Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pengwang, E.; Rabenorosoa, K.; Rakotondrabe, M.; Andreff, N. Scanning micromirror platform based on MEMS technology for medical application. Micromachines 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Bouchaala, A.M.; Younis, M.I. A Model of Electrostatically Actuated MEMS and Carbon Nanotubes Resonators for Biological Mass Detection. In Design and Modeling of Mechanical Systems-II; Springer: Cham, Switzerland, 2015; pp. 501–512. [Google Scholar]
- Jia, Y.; Li, S.; Qin, Y.; Cheng, R. Error analysis and compensation of MEMS rotation modulation inertial navigation system. IEEE Sens. J. 2018, 18, 2023–2030. [Google Scholar] [CrossRef]
- Ge, C.; Cretu, E. A sacrificial-layer-free fabrication technology for MEMS transducer on flexible substrate. Sens. Actuators A Phys. 2019, 286, 202–210. [Google Scholar] [CrossRef]
- Zhao, C.; Knisely, K.E.; Grosh, K. Design and fabrication of a piezoelectric MEMS xylophone transducer with a flexible electrical connection. Sens. Actuators A Phys. 2018, 275, 29–36. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Liu, B.; Zhang, M.; Pang, W. Highly flexible piezoelectric MEMS resonators encapsulated in polymer thin films. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 170–173. [Google Scholar]
- Sim, G.D.; Krogstad, J.A.; Reddy, K.M.; Xie, K.Y.; Valentino, G.M.; Weihs, T.P.; Hemker, K.J. Nanotwinned metal MEMS films with unprecedented strength and stability. Sci. Adv. 2017, 3, e1700685. [Google Scholar] [CrossRef] [PubMed]
- Gongyang, Y.; Qu, C.; Zhang, S.; Ma, M.; Zheng, Q. Eliminating delamination of graphite sliding on diamond-like carbon. Carbon 2018, 132, 444–450. [Google Scholar] [CrossRef]
- Deng, H.; Ma, M.; Song, Y.; He, Q.; Zheng, Q. Structural superlubricity in graphite flakes assembled under ambient conditions. Nanoscale 2018, 10, 14314–14320. [Google Scholar] [CrossRef]
- Hod, O.; Meyer, E.; Zheng, Q.; Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 2018, 563, 485–492. [Google Scholar] [CrossRef]
- Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427–4435. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, Z. Fast MEMS releasing with polymer and nano-graphite particle additive. In Proceedings of the 2016 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 13–14 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3. [Google Scholar]
- Wang, C.; Zaouk, R.; Malladi, K.; Taherabadi, L.; Madou, M. C-MEMS/NEMS: A Novel Technology for Nanoscale Material Formation from Graphite Fiber to Ni and Si Nanowires. In Proceedings of the ASME 2004 3rd Integrated Nanosystems Conference, Pasadena, CA, USA, 22–24 September 2004; American Society of Mechanical Engineers: New York, NY, USA, 2004; pp. 133–134. [Google Scholar]
- Kim, J.; Song, X.; Kinoshita, K.; Madou, M.; White, R. Electrochemical studies of carbon films from pyrolyzed photoresist. J. Electrochem. Soc. 1998, 145, 2314–2319. [Google Scholar] [CrossRef]
- Ranganathan, S.; Mccreery, R.; Majji, S.M.; Madou, M. Photoresist-derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 2000, 147, 277–282. [Google Scholar] [CrossRef]
- Fishlock, S.J.; O’Shea, S.J.; McBride, J.W.; Chong, H.M.; Pu, S.H. Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling. J. Micromech. Microeng. 2017, 27, 095015. [Google Scholar] [CrossRef]
- Rana, S.; Reynolds, J.D.; Ling, T.Y.; Shamsudin, M.S.; Pu, S.H.; Chong, H.M.; Pamunuwa, D. Nano-crystalline graphite for reliability improvement in MEM relay contacts. Carbon 2018, 133, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, J.; Grey, F.; Liu, J.Z.; Liu, Y.; Wang, Y.; Yang, Y.; Cheng, Y.; Zheng, Q. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 2012, 108, 205503. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.; Guo, T.; Sun, Y.; Liu, W.; Peng, L.; Xu, Z.; Gao, C.; He, S. Shape-controlled tens-nanometers-thick graphite and worm-like graphite through lithographic exfoliation. Carbon 2018, 135, 248–252. [Google Scholar] [CrossRef]
- Divan, R.; Mancini, D.; Gallagher, S.; Booske, J.; Van Der Weide, D. Improvements in graphite-based X-ray mask fabrication for ultradeep X-ray lithography. Microsyst. Technol. 2004, 10, 728–734. [Google Scholar] [CrossRef]
- Sone, J.; Murakami, M.; Tatami, A. Fundamental Study for a Graphite-Based Microelectromechanical System. Micromach. 2018, 9, 64. [Google Scholar] [CrossRef]
- Sone, J. Feasible Development of a Carbon-Based MEMS Using a MEMS Fabrication Process. J. Chem. Chem. Eng. 2014, 8, 1082–1088. [Google Scholar]
- Sone, J.; Shigeta, N.; Yamada, K.; Uchida, T.; Yoshida, S.; Hayasaka, T.; Tanaka, S. Annealing Transformation of Diamond-Like Carbon Using Ni Catalyst. Jpn. J. Appl. Phys. 2013, 52, 128005. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, D.; Zhu, H.; Zhang, X.; Yang, X.; Shi, Y.; Zheng, T. Micro-fabrication method of graphite mesa microdevices based on optical lithography technology. J. Micromech. Microeng. 2017, 27, 125022. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Cunha, J.M.V.; Suresh, S.; De Wild, J.; Lopes, T.S.; Barbosa, J.R.S.; Silva, R.; Borme, J.; Fernandes, P.A.; Vermang, B.; et al. Optical Lithography Patterning of SiO2 Layers for Interface Passivation of Thin Film Solar Cells. Sol. RRL 2018, 2, 1800212. [Google Scholar] [CrossRef]
- Minaev, N.V.; A Tarkhov, M.; Dudova, D.S.; Timashev, P.S.; Chichkov, B.N.; Bagratashvili, V.N. Fabrication of superconducting nanowire single-photon detectors by nonlinear femtosecond optical lithography. Laser Phys. Lett. 2018, 15, 026002. [Google Scholar] [CrossRef]
- Nguyen, D.T.T.; Del Guercio, O.; Au, T.H.; Trinh, D.T.; Mai, N.P.T.; Lai, N.D. Optical lithography of three-dimensional magnetophotonic microdevices. Opt. Eng. 2018, 57, 041406. [Google Scholar] [CrossRef]
- Dowling, K.M.; Ransom, E.H.; Senesky, D.G. Profile evolution of high aspect ratio silicon carbide trenches by inductive coupled plasma etching. J. Microelectromech. Syst. 2017, 26, 135–142. [Google Scholar] [CrossRef]
- Lutker-Lee, K.M.; Lu, Y.T.; Lou, Q.; Kaminsky, J.; Kikuchi, Y.; Raley, A. Low-k dielectric etch challenges at the 7 nm logic node and beyond: Continuous-wave versus quasiatomic layer plasma etching performance review. J. Vac. Sci. Technol. A Vac. Surf. Film. 2019, 37, 011001. [Google Scholar] [CrossRef]
- Fitzgerald, M.L.; Tsai, S.; Bellan, L.M.; Sappington, R.; Xu, Y.; Li, D. The relationship between the Young’s modulus and dry etching rate of polydimethylsiloxane (PDMS). Biomed. Microdevices 2019, 21, 26. [Google Scholar] [CrossRef]
- Wu, J.; Ye, X.; Sun, L.; Huang, J.; Wen, J.; Geng, F.; Zeng, Y.; Li, Q.; Yi, Z.; Jiang, X.; et al. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica. Opt. Express 2018, 26, 1361–1374. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.Z.; Cheng, Y.; Li, Z.; Wang, L.; Zheng, Q. Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys. Rev. B 2012, 85, 205418. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, Y.; Wu, M.; Liao, N. Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material. Appl. Sci. 2019, 9, 3103. https://doi.org/10.3390/app9153103
Zhang C, Liu Y, Wu M, Liao N. Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material. Applied Sciences. 2019; 9(15):3103. https://doi.org/10.3390/app9153103
Chicago/Turabian StyleZhang, Cheng, Yijin Liu, Mingge Wu, and Ningbo Liao. 2019. "Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material" Applied Sciences 9, no. 15: 3103. https://doi.org/10.3390/app9153103
APA StyleZhang, C., Liu, Y., Wu, M., & Liao, N. (2019). Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material. Applied Sciences, 9(15), 3103. https://doi.org/10.3390/app9153103