Study of the Stability of Functionalized Gold Nanoparticles for the Colorimetric Detection of Dipeptidyl Peptidase IV
Abstract
1. Introduction
2. Experimental Setup
2.1. Materials
2.2. Synthesis and Modification of Au NPs with Capping Ligands Preparation
2.2.1. CALNN-, GPDC-Bifunctionalized Au NPs (C/G Au NPs)
2.2.2. Gly-Pro-Gly-Ethylenediamine-PEG4-Lipoamide (GPG-EN-PEG4-LA)
2.2.3. GPDCALNNC Peptide
2.3. Purification
2.4. Instrumental Techniques
2.5. Assay of DPP-IV/CD26 Activity
3. Results and Discussion
3.1. Investigation of Peptide Coupling Using UV-Visible Spectroscopy
3.1.1. Evaluation of Ligand Coupling to Gold Nanoparticle Surfaces by FTIR
3.1.2. Stability of Modified Au NPs in High-Ionic-Strength Solutions
3.1.3. Investigation of Zeta Potential and Hydrodynamic Radius
3.1.4. Detection of DPP-IV Activity Using Functionalized Au NPs
3.1.5. Quantitative Determination of DPP-IV/CD26 Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balasubramanian, S.K.; Yang, L.; Yung, L.Y.L.; Ong, C.N.; Ong, W.Y.; Liya, E.Y. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010, 31, 9023–9030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Cheng, F.F.; Zheng, T.T.; Zhu, J.J. Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens. Bioelectron. 2017, 89, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.N.; Basham, J.I.; Chando, P.; Eah, S. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 2010, 26, 7410–7417. [Google Scholar] [CrossRef] [PubMed]
- Ju-Nam, Y.; Bricklebank, N.; Allen, D.W.; Gardiner, P.H.; Light, M.E.; Hursthouse, M.B. Phosphonioalkylthiosulfate zwitterions—New masked thiol ligands for the formation of cationic functionalised gold nanoparticles. Org. Biomol. Chem. 2006, 4, 4345–4351. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, Q.; Wang, J.; Wang, B.; Zhang, S.; Yuan, Z. Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): Stabilizer or coagulant? J. Colloid Interface Sci. 2013, 404, 223–229. [Google Scholar] [CrossRef]
- Lévy, R. Peptide-Capped Gold Nanoparticles: Towards Artificial Proteins. ChemBioChem 2006, 7, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lévy, R.; Fernig, D.G.; Brust, M. Kinase-catalyzed modification of gold nanoparticles: A new approach to colorimetric kinase activity screening. J. Am. Chem. Soc. 2006, 128, 2214–2215. [Google Scholar] [CrossRef] [PubMed]
- Lévy, R.; Thanh, N.T.; Doty, R.C.; Hussain, I.; Nichols, R.J.; Schiffrin, D.J.; Brust, M.; Fernig, D.G. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076–10084. [Google Scholar] [CrossRef] [PubMed]
- Eck, W.; Craig, G.; Sigdel, A.; Ritter, G.; Old, L.J.; Tang, L.; Brennan, M.F.; Allen, P.J.; Mason, M.D. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2008, 2, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.; Kumar, D.; Meenan, B.J.; Dixon, D. Polyethylene glycol functionalized gold nanoparticles: The influence of capping density on stability in various media. Gold Bull. 2011, 44, 99–105. [Google Scholar] [CrossRef]
- Free, P.S.; Christopher, P.; Lévy, R. PEGylation modulates the interfacial kinetics of proteases on peptide-capped gold nanoparticles. Chem. Commun. 2009, 33, 5009–5011. [Google Scholar] [CrossRef] [PubMed]
- Dreaden, E.C.; Mwakari, S.C.; Sodji, Q.H.; Oyelere, A.K.; El-Sayed, M.A. Tamoxifen-poly (ethylene glycol)-thiol gold nanoparticle conjugates: Enhanced potency and selective delivery for breast cancer treatment. Bioconjugate Chem. 2009, 20, 2247–2253. [Google Scholar] [CrossRef] [PubMed]
- Schiffelers, R.M.; Ansari, A.; Xu, J.; Zhou, Q.; Tang, Q.; Storm, G.; Molema, G.; Lu, P.Y.; Scaria, P.V.; Woodle, M.C. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004, 32, e149. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, G.T. Bioconjugate Techniques; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Dougan, J.A.; Karlsson, C.; Smith, W.E.; Graham, D. Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Res. 2007, 35, 3668–3675. [Google Scholar] [CrossRef] [PubMed]
- Susumu, K.; Uyeda, H.T.; Medintz, I.L.; Pons, T.; Delehanty, J.B.; Mattoussi, H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996. [Google Scholar] [CrossRef] [PubMed]
- Abad, J.M.; Mertens, S.F.; Pita, M.; Fernández, V.M.; Schiffrin, D.J. Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J. Am. Chem. Soc. 2005, 127, 5689–5694. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Shi, X.; Kariuki, N.N.; Schadt, M.; Wang, G.R.; Rendeng, Q.; Choi, J.; Luo, J.; Lu, S. Array of molecularly mediated thin film assemblies of nanoparticles: Correlation of vapor sensing with interparticle spatial properties. J. Am. Chem. Soc. 2007, 129, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Deng, J.; Guan, G.; Chen, S.; Liu, Y.; Cheng, J.; Li, Z.; Zhuang, X.; Sun, F.; Deng, H. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diabetes Vasc. Dis. Res. 2012, 9, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Firnesz, S.F.; Lakatos, P.L. Serum dipeptidyl peptidase IV (DPP IV, CD26) activity in chronic hepatitis C. Scand. J Gasroenterol. 2001, 36, 877–880. [Google Scholar] [CrossRef]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743. [Google Scholar] [CrossRef]
- Aldewachi, H.S.; Woodroofe, N.; Turega, S.; Gardiner, P.H. Optimization of gold nanoparticle-based real-time colorimetric assay of dipeptidyl peptidase IV activity. Talanta 2017, 169, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Remant, B.K.; Dharmaraj, N.; Bhattarai, N.; Kim, C.H.; Kim, H.Y. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J. Colloid Interface Sci. 2006, 299, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Remant, B.K.; Dharmaraj, N.; Bhattarai, N.; Kim, C.H.; Kim, H.Y. Spectroscopic identification of S Au interaction in cysteine capped gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Heng, X.; Wang, W.; Hu, J.; Xu, W. Salt-induced size-selective separation, concentration, and preservation of zwitterion-modified gold nanoparticles. RSC Adv. 2012, 2, 2671–2674. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Annis, I.; Barany, G. Disulfide bond formation in peptides. In Current Protocols in Protein Science; Wiley: Hoboken, NJ, USA, 2001; Chapter 18. [Google Scholar]
- Chen, G.; Xie, Y.; Zhang, H.; Wang, P.; Cheung, H.Y.; Yang, M.; Sun, H. A general colorimetric method for detecting protease activity based on peptide-induced gold nanoparticle aggregation. RSC Adv. 2014, 4, 6560–6563. [Google Scholar] [CrossRef]
- He, Y.; Cheng, F.; Pang, D.W.; Tang, H.W. Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Microchim. Acta 2017, 184, 101–106. [Google Scholar] [CrossRef]
- Dixit, V.; Van den Bossche, J.; Sherman, D.M.; Thompson, D.H.; Andres, R.P. Synthesis and grafting of thioctic acid–PEG–folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjugate Chem. 2006, 17, 603–609. [Google Scholar] [CrossRef]
- Lin, S.; Chen, C.; Lin, M.; Hsu, H. A cooperative effect of bifunctionalized nanoparticles on recognition: Sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal. Chem. 2005, 77, 4821–4828. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence | Number of Amino Acids |
---|---|---|
C/G dipeptide | Cys-Ala-Leu-Asn-Asn and Gly-Pro-Asp-Cys | 5 and 4 |
GPG-EN-PEG4-LA | Gly-Pro-Gly-ethylenediamine-PEG4-lipoamide | 3 |
GPDCALNNC | Gly-Pro-Asp-Cys-Ala-Leu-Asn-Asn-Cys | 9 |
Ligand Properties | |||
C/G dipeptide | GPDCALLNNC | GPG-PEG4-LA | |
Binding Moiety | Sulfhydryl | Sulfhydryl | Disulfide |
Molecular Weight | 390 (GPDC) 533 (CALNN) | 906 | 706 |
Nanoparticle Properties | |||
Au@C/G dipeptide | Au@GPDCALNNC | Au@GPG-PEG4-LA | |
Diameter (nm) | 14.3 ± 1.1 | 14.0 ± 1.3 | 13.8 ± 1.5 |
λmax (Δλmax = λmax − λoriginal) | 524.7 (2.9) | 524.3 (2.5) | 523.5 (1.7) |
Hydrated Diameter (nm) | 35.4 | 39.5 | 38.1 |
Zeta Potential (mV) | −39 ± 3.5 | 35.9 ± 1.5 | −16.5 ± 1.3 |
Sample | Zeta Potential (mV) | Average Hydrodynamic Radius (nm) |
---|---|---|
GPDC: CALNN 4:1 | −46.1 | 22.88 |
GPDC: CALNN 6:1 | −38.9 | 23.68 |
GPDC: CALNN 10:1 | −39.0 | 35.42 |
GPDCALNNC | −35.9 | 39.5 |
GPG-PEG4-LA | −16.5 | 38.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldewachi, H.; Woodroofe, N.; Gardiner, P. Study of the Stability of Functionalized Gold Nanoparticles for the Colorimetric Detection of Dipeptidyl Peptidase IV. Appl. Sci. 2018, 8, 2589. https://doi.org/10.3390/app8122589
Aldewachi H, Woodroofe N, Gardiner P. Study of the Stability of Functionalized Gold Nanoparticles for the Colorimetric Detection of Dipeptidyl Peptidase IV. Applied Sciences. 2018; 8(12):2589. https://doi.org/10.3390/app8122589
Chicago/Turabian StyleAldewachi, Hasan, Nicola Woodroofe, and Philip Gardiner. 2018. "Study of the Stability of Functionalized Gold Nanoparticles for the Colorimetric Detection of Dipeptidyl Peptidase IV" Applied Sciences 8, no. 12: 2589. https://doi.org/10.3390/app8122589
APA StyleAldewachi, H., Woodroofe, N., & Gardiner, P. (2018). Study of the Stability of Functionalized Gold Nanoparticles for the Colorimetric Detection of Dipeptidyl Peptidase IV. Applied Sciences, 8(12), 2589. https://doi.org/10.3390/app8122589