# A Free Interface Model for Static/Flowing Dynamics in Thin-Layer Flows of Granular Materials with Yield: Simple Shear Simulations and Comparison with Experiments

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The Free Interface Model

#### 2.1. Origin of the Model: Viscoplastic Rheology with Yield Stress

#### 2.2. Free Interface Model with Source Term

- If $\nu >0$ then$${\partial}_{Z}\left(\right)open="("\; close=")">\nu {\partial}_{Z}U$$$$\dot{b}(t)=\left({\displaystyle \frac{{\partial}_{Z}S(t,b(t))-{\partial}_{ZZ}^{2}(\nu {\partial}_{Z}U)(t,b(t))}{S(t,b(t))}}\right)\nu .$$
- If $\nu =0$ and ${\partial}_{Z}U(t,b(t))\ne 0$, then$$\dot{b}(t)={\displaystyle \frac{S(t,b(t))}{{\partial}_{Z}U(t,b(t))}}.$$

#### 2.3. Free Interface Model with Constant Source

## 3. Analytical Solution for the Inviscid Model with Constant Source Term

#### 3.1. Analytical Solution

#### 3.2. Choice of the Parameters and Initial Conditions

- linear profile ${U}^{0}(Z)={\alpha}_{1}(Z-{b}^{0})$, with ${\alpha}_{1}=70$ s${}^{-1}$,
- exponential profile ${U}^{0}(Z)={\alpha}_{2}({e}^{\beta Z}-{e}^{\beta {b}^{0}})$, with ${\alpha}_{2}=0.1$ ms${}^{-1}$ and $\beta =130$ m${}^{-1}$,
- Bagnold profile ${U}^{0}(Z)={\alpha}_{3}({(h-{b}^{0})}^{\frac{3}{2}}-{(h-Z)}^{\frac{3}{2}})$, with ${\alpha}_{3}=545$ m${}^{-1/2}$s${}^{-1}$.

- $b(t)={\displaystyle \frac{S}{{\alpha}_{1}}}t+{b}^{0}$,
- $b(t)={\displaystyle \frac{1}{\beta}}log\left(\right)open="("\; close=")">{\displaystyle \frac{S}{{\alpha}_{2}}}t+{e}^{\beta {b}^{0}}$,
- $b(t)=h-{\left(\right)}^{{(h-{b}^{0})}^{3/2}}2/3$.

#### 3.3. Results and Comparison with Experiments

## 4. Numerical Solution to the Viscous Free Interface Model

#### 4.1. Discretization by Moving the Interface

#### 4.2. Discretization by an Optimality Condition

#### 4.3. Scales in the Transient Regime

#### 4.4. Results and Comparison with Experiments for Constant Viscosity

#### 4.5. Variable Viscosity

## 5. Discussion and Conclusions

- If $\nu >0$ and $S(t,X)\ne 0$, then$$\dot{b}(t,X)={\displaystyle \frac{-{\partial}_{ZZ}^{2}(\nu {\partial}_{Z}U)(t,X,b(t))}{S(t,X)}}\nu .$$
- If $\nu =0$ and ${\partial}_{Z}U(t,X,b(t))\ne 0$, then$$\dot{b}(t,X)={\displaystyle \frac{S(t,X)}{{\partial}_{Z}U(t,X,b(t))}}.$$

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Delannay, R.; Valance, A.; Mangeney, A.; Roche, O.; Richard, P. Granular and particle-laden flows: From laboratory experiments to field observations. J. Phys. D Appl. Phys.
**2017**, 50, 053001. [Google Scholar] [CrossRef] - Conway, S.J.; Decaulne, A.; Balme, M.R.; Murray, J.B.; Towner, M.C. A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology
**2010**, 114, 556–572. [Google Scholar] [CrossRef] - Berger, C.; McArdell, B.W.; Schlunegger, F. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J. Geophys. Res.
**2011**, 116, F01002. [Google Scholar] [CrossRef] - Weidinger, J.T.; Korup, O.; Munack, H.; Altenberger, U.; Dunning, S.A.; Tippelt, G.; Lottermoser, W. Giant rockslides from the inside. Earth Planet. Sci. Lett.
**2014**, 389, 62–73. [Google Scholar] [CrossRef] - Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. Review of the classification of landslides of the flow type. Environ. Eng. Geosci.
**2001**, 7, 221–238. [Google Scholar] [CrossRef] - Sovilla, B.; Burlando, P.; Bartelt, P. Field experiments and numerical modeling of mass entrainment in snow avalanches. J. Geophys. Res.
**2006**, 111, F03007. [Google Scholar] [CrossRef] - Mangeney, A.; Tsimring, L.S.; Volfson, D.; Aranson, I.S.; Bouchut, F. Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett.
**2007**, 34, L22401. [Google Scholar] [CrossRef] - Crosta, G.B.; Imposimato, S.; Roddeman, D. Numerical modeling entrainment/deposition in rock and debris-avalanches. Eng. Geol.
**2009**, 109, 135–145. [Google Scholar] [CrossRef] - Mangeney, A.; Roche, O.; Hungr, O.; Mangold, N.; Faccanoni, G.; Lucas, A. Erosion and mobility in granular collapse over sloping beds. JGR-Earth Surface
**2010**, 115, F03040. [Google Scholar] [CrossRef] - Moretti, L.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Huggel, C.; Schneider, D.; Bouchut, F. Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys. Res. Lett.
**2012**, 39, L16402. [Google Scholar] [CrossRef] - Iverson, R.M.; Reid, M.; Logan, M.; LaHusen, R.; Godt, J.W.; Griswold, J. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci.
**2011**, 4, 116–121. [Google Scholar] [CrossRef] - Farin, M.; Mangeney, A.; Roche, O. Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J. Geophys. Res. Earth Surf.
**2014**, 119, 504–532. [Google Scholar] [CrossRef] - Farin, M. Etude Expérimentale de la Dynamique et de L’émission Sismique des Instabilités Gravitaires. Ph.D. Thesis, Institut de Physique du Globe de Paris, Paris, France, 2015. [Google Scholar]
- Savage, S.B.; Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech.
**1989**, 199, 177–215. [Google Scholar] [CrossRef] - Bouchut, F.; Mangeney-Castelnau, A.; Perthame, B.; Vilotte, J.-P. A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Math. Acad. Sci. Paris
**2003**, 336, 531–536. [Google Scholar] [CrossRef] - Bouchut, F.; Westdickenberg, M. Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci.
**2004**, 2, 359–389. [Google Scholar] [CrossRef] - Mangeney-Castelnau, A.; Bouchut, F.; Vilotte, J.-P.; Lajeunesse, E.; Aubertin, A.; Pirulli, M. On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res.
**2005**, 110, B09103. [Google Scholar] [CrossRef] - Lucas, A.; Mangeney, A.; Ampuero, J.-P. Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commun.
**2014**, 5, 3417. [Google Scholar] [CrossRef] [PubMed] - Khakhar, D.V.; Orpe, A.V.; Andresén, P.; Ottino, J.M. Surface flow of granular materials: Model and experiments in heap formation. J. Fluid Mech
**2001**, 441, 225–264. [Google Scholar] [CrossRef] - Iverson, R.M. Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res.
**2012**, 117, F03006. [Google Scholar] [CrossRef] - Iverson, R.M.; Ouyang, C. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Rev. Geophys.
**2015**, 53. [Google Scholar] [CrossRef] - Bouchut, F.; Fernández-Nieto, E.D.; Mangeney, A.; Lagrée, P.-Y. On new erosion models of Savage-Hutter type for avalanches. Acta Mech.
**2008**, 199, 181–208. [Google Scholar] [CrossRef] - Capart, H.; Hung, C.-Y.; Stark, C.P. Depth-integrated equations for entraining granular flows in narrow channels. J. Fluid Mech.
**2015**, 765, R4. [Google Scholar] [CrossRef] - Fernandez-Nieto, E.D.; Garres-Diaz, J.; Mangeney, A.; Narbona-Reina, G. A multilayer shallow model for dry granular flows with the mu(I) rheology: Application to granular collapse on erodible beds. J. Fluid Mech.
**2016**, 798, 643–681. [Google Scholar] [CrossRef] - GDR-MiDi. On dense granular flows. Eur. Phys. J. E Soft Matter
**2004**, 14, 341–365. [Google Scholar] - Silbert, L.E.; Ertas, D.; Grest, G.S.; Halsey, T.C.; Levine, D.; Plimpton, S.J. Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E
**2001**, 64, 051302. [Google Scholar] [CrossRef] [PubMed] - Jop, P.; Forterre, Y.; Pouliquen, O. Crucial role of sidewalls in dense granular flows: Consequences for the rheology. J. Fluid Mech.
**2005**, 541, 167–192. [Google Scholar] [CrossRef] - Jop, P.; Forterre, Y.; Pouliquen, O. A constitutive law for dense granular flows. Nature
**2006**, 441, 727–730. [Google Scholar] [CrossRef] [PubMed] - Crosta, G.B.; Imposimato, S.; Roddeman, D. Numerical modeling of 2-d granular step collapse on erodible and non-erodible surface. J. Geophys. Res. Earth Surf.
**2009**, 114, F03020. [Google Scholar] [CrossRef] - Lagrée, P.-Y.; Staron, L.; Popinet, S. The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology. J. Fluid Mech
**2011**, 686, 378–408. [Google Scholar] [CrossRef] - Lusso, C.; Ern, A.; Bouchut, F.; Mangeney, A.; Farin, M.; Roche, O. Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse. J. Comput. Phys.
**2017**, 333, 387–408. [Google Scholar] [CrossRef] - Ionescu, I.R.; Mangeney, A.; Bouchut, F.; Roche, O. Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech.
**2015**, 219, 1–18. [Google Scholar] [CrossRef] - Martin, N.; Ionescu, I.R.; Mangeney, A.; Bouchut, F.; Farin, M. Continuum viscoplastic simulation of a granular column collapse on large slopes: μ(I) rheology and lateral wall effects. Phys. Fluids
**2017**, 29, 013301. [Google Scholar] [CrossRef] - Parez, S.; Aharonov, E.; Toussaint, R. Unsteady granular flows down an inclined plane. Phys. Rev. E
**2016**, 93, 042902. [Google Scholar] [CrossRef] [PubMed] - Barker, T.; Schaeffer, D.G.; Bohorquez, P.; Gray, J.M.N.T. Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow. J. Fluid Mech.
**2015**, 779, 794–818. [Google Scholar] [CrossRef] - Deboeuf, S.; Dauchot, O.; Staron, L.; Mangeney, A.; Vilotte, J.-P. Memory of the unjamming transition during cyclic tiltings of a granular pile. Phys. Rev. E
**2005**, 72, 051305. [Google Scholar] [CrossRef] [PubMed] - Richard, P.; Valance, A.; Metayer, J.-F.; Sanchez, P.; Crassou, J.; Louge, M.; Delannay, R. Rheology of confined granular flows: Scale invariance, glass transition, and friction weakening. Phys. Rev. Lett.
**2008**, 101, 248002. [Google Scholar] [CrossRef] [PubMed] - Ciamarra, M.P.; Pastore, R.; Nicodemi, M.; Coniglio, A. Jamming phase diagram for frictional particles. Phys. Rev. E
**2011**, 84, 041308. [Google Scholar] [CrossRef] [PubMed] - Bi, D.; Zhang, J.; Chakraborty, B.; Behringer, R.P. Jamming by shear. Nature
**2011**, 480, 355–358. [Google Scholar] [CrossRef] [PubMed] - Bouchut, F.; Ionescu, I.R.; Mangeney, A. An analytic approach for the evolution of the static/flowing interface in viscoplastic granular flows. Commun. Math. Sci.
**2016**, 14, 2101–2126. [Google Scholar] [CrossRef] - Lusso, C.; Bouchut, F.; Ern, A.; Mangeney, A. Explicit solutions to a free interface model for the static/flowing transition in thin granular flows. Available online: https://hal.archives-ouvertes.fr/hal-01180686v2/document (accessed on 11 April 2017).
- Taberlet, N.; Richard, P.; Valance, A.; Delannay, R.; Losert, W.; Pasini, J.M.; Jenkins, J.T. Super stable granular heap in thin channel. Phys. Rev. Lett.
**2003**, 91, 264301. [Google Scholar] [CrossRef] [PubMed] - Mangeney, A.; Heinrich, P.H.; Roche, R. Analytical and numerical solution of the dam-break problem for application to water floods, debris and dense snow avalanches. Pure Appl. Geophys.
**2000**, 157, 1081–1096. [Google Scholar] [CrossRef] - Faccanoni, G.; Mangeney, A. Exact solution for granular flows. Int. J. Numer. Anal. Methods Goemech.
**2013**, 37, 1408–1433. [Google Scholar] [CrossRef] - Viroulet, S.; Baker, J.L.; Edwards, A.N.; Johnson, C.G.; Gjaltema, C.; Clavel, P.; Gray, J.M.N.T. Multiple solutions for granular flow over a smooth two-dimensional bump. J. Fluid Mech.
**2017**, in press. [Google Scholar] [CrossRef] - Moretti, L.; Allstadt, K.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Bouchut, F. Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. J. Geophys. Res. Solid Earth
**2015**, 120, 2579–2599. [Google Scholar] [CrossRef]

**Figure 1.**Experimental setup from [9,12] to study granular column collapse over inclined planes covered by an initially static layer made of the same grains as those released in the column. For slope angles $\theta $ a few degrees smaller than the typical friction angle $\delta $ of the involved material, a quasi-uniform flow develops behind the front.

**Figure 2.**Position of the static/flowing interface b as a function of time t until the granular mass stops, measured at $X=90$ cm from the gate, from experiments of granular collapse over an initially static granular layer of thickness ${b}^{0}=5$ mm on an inclined channel of slope angle $\theta ={19}^{\circ}$ (green squares), $\theta ={22}^{\circ}$ (blue stars), $\theta ={23}^{\circ}$ (red crosses), and $\theta ={24}^{\circ}$ (black vertical crosses). Time $t=0$ s corresponds to the time when the front of the flowing layer reaches the position $X=90$ cm. The approximate upward velocity $\dot{b}$ of the static/flowing interface is indicated in m/s for each slope angle. These new results have been extracted from the experiments performed by [12,13] for granular columns of initial down-slope length ${r}_{0}=20$ cm, initial thickness ${h}_{0}=14$ cm, and width $W=20$ cm (i.e., volume $V=5600$ cm${}^{3}$). Note that the position of the free surface when the mass stops, i.e., when $b=h$, represented by the upper point for each angle, slightly depends on the slope angle and decreases as the slope angle increases, from about 0.025 m at $\theta ={19}^{\circ}$ to about 0.018 m at $\theta ={24}^{\circ}$.

**Figure 3.**Velocity profiles $U(Z)$ at different times until the granular mass stops, measured at $X=90$ cm from the gate, in experiments of granular collapse over an initially static granular layer of thickness ${b}^{0}=5$ mm on an inclined channel of slope angle (

**a**) $\theta ={19}^{\circ}$; (

**b**) $\theta ={22}^{\circ}$; and (

**c**) $\theta ={24}^{\circ}$. Time $t=0$ s corresponds to the time when the front of the flowing layer reaches the position $X=90$ cm. These new results have been extracted from the experiments performed by [12,13] for granular columns of initial down-slope length ${r}_{0}=20$ cm, initial thickness ${h}_{0}=14$ cm, and width $W=20$ cm (i.e., volume $V=5600$ cm${}^{3}$).

**Figure 4.**Simplified flow configuration consisting of a uniform flowing layer over a uniform static layer, both parallel to the rigid bed of slope angle $\theta $. The static/flowing interface position is $b(t)$ and the total thickness of the mass h is constant.

**Figure 5.**Static/flowing interface position b as a function of time t for the inviscid model, different slope angles and an initially static granular layer of thickness ${b}^{0}=5$ mm, using (

**a**) a linear, (

**b**) an exponential, and (

**c**) a Bagnold initial velocity profile. The experimental results from Figure 2 are shown for comparison.

**Figure 6.**Velocity profiles $U(Z)$ at different times for the inviscid model, with a linear initial velocity profile and an initially static granular layer of thickness ${b}^{0}=5$ mm over an inclined plane of slope (

**a**) $\theta ={19}^{\circ}$ and (

**b**) $\theta ={24}^{\circ}$. The experimental results from Figure 3 are shown for comparison.

**Figure 7.**Velocity profiles $U(Z)$ at different times for the inviscid model, with an initially static granular layer of thickness ${b}^{0}=5$ mm over an inclined plane of slope (

**a**,

**c**) $\theta ={19}^{\circ}$ and (

**b**,

**d**) $\theta ={24}^{\circ}$, using (

**a**,

**b**) an exponential and (

**c**,

**d**) a Bagnold initial velocity profile. The experimental results from Figure 3 are shown for comparison.

**Figure 8.**Velocity ${U}_{1}^{n+1}$ versus ${b}^{n+1}$. The chosen value for ${b}^{n+1}$ is determined by the intersection of the curve with the horizontal axis.

**Figure 9.**Schematic evolution of the thickness of the static/flowing interface as a function of time.

**Figure 10.**Static/flowing interface position b as a function of time t for different slope angles using a linear velocity profile and different viscosities (

**a**) $\nu ={10}^{-5}$ m${}^{2}$s${}^{-1}$; (

**b**) $\nu =5\times {10}^{-5}$ m${}^{2}$s${}^{-1}$; and (

**c**) $\nu ={10}^{-4}$ m${}^{2}$s${}^{-1}$. The experimental results from Figure 2 are shown for comparison.

**Figure 11.**Velocity profiles $U(Z)$ at different times, with a linear velocity profile, for two different viscosities (

**a**,

**b**) $\nu =5\times {10}^{-5}$ m${}^{2}$s${}^{-1}$ and (

**c**,

**d**) $\nu ={10}^{-4}$ m${}^{2}$s${}^{-1}$, and for the slope angles (

**a**,

**c**) $\theta ={19}^{\circ}$; and (

**b**,

**d**) $\theta ={24}^{\circ}$. The experimental results from Figure 3 are shown for comparison.

**Figure 12.**(left) Velocity profiles $U(Z)$ for an inclined plane of slope $\theta ={24}^{\circ}$ and (right) evolution of the thickness of the static/flowing interface position b for different slope angles, with a viscosity $\nu =5\times {10}^{-5}$ m${}^{2}$s${}^{-1}$, using an exponential (

**a**,

**b**) and a Bagnold (

**c**,

**d**) initial velocity profile. The experimental results from Figure 2 and Figure 3 are shown for comparison.

**Figure 13.**${t}_{\nu =0}^{\mathrm{stop}}-{t}_{\nu}^{\mathrm{stop}}$ with respect to viscosity in log scale.

**Figure 14.**Static/flowing interface position b as a function of time t, for variable viscosity associated with the $\mu (I)$ law, with linear initial velocity profile and slope angles $\theta ={19}^{\circ}$, $\theta ={22}^{\circ}$, $\theta ={24}^{\circ}$. The experimental results from Figure 2 are shown for comparison.

**Figure 15.**Velocity profiles $U(Z)$ at different times, for variable viscosity associated with the $\mu (I)$ law, with linear initial velocity profile and slope angles $\theta ={19}^{\circ}$ and $\theta ={24}^{\circ}$. The experimental results from Figure 3 are shown for comparison.

**Figure 16.**Static/flowing interface position b as a function of time t (left) and velocity profiles $U(Z)$ at time $t=0.5$ s (right), with linear initial velocity profile and slope angle $\theta ={22}^{\circ}$, for respectively our model without viscosity, with constant viscosity $\nu =5\times {10}^{-5}$ m${}^{2}$s${}^{-1}$, variable viscosity associated with the $\mu (I)$ law, and experimental measurements.

**Figure 17.**Thickness profile h as a function of down-slope position X in the experiments performed by [12,13], at times $t=0.66$ s, $0.78$ s, $1.02$ s. The value $X=0$ corresponds to the position of the gate. The slope angle is $\theta ={22}^{\circ}$. Note that the vertical scale differs from the horizontal one, since the thickness of the flow represents only 7% of its horizontal extension.

**Table 1.**Stopping time ${t}^{\mathrm{stop}}$ for the inviscid model ${t}_{\nu =0}^{\mathrm{stop}}={U}^{0}(h)/S$ (for linear initial velocity profile) and in the experiments (from Figure 2), for different slope angles.

${\mathit{t}}^{\mathbf{stop}}$ (s) | $\mathit{\theta}={\mathbf{19}}^{\circ}$ | $\mathit{\theta}={\mathbf{22}}^{\circ}$ | $\mathit{\theta}={\mathbf{24}}^{\circ}$ |
---|---|---|---|

inviscid model | $0.79$ | $1.4$ | $2.8$ |

experiments | $0.94$ | $1.3$ | $3.3$ |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lusso, C.; Bouchut, F.; Ern, A.; Mangeney, A.
A Free Interface Model for Static/Flowing Dynamics in Thin-Layer Flows of Granular Materials with Yield: Simple Shear Simulations and Comparison with Experiments. *Appl. Sci.* **2017**, *7*, 386.
https://doi.org/10.3390/app7040386

**AMA Style**

Lusso C, Bouchut F, Ern A, Mangeney A.
A Free Interface Model for Static/Flowing Dynamics in Thin-Layer Flows of Granular Materials with Yield: Simple Shear Simulations and Comparison with Experiments. *Applied Sciences*. 2017; 7(4):386.
https://doi.org/10.3390/app7040386

**Chicago/Turabian Style**

Lusso, Christelle, François Bouchut, Alexandre Ern, and Anne Mangeney.
2017. "A Free Interface Model for Static/Flowing Dynamics in Thin-Layer Flows of Granular Materials with Yield: Simple Shear Simulations and Comparison with Experiments" *Applied Sciences* 7, no. 4: 386.
https://doi.org/10.3390/app7040386