Flame Retardancy of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Resin Composites
Abstract
:Featured Application
Abstract
1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of the Samples
2.2.1. Preparation of CF/EP Composites
2.2.2. Preparation of CNTs/CF/EP Composites
2.3. Characterization
3. Results and Discussion
3.1. Cone Calorimetric Analysis
3.1.1. Heat Release Rate (HRR)
3.1.2. Time to Ignition (TTI)
3.1.3. Rate of Smoke Production (SPR)
3.2. SEM Morphology and Microstructure Analysis of Combustion Products
3.3. Thermal Stability Analysis
3.3.1. Thermogravimetric Analysis
3.3.2. Pyrolysis Kinetics Analysis
3.4. Mechanical Properties Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Carolan, D.; Ivankovic, A.; Kinloch, A.J. Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J. Mater. Sci. 2017, 52, 1767. [Google Scholar] [CrossRef]
- Guo, J.; Lu, C.; An, F. Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J. Mater. Sci. 2012, 47, 2831. [Google Scholar] [CrossRef]
- Tan, Y.; Shao, Z.-B.; Yu, L.-X.; Xu, Y.-J.; Rao, W.-H.; Chen, L.; Wang, Y.-Z. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: Thermal stability, flame retardance and smoke suppression. Polym. Degrad. Stab. 2016, 131, 62–70. [Google Scholar] [CrossRef]
- Lin, J.S. Effect of polypyrrole deposition of carbon fiber on the thermal expansion of carbon fiber-epoxy composites. J. Polym. Res. 1999, 6, 237. [Google Scholar] [CrossRef]
- Li, M.; Wang, S.-K.; Gu, Y.-Z.; Zhang, Z.-G. Study on progressive reinforcement of carbon nanotubes and their composites. Acta Aerosp. Sin 2014, 10, 2699–2721. [Google Scholar]
- Kostopoulos, V.; Baltopoulos, A.; Karapappas, P.; Vavouliotis, A.; Paipetis, A. Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 2010, 70, 553–563. [Google Scholar] [CrossRef]
- Naveed, A.; Shafi, S.; Khan, U.; Kim, J.-K. Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes. Compos. Struct. 2013, 104, 230–238. [Google Scholar]
- Díez-Pascual, A.M.; Naffakh, M.; Marco, C.; Gómez-Fatou, M.A.; Ellis, G.J. Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review. Curr. Opin. Solid State Mater. Sci. 2014, 18, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.-B. Preparation and Properties of Carbon Nanotubes Modified Carbon Fiber/Epoxy Composites; Tianjin University: Tianjin, China, 2014. [Google Scholar]
- Bai, J.; Su, Z.; Zha, J.; Dichiara, A.; Li, W. On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating cnt-AL2O3 hybrids. Compos. Sci. Technol. 2014, 103, 36–43. [Google Scholar]
- Saba, J.; Magga, Y.; He, D.; Miomandre, F.; Bai, J. Continuous electro deposition of polypyrrole on carbon nanotube–carbon fiber hybrids as a protective treatment against nanotube dispersion. Carbon 2013, 51, 20–26. [Google Scholar] [CrossRef]
- Bekyarova, E.; Thostenson, E.T.; Yu, A.; Kim, H.; Gao, J.; Tang, J.; Hahn, H.T.; Chou, T.-W.; Itkis, M.E.; Haddon, R.C. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir ACS J. Surf. Colloids 2007, 23, 3970. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-H.; Chen, L.; Liu, B.-W.; Long, J.-W.; Xu, Y.-J.; Wang, Y.-Z. Carbon fibers decorated by Polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chin. J. Polym. Sci. 2018, 36, 1375–1384. [Google Scholar] [CrossRef]
- Zhuo, D.; Wang, R.; Wu, L.; Guo, Y.; Ma, L.; Weng, Z.; Qi, J. Flame retardancy effects of graphene nanoplatelet/carbon nanotube hybrid membranes on carbon fiber reinforced epoxy composites. J. Nanomater. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Shakeel Ahmad, M.; Farooq, U.; Subhani, T. Effect of multiwall carbon nanotubes on the ablative properties of carbon fiber-reinforced epoxy matrix composites. Arab. J. Sci. Eng. 2015, 40, 1529–1538. [Google Scholar] [CrossRef]
- Hesami, M.; Bagheri, R.; Masoomi, M. Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym. J. 2014, 23, 469–476. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, W.; Zhang, C.; Liang, Z.; Wang, B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 2010, 48, 1799–1806. [Google Scholar] [CrossRef]
- Biswas, B.; Kandola, B.K. The effect of chemically reactive type flame retardant additives on flammability of PES toughened epoxy resin and carbon fibre-reinforced composites. Polym. Adv. Technol. 2011, 22, 1192–1204. [Google Scholar] [CrossRef]
- Singh, A.K.; Parhi, A.; Panda, B.P.; Mohanty, S.; Nayak, S.K.; Gupta, M.K. Aligned multi-walled carbon nanotubes (MWCNT) and vapor grown carbon fibers (VGCF) reinforced epoxy adhesive for thermal conductivity applications. J. Mater. Sci. Mater. Electron. 2017, 28, 17655–17674. [Google Scholar] [CrossRef]
- Tariq, F.; Shifa, M.; Baloch, R.A. Mechanical thermal properties of multi-scale carbon nanotubes-carbon fiber-epoxy composites. Arab. J. Sci. Eng. 2018, 43, 5937–5948. [Google Scholar] [CrossRef]
- Xiaohui, S. Study on the properties of surface flame retardant modified carbon fiber/epoxy resin composites. Chinese chemical society 2017 national polymer academic papers conference summary-theme N: Flame retardant molecular materials. Chin. Chem. Soc. Polym. Sci. Comm. Chin. Chem. Soc. 2017, 1. [Google Scholar]
- ISO 5660-1:2015. Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement); International Organization for Standardization: Geneva, Switzerland, 2015.
- GB/T 2567-2008 Test Methods for Properties of Resin Casting Body. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT2567-2008 (accessed on 9 April 2009).
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Chai, G.-Q.; Wang, Z.; Zhang, X. Study of the flame retardant properties of short carbon fiber–reinforced epoxy composites. High Perform. Polym. 2018, 30, 1027–1035. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, X.; Yu, B.; Feng, X.; Mu, X.; Richard, K.; Yuen, K.; Hu, Y. Flame-retardant-wrapped polyphosphazene nanotubes: A novel strategyfor enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J. Hazard. Mater. 2016, 325, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Juan, D. Study on preparation and combustion properties of intumescent flame retardant epoxy resin composites. Qingdao Univ. Sci. Technol. 2014, 201, 7835–7841. [Google Scholar]
- Jia, P.; Liu, H.; Liu, Q.; Cai, X. Thermal degradation mechanism and flame retardancy of MQ silicone/epoxy resin composites. Polym. Degrad. Stab. 2016, 134, 144–150. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, J.; Wang, X. Flame Retardant and Pyrolysis Kinetics of Phosphonitrile-containing Epoxy Resin. Polym. Mater. Sci. Eng. 2016, 32, 54–58. [Google Scholar]
- Branca, C.; Di Blasi, C.; Galgano, A.; Milella, E. Thermal and kinetic characterization of a toughened epoxy resin reinforced with carbon fibers. Thermochim. Acta 2011, 34, 53–62. [Google Scholar] [CrossRef]
- Dong, L.X.; Dai, G.Z.; Zhou, X.F.; Liu, L.L.; Ni, Q.Q. Stress distribution of the composites reinforced by slub-like short fibers. Key Eng. Mater. 2007, 84, 389–391. [Google Scholar] [CrossRef]
- Zheng, G.D.; Zhang, Q.J.; Deng, H.Y. Effect of different functionalized carbon nanotubes on mechanical properties of MWCNTs-carbon fiber/epoxy composites. Acta Mater. Compos. Sin. 2015, 32, 640–648. [Google Scholar]
Name | EP | F5 | F7 | F10 | F15 | F5N5 | F7N7 | F5N10 | F10N5 | |
---|---|---|---|---|---|---|---|---|---|---|
Content/wt % | ||||||||||
EP | 100 | 99.5 | 99.3 | 99 | 98.5 | 99 | 98.6 | 98.5 | 98.5 | |
CF | 0 | 0.5 | 0.7 | 1 | 1.5 | 0.5 | 0.7 | 0.5 | 1 | |
CNTs | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.7 | 1 | 0.5 |
Samples | a TTI (s) | b pHRR (kW·m−2) | c THR (MJ·m−2) | d TSP (m2) | e mCOY (kg·kg−1) |
---|---|---|---|---|---|
EP | 52 | 971.7 | 98.8 | 30.1 | 0.073 |
F5 | 69 | 792.7 | 92.5 | 27.3 | 0.069 |
F7 | 80 | 722.6 | 88.2 | 27.4 | 0.076 |
F10 | 62 | 840.2 | 88.9 | 22.2 | 0.068 |
F15 | 98 | 793.3 | 101.7 | 30.0 | 0.075 |
F5N5 | 73 | 648.1 | 75.0 | 16.8 | 0.074 |
F5N10 | 92 | 937.0 | 122.0 | 27.8 | 0.064 |
F7N7 | 76 | 635.0 | 80.3 | 21.3 | 0.071 |
F10N5 | 80 | 701.7 | 99.3 | 23.4 | 0.067 |
Samples | a T5%(°C) | b Tmax(°C) | c T95%(°C) | Samples | T5%(°C) | Tmax(°C) | T95%(°C) |
---|---|---|---|---|---|---|---|
EP | 256 | 290 | 562 | F5N5 | 251 | 289 | 564 |
F5 | 257 | 294 | 568 | F5N10 | 252 | 292 | 562 |
F7 | 241 | 299 | 562 | F7N7 | 256 | 291 | 565 |
F10 | 240 | 289 | 581 | F10N5 | 246 | 290 | 579 |
F15 | 253 | 289 | 600 | — | — | — | — |
E/kJ·mol−1 | 1st Stage | 2nd Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
EP | F5N5 | F5N10 | F7N7 | F10N5 | EP | F5N5 | F5N10 | F7N7 | F10N5 | |
n = 0 | 94.8 | 88.1 | 88.6 | 97.3 | 66.7 | 1.5 | 2.3 | 1.8 | 1.9 | 1.8 |
n = 1 | 101.0 | 91.9 | 94.5 | 103.7 | 71.1 | 8.1 | 9.4 | 8.6 | 8.8 | 8.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, G.-q.; Zhu, G.-q.; Gao, Y.; Zhou, J.; Gao, S. Flame Retardancy of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Resin Composites. Appl. Sci. 2019, 9, 3275. https://doi.org/10.3390/app9163275
Chai G-q, Zhu G-q, Gao Y, Zhou J, Gao S. Flame Retardancy of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Resin Composites. Applied Sciences. 2019; 9(16):3275. https://doi.org/10.3390/app9163275
Chicago/Turabian StyleChai, Guo-qiang, Guo-qing Zhu, Yunji Gao, Jinju Zhou, and Shuai Gao. 2019. "Flame Retardancy of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Resin Composites" Applied Sciences 9, no. 16: 3275. https://doi.org/10.3390/app9163275
APA StyleChai, G.-q., Zhu, G.-q., Gao, Y., Zhou, J., & Gao, S. (2019). Flame Retardancy of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Resin Composites. Applied Sciences, 9(16), 3275. https://doi.org/10.3390/app9163275