Next Article in Journal
Simulation and Fabrication of HfO2 Thin Films Passivating Si from a Numerical Computer and Remote Plasma ALD
Next Article in Special Issue
Optimization of Virtual Loudspeakers for Spatial Room Acoustics Reproduction with Headphones
Previous Article in Journal
A Transplantable Frequency Selective Metasurface for High-Order Harmonic Suppression
Previous Article in Special Issue
Exploring the Effects of Pitch Layout on Learning a New Musical Instrument
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Appl. Sci. 2017, 7(12), 1242; https://doi.org/10.3390/app7121242

Melodic Similarity and Applications Using Biologically-Inspired Techniques

1
Department of Information and Computing Sciences, Utrecht University, 3584 CC Utrecht, The Netherlands
2
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
*
Author to whom correspondence should be addressed.
Academic Editor: Meinard Müller
Received: 30 September 2017 / Revised: 23 November 2017 / Accepted: 27 November 2017 / Published: 1 December 2017
(This article belongs to the Special Issue Sound and Music Computing)
Full-Text   |   PDF [926 KB, uploaded 1 December 2017]   |  

Abstract

Music similarity is a complex concept that manifests itself in areas such as Music Information Retrieval (MIR), musicological analysis and music cognition. Modelling the similarity of two music items is key for a number of music-related applications, such as cover song detection and query-by-humming. Typically, similarity models are based on intuition, heuristics or small-scale cognitive experiments; thus, applicability to broader contexts cannot be guaranteed. We argue that data-driven tools and analysis methods, applied to songs known to be related, can potentially provide us with information regarding the fine-grained nature of music similarity. Interestingly, music and biological sequences share a number of parallel concepts; from the natural sequence-representation, to their mechanisms of generating variations, i.e., oral transmission and evolution respectively. As such, there is a great potential for applying scientific methods and tools from bioinformatics to music. Stripped-down from biological heuristics, certain bioinformatics approaches can be generalized to any type of sequence. Consequently, reliable and unbiased data-driven solutions to problems such as biological sequence similarity and conservation analysis can be applied to music similarity and stability analysis. Our paper relies on such an approach to tackle a number of tasks and more notably to model global melodic similarity. View Full-Text
Keywords: melodic similarity; alignment; stability; variation; bioinformatics melodic similarity; alignment; stability; variation; bioinformatics
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed
Printed Edition Available!
A printed edition of this Special Issue is available here.

Share & Cite This Article

MDPI and ACS Style

Bountouridis, D.; Brown, D.G.; Wiering, F.; Veltkamp, R.C. Melodic Similarity and Applications Using Biologically-Inspired Techniques. Appl. Sci. 2017, 7, 1242.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Appl. Sci. EISSN 2076-3417 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top