Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pengwang, E.; Rabenorosoa, K.; Rakotondrabe, M.; Andreff, N. Scanning micromirror platform based on MEMS technology for medical application. Micromachines 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Bouchaala, A.M.; Younis, M.I. A Model of Electrostatically Actuated MEMS and Carbon Nanotubes Resonators for Biological Mass Detection. In Design and Modeling of Mechanical Systems-II; Springer: Cham, Switzerland, 2015; pp. 501–512. [Google Scholar]
- Jia, Y.; Li, S.; Qin, Y.; Cheng, R. Error analysis and compensation of MEMS rotation modulation inertial navigation system. IEEE Sens. J. 2018, 18, 2023–2030. [Google Scholar] [CrossRef]
- Ge, C.; Cretu, E. A sacrificial-layer-free fabrication technology for MEMS transducer on flexible substrate. Sens. Actuators A Phys. 2019, 286, 202–210. [Google Scholar] [CrossRef]
- Zhao, C.; Knisely, K.E.; Grosh, K. Design and fabrication of a piezoelectric MEMS xylophone transducer with a flexible electrical connection. Sens. Actuators A Phys. 2018, 275, 29–36. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Liu, B.; Zhang, M.; Pang, W. Highly flexible piezoelectric MEMS resonators encapsulated in polymer thin films. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 170–173. [Google Scholar]
- Sim, G.D.; Krogstad, J.A.; Reddy, K.M.; Xie, K.Y.; Valentino, G.M.; Weihs, T.P.; Hemker, K.J. Nanotwinned metal MEMS films with unprecedented strength and stability. Sci. Adv. 2017, 3, e1700685. [Google Scholar] [CrossRef] [PubMed]
- Gongyang, Y.; Qu, C.; Zhang, S.; Ma, M.; Zheng, Q. Eliminating delamination of graphite sliding on diamond-like carbon. Carbon 2018, 132, 444–450. [Google Scholar] [CrossRef]
- Deng, H.; Ma, M.; Song, Y.; He, Q.; Zheng, Q. Structural superlubricity in graphite flakes assembled under ambient conditions. Nanoscale 2018, 10, 14314–14320. [Google Scholar] [CrossRef]
- Hod, O.; Meyer, E.; Zheng, Q.; Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 2018, 563, 485–492. [Google Scholar] [CrossRef]
- Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427–4435. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, Z. Fast MEMS releasing with polymer and nano-graphite particle additive. In Proceedings of the 2016 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 13–14 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3. [Google Scholar]
- Wang, C.; Zaouk, R.; Malladi, K.; Taherabadi, L.; Madou, M. C-MEMS/NEMS: A Novel Technology for Nanoscale Material Formation from Graphite Fiber to Ni and Si Nanowires. In Proceedings of the ASME 2004 3rd Integrated Nanosystems Conference, Pasadena, CA, USA, 22–24 September 2004; American Society of Mechanical Engineers: New York, NY, USA, 2004; pp. 133–134. [Google Scholar]
- Kim, J.; Song, X.; Kinoshita, K.; Madou, M.; White, R. Electrochemical studies of carbon films from pyrolyzed photoresist. J. Electrochem. Soc. 1998, 145, 2314–2319. [Google Scholar] [CrossRef]
- Ranganathan, S.; Mccreery, R.; Majji, S.M.; Madou, M. Photoresist-derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 2000, 147, 277–282. [Google Scholar] [CrossRef]
- Fishlock, S.J.; O’Shea, S.J.; McBride, J.W.; Chong, H.M.; Pu, S.H. Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling. J. Micromech. Microeng. 2017, 27, 095015. [Google Scholar] [CrossRef]
- Rana, S.; Reynolds, J.D.; Ling, T.Y.; Shamsudin, M.S.; Pu, S.H.; Chong, H.M.; Pamunuwa, D. Nano-crystalline graphite for reliability improvement in MEM relay contacts. Carbon 2018, 133, 193–199. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Grey, F.; Liu, J.Z.; Liu, Y.; Wang, Y.; Yang, Y.; Cheng, Y.; Zheng, Q. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 2012, 108, 205503. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.; Guo, T.; Sun, Y.; Liu, W.; Peng, L.; Xu, Z.; Gao, C.; He, S. Shape-controlled tens-nanometers-thick graphite and worm-like graphite through lithographic exfoliation. Carbon 2018, 135, 248–252. [Google Scholar] [CrossRef]
- Divan, R.; Mancini, D.; Gallagher, S.; Booske, J.; Van Der Weide, D. Improvements in graphite-based X-ray mask fabrication for ultradeep X-ray lithography. Microsyst. Technol. 2004, 10, 728–734. [Google Scholar] [CrossRef]
- Sone, J.; Murakami, M.; Tatami, A. Fundamental Study for a Graphite-Based Microelectromechanical System. Micromach. 2018, 9, 64. [Google Scholar] [CrossRef]
- Sone, J. Feasible Development of a Carbon-Based MEMS Using a MEMS Fabrication Process. J. Chem. Chem. Eng. 2014, 8, 1082–1088. [Google Scholar]
- Sone, J.; Shigeta, N.; Yamada, K.; Uchida, T.; Yoshida, S.; Hayasaka, T.; Tanaka, S. Annealing Transformation of Diamond-Like Carbon Using Ni Catalyst. Jpn. J. Appl. Phys. 2013, 52, 128005. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, D.; Zhu, H.; Zhang, X.; Yang, X.; Shi, Y.; Zheng, T. Micro-fabrication method of graphite mesa microdevices based on optical lithography technology. J. Micromech. Microeng. 2017, 27, 125022. [Google Scholar] [CrossRef]
- Bose, S.; Cunha, J.M.V.; Suresh, S.; De Wild, J.; Lopes, T.S.; Barbosa, J.R.S.; Silva, R.; Borme, J.; Fernandes, P.A.; Vermang, B.; et al. Optical Lithography Patterning of SiO2 Layers for Interface Passivation of Thin Film Solar Cells. Sol. RRL 2018, 2, 1800212. [Google Scholar] [CrossRef]
- Minaev, N.V.; A Tarkhov, M.; Dudova, D.S.; Timashev, P.S.; Chichkov, B.N.; Bagratashvili, V.N. Fabrication of superconducting nanowire single-photon detectors by nonlinear femtosecond optical lithography. Laser Phys. Lett. 2018, 15, 026002. [Google Scholar] [CrossRef]
- Nguyen, D.T.T.; Del Guercio, O.; Au, T.H.; Trinh, D.T.; Mai, N.P.T.; Lai, N.D. Optical lithography of three-dimensional magnetophotonic microdevices. Opt. Eng. 2018, 57, 041406. [Google Scholar] [CrossRef]
- Dowling, K.M.; Ransom, E.H.; Senesky, D.G. Profile evolution of high aspect ratio silicon carbide trenches by inductive coupled plasma etching. J. Microelectromech. Syst. 2017, 26, 135–142. [Google Scholar] [CrossRef]
- Lutker-Lee, K.M.; Lu, Y.T.; Lou, Q.; Kaminsky, J.; Kikuchi, Y.; Raley, A. Low-k dielectric etch challenges at the 7 nm logic node and beyond: Continuous-wave versus quasiatomic layer plasma etching performance review. J. Vac. Sci. Technol. A Vac. Surf. Film. 2019, 37, 011001. [Google Scholar] [CrossRef]
- Fitzgerald, M.L.; Tsai, S.; Bellan, L.M.; Sappington, R.; Xu, Y.; Li, D. The relationship between the Young’s modulus and dry etching rate of polydimethylsiloxane (PDMS). Biomed. Microdevices 2019, 21, 26. [Google Scholar] [CrossRef]
- Wu, J.; Ye, X.; Sun, L.; Huang, J.; Wen, J.; Geng, F.; Zeng, Y.; Li, Q.; Yi, Z.; Jiang, X.; et al. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica. Opt. Express 2018, 26, 1361–1374. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.Z.; Cheng, Y.; Li, Z.; Wang, L.; Zheng, Q. Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys. Rev. B 2012, 85, 205418. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, Y.; Wu, M.; Liao, N. Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material. Appl. Sci. 2019, 9, 3103. https://doi.org/10.3390/app9153103
Zhang C, Liu Y, Wu M, Liao N. Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material. Applied Sciences. 2019; 9(15):3103. https://doi.org/10.3390/app9153103
Chicago/Turabian StyleZhang, Cheng, Yijin Liu, Mingge Wu, and Ningbo Liao. 2019. "Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material" Applied Sciences 9, no. 15: 3103. https://doi.org/10.3390/app9153103
APA StyleZhang, C., Liu, Y., Wu, M., & Liao, N. (2019). Experiment Research on Micro-/Nano Processing Technology of Graphite as Basic MEMS Material. Applied Sciences, 9(15), 3103. https://doi.org/10.3390/app9153103