Carbon Nanotubes (CNTs) in Asphalt Binder: Homogeneous Dispersion and Performance Enhancement
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Sample Preparation
- Mixer selection
- Solvent selection
- Technique (dry/wet) selection
2.3. CNTs Modified Asphalt Binder Preparation
2.4. Investigation into Homogeneous Dispersion
2.4.1. SEM Analysis
2.4.2. FTIR Analysis
2.4.3. Storage Stability Test
2.5. Engineering Properties Analysis
2.5.1. Conventional Binder Tests
2.5.2. Dynamic Mechanical Analysis (DMA)
2.5.3. Bitumen Bond Strength Test
2.5.4. Moisture Susceptibility Analysis
2.5.5. Permanent Deformation Analysis
3. Results and Discussions
3.1. Conventional Asphalt Binder Properties
3.2. Dynamic Shear Rheological Properties
3.3. Bitumen–Aggregate Bond Strength Analysis
3.4. Moisture Susceptibility Analysis
3.5. Permanent Deformation Analysis
4. Conclusions and Recommendations
- Wet mixing techniques better helps in achieving homogeneous dispersion of CNTs in bitumen as compared to dry mixing.
- Sonication and magnetic stirring are necessary to improve the stability of CNTs in solvent.
- Introduction of CNTs in asphalt binder resulted in reduction in penetration value and ductility value, while it increased the softening point value of the bitumen, which means stiffness of the bitumen increased with the addition of CNTs.
- With the addition of CNTs, the PI value of bitumen increased, which means the bitumen temperature sensitivity decreased and thermal susceptibility also decreased.
- Complex shear modulus (G*) value increased and phase angle of the bitumen tended to decrease with increase in CNTs, which means the stiffness and elastic behavior of bitumen improved with the addition of CNTs in asphalt binder. Rut factor value also improved, which indicates the increase in resistance against permanent deformation.
- High Performance Grade (PG) of the bitumen increased with an increase in the CNTs dosage. PG 70 is recommended for most of the regions of Pakistan. This study aimed for achieving a PG 76 after a great bump in the required PG 70 to accommodate for the overloading on the highways of the country. The required PG 76 was achieved with 3% addition of CNTs in bitumen. Asphalt samples modified with 3% CNTs showed improved results for all parameters examined in this study. Hence, 3% CNTs dosage was selected as the optimum dosage.
- Bitumen bond strength value improved by adding CNTs in bitumen in both 24 h dry and 24 h moist conditions, while moisture susceptibility of bitumen decreased with addition of CNTs.
- From wheel tracker test results, it was concluded that the addition of 1% and 3% CNTs in bitumen reduced the rut depth by 25% and 37%, respectively, when tested at 40 °C. This is an indication of an increase in the resistance against permanent deformation at higher temperature for CNT-modified binder.
- Although wet mixing is a complicated process, it is preferred over the dry mixing technique because it ensures homogeneous dispersion of CNTs in the binder.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kiel, J.; Smith, R.; Ubbels, B. The Impact of Transport Investments on Competitiveness. Transp. Res. Procedia 2014, 1, 77–88. [Google Scholar] [CrossRef]
- Collins, J.H.; Bouldin, M.G.; Gelles, R.; Berker, A. Improved Performance of Paving Asphalts by Polymer Modification. J. Assoc. Asph. Paving Technol. 1991, 60, 43–49. [Google Scholar]
- Sadeghpour, S.; Dabir, B.; Ehsan, A.; Moeini, A. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Constr. Build. Mater. 2010, 24, 300–307. [Google Scholar] [CrossRef]
- Alhamali, D.I.; Wu, J.; Liu, Q.; Hassan, N.A.; Yusoff, N.I.M.; Ali, S.I.A. Physical and Rheological Characteristics of Polymer Modified Bitumen with Nanosilica Particles. Arab. J. Sci. Eng. 2016, 41, 1521–1530. [Google Scholar] [CrossRef]
- Golewski, G.L. Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Materials (Basel) 2017, 10, 1393. [Google Scholar] [CrossRef] [PubMed]
- Sengoz, B.; Isikyakar, G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr. Build. Mater. 2008, 22, 1897–1905. [Google Scholar] [CrossRef]
- Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66–72. [Google Scholar] [CrossRef]
- Behnood, A.; Modiri Gharehveran, M. Morphology, rheology and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2018. [Google Scholar] [CrossRef]
- Amin, I.; El-Badawy, S.M.; Breakah, T.; Ibrahim, M.H.Z. Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate. Constr. Build. Mater. 2016, 121, 361–372. [Google Scholar] [CrossRef]
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and concrete nanoscience and nanotechnology. Materials (Basel) 2010, 3, 918–942. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials—A review. Constr. Build. Mater. 2017, 143, 633–648. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Ani, O.J. Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Constr. Build. Mater. 2015, 98, 692–702. [Google Scholar] [CrossRef]
- Fang, C.; Yu, R.; Liu, S.; Li, Y. Nanomaterials Applied in Asphalt Modification : A Review. J. Mater. Sci. Technol. 2013, 29, 589–594. [Google Scholar] [CrossRef]
- Li, R.; Pei, J.; Sun, C. Effect of nano-ZnO with modified surface on properties of bitumen. Constr. Build. Mater. 2015, 98, 656–661. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Pang, L.; Javilla, B. The utilization of multiple-walled carbon nanotubes in polymer modified bitumen. Materials (Basel) 2017, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- El-Shafie, M.; Ibrahim, I.M.; Abd El Rahman, A.M.M. The addition effects of macro and nano clay on the performance of asphalt binder. Egypt. J. Pet. 2012, 21, 149–154. [Google Scholar] [CrossRef]
- Amin, G.M.; Esmail, A. Application of nano silica to improve self-healing of asphalt mixes. J. Cent. South Univ. 2017, 24, 1019–1026. [Google Scholar] [CrossRef]
- Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. Characterization of unaged asphalt binder modified with carbon nano particles. Int. J. Pavement Res. Technol. 2011, 4, 281–286. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Dalmazzo, D. Rheological Characterization of Bituminous Binders Modified with Carbon Nanotubes. Procedia-Soc. Behav. Sci. 2012, 53, 546–555. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- de Heer, W.A. Nanotubes and the Pursuit of Applications. MRS Bull. 2004, 29, 281–285. [Google Scholar] [CrossRef]
- Bai, J.B.; Allaoui, A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites - Experimental investigation. Compos. Part A Appl. Sci. Manuf. 2003, 34, 689–694. [Google Scholar] [CrossRef]
- Gong, M.; Yang, J.; Yao, H.; Wang, M.; Niu, X.; Haddock, J.E. Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder. Road Mater. Pavement Des. 2017, 0629, 1–24. [Google Scholar] [CrossRef]
- Galooyak, S.S.; Palassi, M.; Farahani, H.Z.; Goli, A. Effect of carbon nanotube on the rheological properties of bitumen. Pet. Coal 2015, 57, 556–564. [Google Scholar]
- Omar, H.A.; Yusoff, N.I.M.; Sajuri, Z.; Ceylan, H.; Jakarni, F.M.; Ismail, A. Determining the effects of aging on halloysite nano-tube modified binders through the pull-off test method. Constr. Build. Mater. 2016, 126, 245–252. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G. Fatigue properties of bituminous binders reinforced with carbon nanotubes. Int. J. Pavement Eng. 2015, 16, 80–90. [Google Scholar] [CrossRef]
- Faramarzi, M.; Arabani, M.; Haghi, A.K.; Mottaghitalab, V. Carbon nanotubes-modified asphalt binder: Preparation and characterization. Int. J. Pavement Res. Technol. 2015, 8, 29–37. [Google Scholar] [CrossRef]
- Hasan, Z.; Kamran, R.; Mohammad, F.; Ahmad, G.; Hosein, F. Evaluation of Different Conditions on The Mixing Bitumen and Carbon Nano-Tubes. Int. J. Civ. Environ. Eng. IJCEE-IJENS 2012, 12, 53–59. [Google Scholar]
- Tufail, M.; Ahmad, N.; Mirza, S.M.; Mirza, N.M.; Khan, H.A. Natural radioactivity from the building materials used in Islamabad and Rawalpindi, Pakistan. Sci. Total Environ. 1992, 121, 283–291. [Google Scholar] [CrossRef]
- Hussan, S.; Kamal, M.A.; Hafeez, I.; Farooq, D.; Ahmad, N.; Khanzada, S. Statistical evaluation of factors affecting the laboratory rutting susceptibility of asphalt mixtures. Int. J. Pavement Eng. 2017, 8436, 1–15. [Google Scholar] [CrossRef]
- Ziari, H.; Hosein, F.; Goli, A. Using the Statistical Analysis of Carbon Nano-tubes Dispersion in Bitumen Employing Software MINITAB. Int. J. Transp. Eng. 2013, 1, 125–136. [Google Scholar]
- Amin, I.; El-Badawy, S.M.; Breakah, T.; Ibrahim, M.H.Z. Effect of Functionalization and Mixing Process on the Rheological Properties of Asphalt Modified with Carbon Nanotubes. Am. J. Civ. Eng. Archit. 2016, 4, 90–97. [Google Scholar] [CrossRef]
- Collett, B.M. Scanning Electron Microscopy: A Review And Report Of Research In Wood Science. Wood Fiber Sci. 1967, 2, 113–132. [Google Scholar]
- Ameri, M.; Vamegh, M.; Rooholamini, H.; Haddadi, F. Investigating Effects of Nano/SBR Polymer on Rutting Performance of Binder and Asphalt Mixture. Adv. Mater. Sci. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Qasim, Z.I.; Qasim, Z.I. Effect of Filler Content on Properties of Asphaltic Mixtures for Marshall and Superpave Gyratory Compactor. Al-Nahrain J. Eng. Sci. 2017, 20, 183–193. [Google Scholar]
- Chelovian, A.; Shafabakhsh, G. Laboratory evaluation of Nano Al2O3effect on dynamic performance of stone mastic asphalt. Int. J. Pavement Res. Technol. 2017, 10, 131–138. [Google Scholar] [CrossRef]
- Hussain, M.H.M.; Ghaly, N.F.; Ibrahim, I.M. Modified Hot Mix Asphalt for Road Maintenance. World Appl. Sci. J. 2008, 5, 236–245. [Google Scholar]
- Rafi, J.; Kamal, M.; Ahmad, N.; Hafeez, M.; Faizan ul Haq, M.; Aamara Asif, S.; Shabbir, F.; Bilal Ahmed Zaidi, S. Performance Evaluation of Carbon Black Nano-Particle Reinforced Asphalt Mixture. Appl. Sci. 2018, 8, 1114. [Google Scholar] [CrossRef]
- Atif, R.; Inam, F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 2016, 7, 1174–1196. [Google Scholar] [CrossRef] [Green Version]
- Faramarzi, M.; Arabani, M.; Haghi, A.K.; Motaghitalab, V. A Study on the Effects of CNT’s on Hot Mix Asphalt Marshal-Parameters. In Proceedings of the 7thSASTech 2013, Bandar-Abbas, Iran, 7–8 March 2013; pp. 1–9. [Google Scholar]
- Ehinola, O.A.; Falode, O.A.; Jonathan, G. Softening point and Penetration Index of bitumen from parts of Southwestern Nigeria. NAFTA 2012, 63, 319–323. [Google Scholar]
- Al-Omari, A.A.; Khedaywi, T.S.; Khasawneh, M.A. Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications. Int. J. Pavement Res. Technol. 2018, 11, 68–76. [Google Scholar] [CrossRef]
- Enieb, M.; Diab, A. Characteristics of asphalt binder and mixture containing nanosilica. Int. J. Pavement Res. Technol. 2017, 10, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.I.A.; Ismail, A.; Karim, M.R.; Yusoff, N.I.M.; Al-Mansob, R.A.; Aburkaba, E. Performance evaluation of Al2O3 nanoparticle-modified asphalt binder. Road Mater. Pavement Des. 2017, 18, 1251–1268. [Google Scholar] [CrossRef]
- Mirza, M.W.; Abbas, Z.; Rizvi, M.A. Temperature Zoning of Pakistan for Asphalt Mix Design. Pakistan J. Eng. Appl. Sci. 2011, 8, 49–60. [Google Scholar]
- Moraes, R.; Velasquez, R.; Bahia, H. Measuring the Effect of Moisture on Asphalt-Aggregate Bond with the Bitumen Bond Strength Test. Transp. Res. Rec. J. Transp. Res. Board 2011, 2209, 70–81. [Google Scholar] [CrossRef]
- Kyakuno, H.; Fukasawa, M.; Ichimura, R.; Matsuda, K.; Nakai, Y.; Miyata, Y.; Saito, T.; Maniwa, Y. Diameter-dependent hydrophobicity in carbon nanotubes. J. Chem. Phys. 2016, 145. [Google Scholar] [CrossRef]
- Liu, Y.; Apeagyei, A.; Ahmad, N.; Grenfell, J.; Airey, G. Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. Int. J. Pavement Eng. 2014, 15, 657–670. [Google Scholar] [CrossRef]
Test | Value | Standard |
---|---|---|
Penetration Value (0.1 mm, 25 °C) | 64 | ASTM D5 |
Softening Point (°C) | 49 | ASTM D36 |
Ductility mm (25 °C) | 102 | ASTM D113 |
Inner Diameter | Outer Diameter | Average Length | Purity | Density | Specific Surface Area | Manufacturing Method |
---|---|---|---|---|---|---|
30–50 nm | 5–12 nm | 0.5–2 µm | >90% | 2.1 g/cm3 | 60 m2/g | Chemical Vapor Deposition |
Property | Standard | Value | Limit |
---|---|---|---|
Los Angeles Abrasion (Coarse) | ASTM C 131 | 15 | ≤15% |
Soundness (Course) | ASTM C 88 | 7.1 | ≤8% |
Soundness (Fine) | ASTM C 88 | 4.7 | ≤8% |
Water Absorption (Coarse) | ASTM C 127 | 1.02 | ≤2% |
Uncompacted Voids (Coarse) | ASTM C 1252 | 37.5 | ≥45% |
Flakiness (Coarse) | BS 812.108 | 5 | ≤15% |
Elongation (Coarse) | BS 812.109 | 11 | ≤15% |
Fractured Particles (Coarse) | ASTM D 5821 | 100 | ≥90% |
Sand Equivalent (Coarse) | ASTM D 2419 | 75 | ≥50% |
CNTs Dosage | 0% | 0.5% | 1% | 1.5% | 3% |
---|---|---|---|---|---|
SP of Top Portion (°C) | 48.9 | 50.7 | 55.4 | 57 | 57.8 |
SP of Bottom Portion (°C) | 49.1 | 51.7 | 56.7 | 58.5 | 59.7 |
Difference (°C) | 0.2 | 1 | 1.3 | 1.5 | 1.9 |
Sample | 0% CNTs | 0.5% CNTs | 1% CNTs | 1.5% CNTs | 3% CNTs |
---|---|---|---|---|---|
PI | −0.7692 | −0.66 | 0.0187 | 0.060 | 0.065 |
A | 0.04584 | 0.0442 | 0.03758 | 0.0378 | 0.0374 |
24 h Dry Conditions (psi) | 24 h Wet Conditions (psi) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 0.5% | 1% | 1.5% | 3% | 0% | 0.5% | 1% | 1.5% | 3% | |
1 | 1266.4 (C) | 1493.9 (C) | 1587.0 (C) | 1868.3 (C/A) | 1994.4 (C) | 1119.5 (A) | 1254.0 (A) | 1361.5 (A) | 1514.6 (A) | 1555.9 (C/A) |
2 | 1206.4 (C) | 1512.5 (C) | 1570.4 (C) | 1818.6 (C) | 1907.5 (C) | 1059.6 (A) | 1287.1 (A) | 1440.1 (A) | 1496 (C/A) | 1549.7 (C/A) |
3 | 1270.5 (C) | 1469.1 (C) | 1560.1 (C) | 1721.4 (C) | 1797.9 (C/A) | 1076.1 (A) | 1295.3 (A) | 1328.4 (A) | 1613.9 (C/A) | 1438.1 (C/A) |
4 | 1305.7 (C) | 1485.6 (C) | 1580.8 (C) | 1642.8 (C) | 1924.1 (C/A) | 1080.2 (A) | 1318.1 (A) | 1527 (A) | 1409 (A) | 1630.4 (A) |
5 | 1258.1 (C) | 1510.4 (C) | 1607.7 (C) | 1992.3 (C/A) | 1961.3 (C/A) | 1067.8 (A) | 1299.5 (A) | 1384.3 (A) | 1518.7 (A) | 1678.0 (A) |
Avg | 1261.4 | 1494.3 | 1581.2 | 1808.7 | 1917.1 | 1080.7 | 1290.8 | 1408.3 | 1510.4 | 1570.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, M.F.u.; Ahmad, N.; Nasir, M.A.; Jamal; Hafeez, M.; Rafi, J.; Zaidi, S.B.A.; Haroon, W. Carbon Nanotubes (CNTs) in Asphalt Binder: Homogeneous Dispersion and Performance Enhancement. Appl. Sci. 2018, 8, 2651. https://doi.org/10.3390/app8122651
Haq MFu, Ahmad N, Nasir MA, Jamal, Hafeez M, Rafi J, Zaidi SBA, Haroon W. Carbon Nanotubes (CNTs) in Asphalt Binder: Homogeneous Dispersion and Performance Enhancement. Applied Sciences. 2018; 8(12):2651. https://doi.org/10.3390/app8122651
Chicago/Turabian StyleHaq, Muhammad Faizan ul, Naveed Ahmad, Muhammad Ali Nasir, Jamal, Murryam Hafeez, Javaria Rafi, Syed Bilal Ahmed Zaidi, and Waqas Haroon. 2018. "Carbon Nanotubes (CNTs) in Asphalt Binder: Homogeneous Dispersion and Performance Enhancement" Applied Sciences 8, no. 12: 2651. https://doi.org/10.3390/app8122651