 |
6 | 21.0 | 64.8 | 77.0 |
7 | 20.0 | 64.6 | 76.4 |
8 | 19.0 | 64.4 | 75.8 |
9 | 18.0 | 64.0 | 75.2 |
10 | 17.0 | 64.0 | 74.2 |
Mz˪(mA/m) | Mxy//(mA/m) | M(mA/m) | γ° | αz˪(cm) | αxy//(cm) | λ |
---|---|---|---|---|---|---|
106.9 ± 0.4 | 131.2 ± 0.7 | 169.3 ± 0.6 | 50.8 ± 0.2 | 1.15 ± 0.05 | 1.66 ± 0.05 | 2.0 ± 0.1 |
| | |||||||||||||
Table (a) | Measurements in Irregular Fragment of Base Vase 1 | |||||||||||||
L (mm) 21.2 ± 0.5 | Measurements along Bxy, which is oriented along the direction of the x-sensor | |||||||||||||
Measurements of Bz from the vertical z-sensor on the fragment surface | | |||||||||||||
n | λ.Bz ±0.2 nT | Dn ±0.2 mm | xn | ψn | (xn-<x>)2 | ψn. (xn-<x>) | (ψn-<ψ>)2 | |||||||
1 | 48.2 | 23.0 | 1890.4 | 169.9 | 1,585,056.5 | −213,938.0 | 20.1 | |||||||
2 | 48.0 | 22.0 | 2066.1 | 171.3 | 1,173,395.3 | −185,609.2 | 9.4 | |||||||
3 | 47.8 | 21.0 | 2267.6 | 172.8 | 777,528.4 | −152,356.9 | 2.7 | |||||||
4 | 47.8 | 20.0 | 2500.0 | 172.8 | 421,654.7 | −112,197.3 | 2.7 | |||||||
5 | 47.6 | 19.0 | 2770.1 | 174.2 | 143,842.9 | −66,083.1 | 0.0 | |||||||
6 | 47.6 | 18.0 | 3086.4 | 174.2 | 3960.1 | −10,964.8 | 0.0 | |||||||
7 | 47.4 | 17.0 | 3460.2 | 175.7 | 96,632.8 | 54,621.7 | 1.7 | |||||||
8 | 47.2 | 16.0 | 3906.3 | 177.2 | 572,898.5 | 13,4126.5 | 7.8 | |||||||
9 | 47.2 | 15.0 | 4444.4 | 177.2 | 167,7271.1 | 229497.2 | 7.8 | bz | δbz | wz | δwz | |||
10 | 47.0 | 14.0 | 5102.0 | 178.7 | 3,813,003.7 | 348977.7 | 18.5 | 0.0025 | 0.0002 | 166.4 | 0.8 | |||
<x> | <ψ> | Σ(xn-<x>)2 | Σψn. (xn-<x>) | Σ(ψn-<ψ>)2 | ΣRi2 | Mz (A/m) | δMz | αz˪ (m) | δαz˪ | |||||
3149.3 | 174.4 | 10,265,244.0 | 26,073.8 | 70.7 | 4.4 | 0.0775 | 0.0002 | 0.0082 | 0.0004 | |||||
Table (b) | Measurements of Bxy from the parallel x-sensor on the fragment surface | |||||||||||||
n | Bxy ±0.2 nT | Dn ±0.2 mm | xn | ψ n | (xn-<x>)2 | ψn. (xn-<x>) | (ψn-<ψ>)2 | |||||||
1 | 63.8 | 23.0 | 1890.4 | 97.0 | 1,585,056.5 | −122,107.1 | 25.2 | |||||||
2 | 63.6 | 22.0 | 2066.1 | 97.6 | 1,173,395.3 | −105,722.6 | 19.4 | | ||||||
3 | 63.4 | 21.0 | 2267.6 | 98.2 | 777,528.4 | −86,604.3 | 14.3 | |||||||
4 | 63.0 | 20.0 | 2500.0 | 99.5 | 421,654.7 | −64,588.8 | 6.4 | |||||||
5 | 62.7 | 19.0 | 2770.1 | 100.4 | 143,842.9 | −38,086.3 | 2.5 | |||||||
6 | 62.4 | 18.0 | 3086.4 | 101.4 | 3960.1 | −6380.4 | 0.4 | |||||||
7 | 61.7 | 17.0 | 3460.2 | 103.7 | 96,632.8 | 32,236.8 | 2.9 | |||||||
8 | 61.3 | 16.0 | 3906.3 | 105.1 | 572,898.5 | 79,520.2 | 9.3 | |||||||
9 | 60.8 | 15.0 | 4444.4 | 106.8 | 1,677,271.1 | 138,310.2 | 23.0 | bxy | δbxy | wxy | δwxy | |||
10 | 59.8 | 14.0 | 5102.0 | 110.4 | 3,813,003.7 | 215571.3 | 70.5 | 0.0041 | 0.0001 | 89.1 | 0.3 | |||
<x> | <ψ> | Σ(xn-<x>)2 | Σψn. (xn-<x>) | Σ(ψn-<ψ>)2 | ΣRi2 | Mxy (A/m) | δMxy | αxy\\(m) | δαxy\\ | |||||
3149.3 | 102.0 | 10,265,244.0 | 42149.2 | 173.9 | 0.8 | 0.1060 | 0.0002 | 0.0142 | 0.0002 | |||||
Table (c) | Computation of the quantities α˪, α//, γ, M, Mi, (i = xy,z) | |||||||||||||
Mz ± δMz (mA/m) | Mxy ± δMxy (mA/m) | M ± δM (mA/m) | γ° ± δγ° | α˪ ±δα˪ (cm) | α//±δα// (cm) | λ ± δλ | ||||||||
77.5 ± 0.2 | 106.0 ± 0.2 | 131.3 ± 0.2 | 53.8 ± 0.1 | 0.82 ± 0.04 | 1.42 ± 0.02 | 2.0 ± 0.1 |
| | |||||||||||||
Table(a) | Measurements in Irregular Fragment of Base Vase 3 | |||||||||||||
L (mm) 22.3 ± 0.5 | Measurements along Bxy, which is oriented along the direction of the x-sensor | |||||||||||||
Measurements of Bz from the vertical z- sensor on the fragment surface | | |||||||||||||
n | λ.Bz ±0.2 nT | Dn ±0.2 mm | xn | ψn | (xn-<x>)2 | ψn. (xn-<x>) | (ψn-<ψ>)2 | |||||||
1 | 69.4 | 24.0 | 1736.1 | 82.0 | 1,159,165.2 | −88,249.7 | 9.57 | |||||||
2 | 69.2 | 23.0 | 1890.4 | 82.4 | 850,816.8 | −76,044.1 | 6.86 | |||||||
3 | 68.6 | 22.0 | 2066.1 | 83.9 | 557,472.4 | −62,635.9 | 1.37 | |||||||
4 | 68.6 | 21.0 | 2267.6 | 83.9 | 297,224.2 | −45,735.5 | 1.37 | |||||||
5 | 68.4 | 20.0 | 2500.0 | 84.4 | 97,816.6 | −26,390.9 | 0.46 | |||||||
6 | 68.0 | 19.0 | 2770.1 | 85.4 | 1821.0 | −3643.3 | 0.10 | |||||||
7 | 67.6 | 18.0 | 3086.4 | 86.4 | 74,891.6 | 23641.9 | 1.77 | |||||||
8 | 67.4 | 17.0 | 3460.2 | 86.9 | 419,193.0 | 56,266.1 | 3.40 | |||||||
9 | 67.2 | 16.0 | 3906.3 | 87.4 | 1,195,728.1 | 95,595.5 | 5.57 | bz | δbz | wz | δwz | |||
10 | 67.0 | 15.0 | 4444.4 | 87.9 | 2,662,405.7 | 143,498.5 | 8.32 | 0.0022 | 0.0002 | 78.8 | 0.6 | |||
<x> | <ψ> | Σ(xn-<x>)2 | Σψn. (xn-<x>) | Σ(ψn-<ψ>)2 | ΣRi2 | Mz(A/m) | δMz | αz˪ (m) | δαz˪ | |||||
2812.8 | 85.1 | 7316534.7 | 16302.5 | 38.8 | 2.46 | 0.1127 | 0.0004 | 0.0107 | 0.0005 | |||||
Table(b) | Measurements of Bxy from the parallel x- sensor on the fragment surface | | ||||||||||||
n | Bxy ±0.2 nT | Dn ±0.2 mm | xn | ψn | (xn-<x>)2 | ψn. (xn-<x>) | (ψn-<ψ>)2 | |||||||
1 | 71.3 | 24.0 | 1736.1 | 77.7 | 1,159,165.2 | −83,609.1 | 29.68 | |||||||
2 | 70.9 | 23.0 | 1890.4 | 78.5 | 850,816.8 | −72,441.1 | 20.88 | |||||||
3 | 70.1 | 22.0 | 2066.1 | 80.3 | 557,472.4 | −59,984.0 | 7.65 | |||||||
4 | 69.9 | 21.0 | 2267.6 | 80.8 | 297,224,2 | −44,050.2 | 5.32 | |||||||
5 | 69.4 | 20.0 | 2500.0 | 82.0 | 97,816.6 | −25,635.8 | 1.29 | |||||||
6 | 69.0 | 19.0 | 2770.1 | 82.9 | 1821.0 | −3538.5 | 0.03 | |||||||
7 | 68.3 | 18.0 | 3086.4 | 84.6 | 74891.6 | 23,159.8 | 2.32 | |||||||
8 | 67.7 | 17.0 | 3460.2 | 86.1 | 419,193.0 | 55,768.6 | 9.18 | |||||||
9 | 67.3 | 16.0 | 3906.3 | 87.2 | 1,195,728.1 | 95,311.6 | 16.46 | bxy | δbxy | wxy | δwxy | |||
10 | 65.9 | 15.0 | 4444.4 | 90.9 | 2,662,405.7 | 148,329.0 | 60.84 | 0.00455 | 0.00019 | 70.3 | 0.55 | |||
<x> | <ψ> | Σ(xn-<x>)2 | Σψn. (xn-<x>) | Σ(ψn-<ψ>)2 | ΣRi2 | Mxy(A/m) | δMxy | αxy\\.(m) | δαxy\\ | |||||
2812.8 | 77.7 | 7,316,534.7 | 33,310.3 | 153.7 | 2.02 | 0.1193 | 0.0005 | 0.0161 | 0.0003 | |||||
Table(c) | Computation of the quantities α˪, α//, γ, M, Mi, (i = xy,z) | |||||||||||||
Mz ± δMz (mA/m) | Mxy ± δMxy (mA/m) | M ± δM (mA/m) | γ° ± δγ° | α˪ ± δα˪ (cm) | α// ± δα// (cm) | λ ± δλ | ||||||||
112.7 ± 0.4 | 119.3 ± 0.5 | 164.1 ± 0.4 | 46.6 ± 0.2 | 1.07 ± 0.05 | 1.61 ± 0.03 | 2.0 ± 0.1 |
References
- Archaeomagnetic Applications for the Rescue of Cultural Heritage-AARCH, 2002–2006. Available online: http://dourbes.meteo.be/aarch.net/onlytxt/no.frame.html (accessed on 22 June 2019).
- Burnham, R.J.P.; Tarling, D.H. Magnetization of Shards as an Assistance to the Reconstruction of Pottery Vessels. Stud. Conserv. 1975, 20, 152–157. [Google Scholar]
- Castañeda, A.G.; Brown, B.; Rusinkiewicz, S.; Funkhouser, T.; Weyrich, T. Global consistency in the automatic assembly of fragmented artefacts. In Proceedings of the 12th International Symposium on Virtual Reality Archaeology and Cultural Heritage VAST, Prato, Italy, 18–21 October 2011; pp. 73–80. [Google Scholar]
- Karasik, A.; Smilansky, U. Computerized morphological classification of ceramics. J. Archaeol. Sci. 2011, 38, 2644–2657. [Google Scholar] [CrossRef]
- Cooper, D.B.; Willis, A.; Andrews, S.; Baker, J.; Cao, Y.; Han, D.; Kang, K.; Leymarie, F.F.; Orriols, X. Assembling virtual pots from 3D measurements of their fragments. In Proceedings of the Conference on Virtual Reality Archeology and Cultural Heritage, Athens, Greece, 28–30 November 2001; pp. 241–254. [Google Scholar]
- Willis, A.; Orriols, X.; Cooper, D.B. Accurately estimating sherd 3D surface geometry with application to pot reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, Madison, WI, USA, 16–22 June 2003; p. 5. [Google Scholar]
- Willis, A.R.; Cooper, D.B. Bayesian assembly of 3d axially symmetric shapes from fragments. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 27 June–2 July 2004. [Google Scholar]
- Maiza, C.; Gaildrat, V. Automatic Classification of Archaeological Potsherds. Available online: https://pdfs.semanticscholar.org/3c95/82c3e562b44e7d61dc0fd3487ea3dc977ff3.pdf?_ga=2.206671379.1607405463.1564404747-123545983.1564404747 (accessed on 29 August 2019).
- Belenguer, C.S.; Vidal, E.V. Archaeological Fragment Characterization and 3D Reconstruction based on Projective GPU Depth Maps. In Proceedings of the IEEE 18th International Conference on VSMM, Milan, Italy, 2–5 September 2012; pp. 275–282. [Google Scholar]
- Cohen, F.; Zhang, Z.; Jeppson, P. Virtual reconstruction of archaeological vessels using convex hulls of surface markings. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 13–18 June 2010; pp. 55–61. [Google Scholar]
- Melero, F.J.; Torres, J.C.; León, A. On the interactive 3D reconstruction of iberian vessels. In Proceedings of the 4th International conference on Virtual Reality Archaeology and Intelligent Cultural Heritage, Brighton, UK, 5–7 November 2003; pp. 71–78. [Google Scholar]
- Oxholm, G.; Nishino, K. A flexible approach to reassembling thin artifacts of unknown geometry. J. Cult. Herit. 2013, 14, 51–61. [Google Scholar] [CrossRef]
- Papaioannou, G.; Karabassi, E.A.; Theoharis, T. Automatic Reconstruction of Archaeological Finds-A Graphics Approach. In Proceedings of the 4th International Conference Computer Graphics and Artificial Intelligence, Limoges, France, 3–5 May 2000; pp. 117–125. [Google Scholar]
- Papaioannou, G.; Karabassi, E.A.; Theoharis, T. Reconstruction of three-dimensional objects through matching of their parts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 114–124. [Google Scholar] [CrossRef]
- Üçoluk, G.; Toroslu, I.H. Automatic reconstruction of broken 3-D surfaces objects. Comput. Graph. 1999, 23, 573–582. [Google Scholar] [CrossRef]
- Mara, H.; Kampel, M.; Sablatnig, R. Preprocessing of 3D-Data for Classification of Archaeological Fragments in an Automated System. In Proceedings of the 26th Workshop of the Austrian Association for Pattern Recognition, Vision with Non-Traditional Sensors, (ÖAGM/AAPR), Graz, Austria, 10–11 September 2002. [Google Scholar]
- Mara, H.; Sablatnig, R. Orientation of Fragments of Rotationally Symmetrical 3D-Shapes for Archaeological Documentation. In Proceedings of the IEEE Third International Symposium on 3D Data Processing, Chapel Hill, NC, USA, 14–16 June 2006; pp. 1064–1071. [Google Scholar]
- Leitao, H.C.; Stolfi, J. Measuring the information content of fracture lines. Int. J. Comput. Vis. 2005, 65, 163–174. [Google Scholar] [CrossRef]
- Hlaváčková-Schindler, K.; Kampel, M.; Sablatnig, R. Fitting of a closed planar curve representing a profile of an archaeological fragment. In Proceedings of the Conference on Virtual reality, archeology and cultural heritage, Glyfada, Greece, 28–30 November 2001; pp. 263–269. [Google Scholar]
- Kashihara, K. Three-dimensional Reconstruction of Artifacts Based on a Hybrid. Genetic Algorithm. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Seoul, Korea, 14–17 October 2012; pp. 900–905. [Google Scholar]
- Son, K.; Almeida, E.B.; Cooper, D.B. Axially Symmetric 3D Pots Configuration System Using Axis of Symmetry and Break Curve. In Proceedings of the IEEE 26th Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 257–264. [Google Scholar]
- Kampel, M.; Sablatnig, R. Profile-based Pottery Reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, Madison WI, USA, 16–22 June 2003. [Google Scholar]
- Kampel, M.; Sablatnig, R. On 3D mosaicing of rotationally symmetric ceramic fragments. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26–26 August 2004. [Google Scholar]
- Kampel, M.; Sablatnig, R. An Automated Pottery Archival and Reconstruction System. J. Vis. Comput. Animat. 2003, 14, 111–120. [Google Scholar] [CrossRef]
- Kampel, M.; Sablatnig, R.; Mara, H. Robust 3d Reconstruction of Archaeological Pottery Based on Concentric Circular Rills. In Proceedings of the 6th International Workshop on Image Analysis for Multimedia Interactive Services, Monterux, Switzerland, 13 April 2005; pp. 14–20. [Google Scholar]
- Zhou, M.; Geng, G.; Wu, Z.; Shui, W. A Virtual Restoration System for Broken Pottery. In Proceedings of the CAA Conference 37th Computer applications and quantitative methods in archaeology, Williamsburg, VA, USA, 22–26 March 2009; pp. 391–396. [Google Scholar]
- Smith, P.; Bespalov, D.; Shokoufandeh, A.; Jeppson, P. Classification of archaeological ceramic fragments using texture and color descriptors. In Proceedings of the IEEE, Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 22–26 March 2010; pp. 49–54. [Google Scholar]
- Huang, Q.X.; Flory, S.; Gelfand, N.; Hofer, M.; Pottmann, H. Reassembling fractured objects by geometric matching. ACM Transact. Graph. 2006, 25, 569–578. [Google Scholar] [CrossRef]
- Halíř, R. An Automatic Estimation of the Axis of Rotation of Fragments of Archaeological Pottery: A Multi-Step Model-Based Approach. In Proceedings of the 17th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media; 1999; pp. 1–7. [Google Scholar]
- Sablatnig, R.; Menard, C. 3D Reconstruction of archaeological pottery using profile primitives. In Proceedings of the International Workshop on Synthetic-Natural Hybrid Coding and Three-Dimensional Imaging, Rhodes, Greece, 5–9 September 1997; pp. 93–96. [Google Scholar]
- Andrews, S.; Laidlaw, D.H. Toward a Framework for Assembling Broken Pottery Vessels. In Proceedings of the 18th International Conference on Artificial Intelligence, Alberta, Canada, 27–30 July 2002; pp. 945–946. [Google Scholar]
- Cao, Y.; Mumford, D. Geometric structure estimation of axially symmetric pots from small fragments. In Proceedings of the International Conference on Signal Processing, Pattern Recognition and Applications, Creta, Greece, 25–28 June 2002; pp. 92–97. [Google Scholar]
- Lu, Y.; Gardner, H.; Jin, H.; Liu, N.; Hawkins, R.; Farrington, I. Interactive Reconstruction of Archaeological Fragments in a Collaborative Environment. In Proceedings of the IEEE 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, Glenelg, Australia, 3–5 December 2007; pp. 23–29. [Google Scholar]
- Collinson, D.W. (Ed.) Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instrumentation, London; Chapman and Hall: New York, NY, USA, 1983; pp. 208–223. [Google Scholar]
- Subir, K.B. Experimental Methods in Rock Magnetism and Paleomagmetism. In Advances in Geophysics; Saltzman, B., Ed.; Academic Press: New York, NY, USA, 1981; Volume 23, pp. 36–41. [Google Scholar]
- Molyneux, L. A complete result magnetometer for measuring the remanent magnetization of rocks. Geophys. J. Int. 1971, 24, 429–433. [Google Scholar] [CrossRef]
- Available online: http://bartington.jp/Literaturepdf/Datasheets/Mag-03%20DS0013.pdf (accessed on 22 April 2019).
- Armen, G.B. Phase Sensitive Detection: The lock-in Amplifier; Department of Physics and Astronomy, University of Tennesse Knoxville: Knoxville, TN, USA; Available online: http://server1.phys.utk.edu/labs/modphys/Lock-In%20Amplifier%20Experiment.pdf (accessed on 22 April 2019).
- Available online: https://www.thinksrs.com/downloads/pdfs/manuals/SR830m.pdf (accessed on 22 April 2019).
- Purcell, E. Electricity Magnetism, 2nd ed.; University publications of the National Technical University of Athens: Athens, Greece, 2004. [Google Scholar]
- Available online: https://www.math.ubc.ca/~anstee/math104/104newtonmethod.pdf (accessed on 22 April 2019).
- Tarling, D.H. Paleomagnetism, 1st ed.; Springer: Heidelberg, Germany, 1983; pp. 15–107. [Google Scholar]
- Chikazumi, S. Physics of Ferromagnetism, 2nd ed.; Oxford science publications: Oxford, UK, 2009; pp. 118–245. [Google Scholar]
- McElhinny, M.W.; McFadden, P.L. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, 3rd ed.; Academic Press: San Diego, CA, USA, 1998; pp. 69–113. [Google Scholar]
- Eighmy, J.L.; Sternberg, R.S. (Eds.) Archaeomagnetic Dating, 3rd ed.; Arizona Press University: Tucson, AZ, USA, 1990; pp. 5–236. [Google Scholar]
- Lanos, P.; Chauvin, A.; Kovacheva, M. Archaeomagnetism, methodology and applications: Implementation and practice of the archaeomagnetic method in France and Bulgaria. Eur. J. Archaeol. 1999, 2, 365–392. [Google Scholar] [CrossRef]
- Curie, P. Propriétés magnétiques des corps à diverses temperatures; Gauthier-Villars et fils: Paris, France, 1895; Available online: https://archive.org/details/propritsmagntiq00curigoog/page/n7 (accessed on 22 April 2019).
- Morrish, A.H. The Physical Principles of Magnetism, 3rd ed.; Institute of Electrical and Electronics Engineers, IEEE Press: New York, NY, USA, 2001; pp. 46–75. [Google Scholar]
- Ouahabi, M.; Daudi, L.; Hatert, F.; Fagel, N. Modified Mineral. Phases During Clay Ceramic Firing. Clays Clay Mineral. 2015, 63, 404–413. [Google Scholar] [CrossRef]
- Gliozzo, E.; Baldassarre, G.; Turchiano, M.; Memmi, I.T. From the kilns to the fair: Producing building materials at Faragola and Canusium (northern Apulia, Italy). Archaeol. Anthropol. Sci. 2016, 8, 705–729. [Google Scholar] [CrossRef]
- Gliozzo, E.; Iacoviello, F.; Foresi, L.M. Geosources for ceramic production: The clays from the Neogene–Quaternary Albegna Basin (southern Tuscany). Appl. Clay Sci. 2014, 91, 105–116. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; Institute of Electrical and Electronics Engineers, John Willey & sons Puplication: Hoboken, NJ, USA, 2008; pp. 87–111. [Google Scholar]
- Hunt, C.P.; Moskowitz, B.M.; Banerjee, S.K. Magnetic Properties of Rocks and Minerals. In Rock Physics & Phase Relations A Handbook of Physical Constants; Ahrens, T.J., Ed.; Washington, DC, USA, 1995; pp. 190–191. [Google Scholar]
- Dearing, J. Environmental Magnetic Susceptibility, 2nd ed.; Chi Publishing: Kenilworth, UK, 1994; pp. 40–41. Available online: https://gmw.com/magnetic_properties/pdf/Om0409%20J_Dearing_Handbook_iss7.pdf (accessed on 22 April 2019).
- Cornell, R.M.; Schwertmann, U. The Iron Oxides, 2nd ed.; WILEY-VCH, Verlag, GmbH & Co: Weinheim, Germany, 2003. [Google Scholar]
- Bohor, B.F. High-Temperature Phase Development in Illitic Clays. Clays Clay Mineral. 1963, 12, 233–246. [Google Scholar] [CrossRef]
- Galan, E.; Vivaldi, J.M.; Aguayo, F.L. Mineralogy and Genesis of the Wealdian Sediments in the Southern Cordillera Iberica (Spain). Clays Clay Mineral. 1975, 23, 323–330. [Google Scholar] [CrossRef]
- Freestone, I.; Middleton, A. Mineralogical applications of the analytical SEM in archaeology. Mineral. Mag. 1987, 51, 21–31. [Google Scholar] [CrossRef]
- Dondi, M.; Guarini, G.; Raimondo, M. Trends in the formation of crystalline and amorphous phases during the firing of claybricks. Tile Brick Int. 1999, 15, 176–183. [Google Scholar]
- Duminuco, P.; Messiga, B.; Riccardi, M.P. Firing process of natural clays. Some microtextures and related phase compositions. Thermochim. Acta 1998, 321, 185–190. [Google Scholar] [CrossRef]
- Cultrone, G.; Rodriguez-Navarro, C.; Sebastian, E.; Cazalla, O.; De la Torre, M.J. Carbonate and silicate phase reactions during ceramic firing. Eur. J. Mineral. 2001, 13, 621–634. [Google Scholar] [CrossRef] [Green Version]
- González-García, F.; Romero-Acosta, V.; García-Ramos, G.; GonzálezRodríguez, M. Firing transformations of mixtures of clays containing illite, kaolinite and calcium carbonate used by Ornamental Tile Industries. Appl. Clay Sci. 1990, 5, 361–375. [Google Scholar]
- Maggetti, M. Phase Analysis and its Significance for Technology and Origin. In Archaeological Ceramics; Olin, J.S., Franklin, A., Smithsonian, D., Eds.; Smithsonian Institution Press: Gaithersburg, MA, USA, 1982; pp. 121–133. [Google Scholar]
- Bauluz, B.; Mayayo, M.J.; Yuster, A.; Fernandez-Nieto, C.; Gonzalez, L. TEM study of mineral transformations in fired carbonated clays: Relevance to brickmaking. Clay Mineral. 2004, 39, 333–344. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, T.; Li, G.; Guo, Y.; Yang, Y. Thermodynamics of Reactions Among Al2O3, CaO,SiO2 and Fe2O3 during Roasting Processes. Available online: https://www.intechopen.com/books/thermodynamics-interaction-studies-solids-liquids-and-gases/thermodynamics-of-reactions-among-al2o3-cao-sio2-and-fe2o3-during-roasting-processes (accessed on 29 August 2019).
- Available online: http://earthref.org/MAGIC/books/Tauxe/Essentials/WebBook3ch6.html#x8-530006 (accessed on 22 April 2019).
- Christine, R. Archaeological Ceramics of the NW Peloponnese: Petrographic, Mineralogical, Geochemical and Archaeometric Approach; Department of Geology, University of Patras: Patra, Greece, 2005; Available online: www.geology.upatras.gr/images/pdf/pro/petrografia/Rathossi_CV.pdf (accessed on 23 April 2019).
- Maniatis, Y.; Simopoulos, A.; Kostikas, A. Effect of reducing atmosphere on minerals and iron oxides developed in fired clays: The role of Ca. J. Am. Ceram. Soc. 1983, 66, 773–781. [Google Scholar] [CrossRef]
- Stępkowska, E.T.; Jefferis, S.A. Influence of microstructure on firing colour of clays. Appl. Clay Sci. 1992, 6, 319–342. [Google Scholar] [CrossRef]
- Molera, J.; Pradell, T.; Vendrell-Saz, M. The colours of Ca-rich ceramic pastes: Origin and characterization. Appl. Clay Sci. 1998, 13, 187–202. [Google Scholar] [CrossRef]
- Shortland, A.J.; Freestone, I.C.; Rehren, T. (Eds.) The Emergence of Ceramic Technology and Its Evolution aw Revealed with the Use of Scientific Techniques; Advances in the study of Ancient Archaeology; Oxbow Books: Oxford, UK, 2009; Available online: https://www.researchgate.net/publication/228776265_The_Emergence_of_Ceramic_Technology_and_its_Evolution_as_Revealed_with_the_use_of_Scientific_Techniques (accessed on 29 July 2019).
- Atkinson, D.; King, J.A. Fine particle magnetic mineralogy of archaeological ceramics. J. Phys. Conf. Ser. 2005, 17, 145–149. [Google Scholar] [CrossRef] [Green Version]
Magnets | Fields (nT) at the Sensors | Fields (μΤ) Inside the Measurement Area | |||||
---|---|---|---|---|---|---|---|
Distances (mm) | z | y | x | z | y | x | |
Z | −61,830.98 | −22.2 | |||||
z = 44.91841 | 60,880.61 | ||||||
60,880.61 | |||||||
Y | 17,197.76 | −4.3 | −19.9 | ||||
y = 45.63295 | −112,658.65 | ||||||
35,669.95 | |||||||
X | 12,633.18 | −3.2 | −13.2 | ||||
x = 41.33643 | 24,378.01 | ||||||
−96,550.59 | |||||||
Earth’s field | 32,000 | 32.0 | 27.4 | ||||
27,400 | |||||||
Total fields | 0.0 | 0.0 | 0.0 | ||||
2.3 | 7.5 | −13.2 |
Vase | M(mA/m) | γ° | α˪(cm) | α//(cm) | λ |
---|---|---|---|---|---|
6 | 58.3 ± 0.2 | 43.3 ± 0.3 | 0,71 ± 0.03 | 1.07 ± 0.02 | 1.90 ± 0.01 |
4 | 84.1 ± 0.2 | 48.5 ± 0.3 | 0.67 ± 0.03 | 1.15 ± 0.02 | 1.97 ± 0.01 |
5 | 112.7 ± 0.3 | 61.3 ± 0.3 | 1.04 ± 0.03 | 1.41 ± 0.03 | 2.03 ± 0.01 |
1 | 131.3 ± 0.2 | 53.8 ± 0.1 | 0.82 ± 0.04 | 1.42 ± 0.02 | 2.0 ± 0.1 |
3 | 164.1 ± 0.4 | 46.6 ± 0.2 | 1.07 ± 0.05 | 1.61 ± 0.03 | 2.0 ± 0.1 |
2 | 169.3 ± 0.6 | 50.8 ± 0.2 | 1.15 ± 0.05 | 1.66 ± 0.05 | 2.0 ± 0.1 |
Table 3a. (Body fragments measurements) | |||||||||||
| |||||||||||
Vase 6 | A | B | Γ | Δ | E | Z | H | Θ | Ι | Κ | |
1 | My*(mA/m) | −10 ± 6 | 45 ± 4 | 35 ± 5 | 11 ± 7 | −16 ± 5 | −38 ± 3 | ||||
Mx*(mA/m) | −34 ± 2 | −8 ± 3 | 8 ± 3 | 38 ± 2 | 37 ± 2 | 2 ± 2 | |||||
Mz*(mA/m) | 37 ± 3 | 49 ± 4 | 39 ± 4 | 42 ± 3 | 43 ± 3 | 40 ± 3 | |||||
ω° | 197 ± 8 | 100 ± 10 | 77 ± 12 | 16 ± 9 | 336 ± 5 | 272 ± 2 | |||||
κ° | −40 ± 8 | −31 ± 3 | −29 ± 4 | −22 ± 9 | −33 ± 5 | −30 ± 3 | |||||
2 | My*(mA/m) | −10 ± 8 | 10 ± 6 | 33 ± 4 | 43 ± 5 | 42 ± 4 | −7 ± 9 | −22 ± 6 | −31 ± 6 | −34 ± 5 | −44 ± 4 |
Mx*(mA/m) | −41 ± 2 | −35 ± 2 | −28 ± 2 | −9 ± 2 | 9 ± 2 | 40 ± 2 | 38 ± 2 | 24 ± 2 | 10 ± 2 | −2 ± 2 | |
Mz*(mA/m) | 45 ± 2 | 39 ± 2 | 46 ± 2 | 46 ± 3 | 46 ± 3 | 43 ± 2 | 47 ± 3 | 42 ± 3 | 37 ± 3 | 46 ± 2 | |
ω° | 194 ± 7 | 163 ± 8 | 131 ± 4 | 101 ± 3 | 78 ± 3 | 350 ± 10 | 331 ± 3 | 308 ± 3 | 286 ± 3 | 268 ± 2 | |
κ° | −16 ± 8 | −19 ± 8 | −12 ± 3 | −14 ± 3 | −6 ± 2 | −18 ± 11 | −18 ± 5 | −11 ± 5 | −16 ± 5 | −6 ± 2 | |
3 | My*(mA/m) | 3 ± 18 | 15 ± 6 | 26 ± 5 | 40 ± 5 | 41 ± 5 | −6 ± 11 | −12 ± 6 | −26 ± 4 | −43 ± 4 | −41 ± 3 |
Mx*(mA/m) | −43 ± 2 | −32 ± 2 | −21 ± 2 | −5 ± 2 | 3 ± 2 | 41 ± 2 | 40 ± 2 | 25 ± 2 | 9 ± 2 | −9 ± 2 | |
Mz*(mA/m) | 46 ± 2 | 37 ± 3 | 35 ± 3 | 43 ± 3 | 43 ± 3 | 45 ± 2 | 44 ± 2 | 38 ± 2 | 46 ± 2 | 44 ± 2 | |
ω° | 176 ± 2 | 155 ± 5 | 129 ± 3 | 97 ± 2 | 85 ± 2 | 352 ± 12 | 344 ± 7 | 313 ± 5 | 281 ± 3 | 258 ± 4 | |
κ° | 24 ± 23 | 13 ± 7 | 19 ± 5 | 17 ± 4 | 21 ± 4 | 9 ± 13 | 14 ± 7 | 16 ± 4 | 14 ± 2 | 18 ± 2 | |
4 | My*(mA/m) | 9 ± 7 | 12 ± 6 | 32 ± 5 | 42 ± 5 | 41 ± 5 | −10 ± 9 | −14 ± 7 | −24 ± 5 | −43 ± 3 | −40 ± 3 |
Mx*(mA/m) | −40 ± 2 | −41 ± 2 | −18 ± 2 | −2 ± 2 | 8 ± 2 | 37 ± 2 | 35 ± 2 | 33 ± 2 | 2 ± 2 | −4 ± 2 | |
Mz*(mA/m) | 44 ± 3 | 46 ± 3 | 38 ± 4 | 45 ± 4 | 44 ± 4 | 41 ± 3 | 40 ± 3 | 43 ± 3 | 45 ± 3 | 43 ± 3 | |
ω° | 168 ± 9 | 164 ± 6 | 119 ± 3 | 92 ± 2 | 79 ± 2 | 345 ± 11 | 338 ± 10 | 324 ± 8 | 273 ± 20 | 265 ± 14 | |
κ° | 42 ± 9 | 34 ± 6 | 32 ± 5 | 31 ± 4 | 40 ± 4 | 19 ± 11 | 37 ± 9 | 32 ± 5 | 41 ± 2 | 38 ± 2 | |
5 | My*(mA/m) | −11 ± 9 | 15 ± 6 | 30 ± 3 | 42 ± 4 | 36 ± 4 | 6 ± 13 | −19 ± 6 | −37 ± 5 | ||
Mx*(mA/m) | −38 ± 2 | −31 ± 2 | −18 ± 2 | −13 ± 2 | 11 ± 2 | 39 ± 2 | 32 ± 2 | 7 ± 2 | |||
Mz*(mA/m) | 42 ± 3 | 36 ± 4 | 37 ± 3 | 46 ± 4 | 40 ± 5 | 42 ± 3 | 40 ± 4 | 40 ± 5 | |||
ω° | 197 ± 13 | 154 ± 8 | 120 ± 3 | 107 ± 2 | 73 ± 3 | 9 ± 20 | 330 ± 11 | 280 ± 58 | |||
κ° | 41 ± 11 | 57 ± 8 | 59 ± 4 | 48 ± 4 | 52 ± 5 | 59 ± 18 | 41 ± 8 | 49 ± 6 | |||
Table 3b (Vase fragments measurements) | |||||||||||
Mz(mA/m) | 42,5±0,2 | ||||||||||
Mxy(mA/m) | 39,8±0,2 | ||||||||||
M(mA/m) | 58,3±0,2 | ||||||||||
γο | 43,3±0,3 |
| |||||||||
Vase 1 | M(Body) | ||||||||
A | B | Γ | Δ | E | Z | H | Θ | Ι | |
1 | 120 ± 4 | 138 ± 6 | 130 ± 7 | 135 ± 7 | 129 ± 7 | 133 ± 5 | 141 ± 5 | 128 ± 3 | |
2 | 135 ± 3 | 126 ± 5 | 136 ± 6 | 132 ± 6 | 133 ± 5 | 132 ± 5 | 132 ± 3 | 127 ± 3 | |
3 | 138 ± 3 | 139 ± 5 | 139 ± 5 | 138 ± 6 | 127 ± 5 | 137 ± 4 | 128 ± 3 | 124 ± 2 | |
4 | 130 ± 3 | 125 ± 4 | 130 ± 4 | 131 ± 5 | 135 ± 5 | 121 ± 4 | 130 ± 3 | 131 ± 3 | 123 ± 3 |
5 | 119 ± 3 | 137 ± 3 | 140 ± 5 | 132 ± 5 | 138 ± 4 | 128 ± 3 | 129 ± 3 | 138 ± 3 | 131 ± 2 |
6 | 125 ± 3 | 128 ± 3 | 131 ± 4 | 131 ± 4 | 129 ± 4 | 123 ± 3 | |||
7 | 138 ± 3 | 132 ± 3 | 121 ± 4 | 121 ± 4 | 124 ± 4 | 130 ± 3 | |||
8 | 133 ± 3 | 141 ± 3 | 123 ± 3 | 132 ± 4 | 135 ± 3 | 134 ± 3 | |||
9 | 125 ± 3 | 131 ± 3 | 131 ± 4 | 133 ± 3 | 133 ± 4 | ||||
M(Base) | 131.3 ± 0.2(mA/m) |
| ||||||||||||||||||
M(Body) | A | B | Γ | Δ | E | Z | H | Θ | Ι | K | Λ | M | Ν | Ξ | O | Π | P | Σ |
1 | 182 ± 12 | 153 ± 12 | 179 ± 14 | 169 ± 3 | 171 ± 3 | 168 ± 4 | ||||||||||||
2 | 185 ± 10 | 167 ± 5 | 172 ± 2 | 163 ± 4 | 173 ± 3 | 178 ± 4 | 168 ± 5 | 170 ± 6 | ||||||||||
3 | 181 ± 7 | 184 ± 7 | 181 ± 8 | 167 ± 3 | 167 ± 3 | 174 ± 4 | 164 ± 3 | 159 ± 4 | 170 ± 6 | 170 ± 6 | 163 ± 5 | |||||||
4 | 185 ± 5 | 169 ± 4 | 164 ± 4 | 173 ± 4 | 162 ± 3 | 170 ± 3 | 169 ± 4 | 174 ± 4 | 166 ± 4 | 174 ± 6 | 173 ± 5 | 170 ± 5 | ||||||
5 | 186 ± 4 | 175 ± 5 | 168 ± 4 | 163 ± 3 | 164 ± 3 | 161 ± 2 | 168 ± 2 | 169 ± 3 | 169 ± 4 | 173 ± 5 | 178 ± 7 | 174 ± 7 | 167 ± 6 | |||||
6 | 179 ± 3 | 171 ± 2 | 174 ± 3 | 172 ± 4 | 158 ± 4 | 164 ± 4 | 169 ± 3 | 169 ± 3 | 168 ± 3 | 168 ± 2 | 164 ± 3 | 171 ± 4 | 174 ± 5 | 170 ± 7 | 173 ± 7 | 182 ± 7 | ||
7 | 156 ± 6 | 175 ± 3 | 170 ± 2 | 162 ± 3 | 169 ± 3 | 168 ± 4 | 161 ± 4 | 167 ± 4 | 170 ± 3 | 168 ± 3 | 173 ± 3 | 164 ± 3 | 176 ± 4 | 173 ± 5 | 177 ± 6 | 185 ± 8 | 170 ± 7 | 178 ± 8 |
8 | 175 ± 7 | 163 ± 4 | 167 ± 2 | 164 ± 3 | 170 ± 4 | 176 ± 4 | 183 ± 5 | 180 ± 4 | 161 ± 3 | 165 ± 3 | 159 ± 2 | 165 ± 2 | 162 ± 3 | 171 ± 5 | 167 ± 6 | 179 ± 9 | ||
9 | 175 ± 7 | 163 ± 4 | 167 ± 2 | 164 ± 3 | 170 ± 4 | 176 ± 4 | 183 ± 5 | 180 ± 4 | 161 ± 3 | 159 ± 3 | 169 ± 2 | 171 ± 3 | 166 ± 3 | 173 ± 7 | 178 ± 10 | |||
M(Base) | 169.3 ± 0.6 (mA/m) |
| |||||||||||
M(Base) | M(Body) | A | B | Γ | Δ | E | Z | H | Θ | Ι | Κ |
164.1 ± 0.4 (mA/m) | 1 | 167 ± 8 | 178 ± 8 | 163 ± 4 | 159 ± 3 | 165 ± 4 | 175 ± 3 | 173 ± 3 | 194 ± 6 | ||
2 | 166 ± 5 | 154 ± 4 | 153 ± 3 | 177 ± 3 | 169 ± 3 | 169 ± 5 | |||||
3 | 160 ± 3 | 158 ± 3 | 161 ± 4 | 171 ± 6 | 176 ± 6 | 160 ± 4 | 164 ± 3 | 157 ± 3 | 173 ± 3 | ||
4 | 168 ± 3 | 161 ± 3 | 162 ± 3 | 162 ± 5 | 161 ± 5 | 181 ± 7 | 162 ± 5 | 166 ± 5 | 167 ± 4 | 155 ± 3 | |
5 | 156 ± 4 | 175 ± 3 | 159 ± 2 | 154 ± 4 | 172 ± 6 | 160 ± 7 | 164 ± 5 | 155 ± 2 | 173 ± 3 | 167 ± 3 |
| ||||||||||
M(Base) | M(Body) | A | B | Γ | Δ | E | Z | H | Θ | Ι |
84.1 ± 0.2 (mA/m) | 1 | 81 ± 3 | 78 ± 3 | 93 ± 3 | 89 ± 2 | |||||
2 | 97 ± 3 | 86 ± 3 | 85 ± 3 | 92 ± 3 | 72 ± 3 | 76 ± 3 | 76 ± 3 | 77 ± 2 | ||
3 | 82 ± 3 | 78 ± 3 | 78 ± 4 | 77 ± 3 | 84 ± 3 | 85 ± 3 | 88 ± 3 | 89 ± 3 | 76 ± 2 | |
4 | 87 ± 4 | 76 ± 4 | 90 ± 4 | 80 ± 4 | 78 ± 4 | 78 ± 3 | 82 ± 3 | |||
5 | 84 ± 4 | 85 ± 4 | 82 ± 4 | 77 ± 4 | 85 ± 4 | 85 ± 3 | 89 ± 3 |
| ||||||||
M(Body) | A | B | Γ | Δ | E | Z | H | Θ |
1 | 110 ± 3 | 114 ± 5 | 110 ± 3 | 115 ± 4 | 111 ± 3 | 111 ± 3 | 113 ± 3 | 116 ± 3 |
2 | 114 ± 3 | 114 ± 3 | 111 ± 3 | 113 ± 3 | 112 ± 3 | 110 ± 3 | 112 ± 3 | 110 ± 3 |
3 | 108 ± 3 | 111 ± 3 | 112 ± 3 | 112 ± 3 | 113 ± 3 | 112 ± 3 | 111 ± 2 | |
4 | 113 ± 4 | 112 ± 3 | 111 ± 3 | 113 ± 3 | 111 ± 3 | 115 ± 3 | 118 ± 3 | |
5 | 116 ± 4 | 116 ± 3 | 113 ± 3 | 114 ± 3 | 110 ± 3 | 113 ± 3 | ||
6 | 114 ± 4 | 116 ± 3 | 110 ± 3 | 115 ± 3 | 111 ± 3 | |||
7 | 113 ± 4 | 117 ± 4 | 114 ± 3 | 108 ± 4 | 111 ± 5 | |||
8 | 119 ± 4 | 113 ± 3 | 112 ± 3 | 113 ± 4 | 117 ± 4 | |||
9 | 111 ± 3 | 114 ± 3 | 113 ± 3 | 116 ± 3 | 116 ± 4 | |||
10 | 119 ± 3 | 116 ± 3 | 115 ± 3 | |||||
M(Base) | 112.7 ± 0.3 (mA/m) |
| |||||||||||
M(Base) | M(Body) | A | B | Γ | Δ | E | Z | H | Θ | Ι | Κ |
58.3 ± 0.2 (mA/m) | 1 | 51 ± 2 | 67 ± 4 | 53 ± 4 | 58 ± 3 | 58 ± 2 | 56 ± 3 | ||||
2 | 62 ± 2 | 53 ± 2 | 64 ± 3 | 63 ± 4 | 63 ± 3 | 59 ± 2 | 64 ± 3 | 57 ± 4 | 51 ± 4 | 64 ± 3 | |
3 | 63 ± 2 | 51 ± 3 | 48 ± 4 | 59 ± 4 | 60 ± 4 | 61 ± 2 | 61 ± 2 | 52 ± 3 | 63 ± 3 | 61 ± 3 | |
4 | 60 ± 3 | 63 ± 2 | 53 ± 4 | 62 ± 4 | 61 ± 4 | 56 ± 3 | 55 ± 3 | 59 ± 3 | 62 ± 3 | 59 ± 3 | |
5 | 57 ± 3 | 50 ± 4 | 51 ± 3 | 64 ± 4 | 55 ± 4 | 58 ± 3 | 54 ± 4 | 55 ± 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoukakis, M.; Pantinakis, A.; Vafidis, A.; Markopoulos, T. Selection of Co-Belonging Ceramic Fragments from Archaeological Excavations and Their Location in Vase Bodies from Thermoremanent Magnetization. Appl. Sci. 2019, 9, 3310. https://doi.org/10.3390/app9163310
Ntoukakis M, Pantinakis A, Vafidis A, Markopoulos T. Selection of Co-Belonging Ceramic Fragments from Archaeological Excavations and Their Location in Vase Bodies from Thermoremanent Magnetization. Applied Sciences. 2019; 9(16):3310. https://doi.org/10.3390/app9163310
Chicago/Turabian StyleNtoukakis, Markos, Apostolos Pantinakis, Antonios Vafidis, and Theodoros Markopoulos. 2019. "Selection of Co-Belonging Ceramic Fragments from Archaeological Excavations and Their Location in Vase Bodies from Thermoremanent Magnetization" Applied Sciences 9, no. 16: 3310. https://doi.org/10.3390/app9163310
APA StyleNtoukakis, M., Pantinakis, A., Vafidis, A., & Markopoulos, T. (2019). Selection of Co-Belonging Ceramic Fragments from Archaeological Excavations and Their Location in Vase Bodies from Thermoremanent Magnetization. Applied Sciences, 9(16), 3310. https://doi.org/10.3390/app9163310