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Abstract: Music similarity is a complex concept that manifests itself in areas such as Music
Information Retrieval (MIR), musicological analysis and music cognition. Modelling the similarity
of two music items is key for a number of music-related applications, such as cover song detection
and query-by-humming. Typically, similarity models are based on intuition, heuristics or small-scale
cognitive experiments; thus, applicability to broader contexts cannot be guaranteed. We argue that
data-driven tools and analysis methods, applied to songs known to be related, can potentially provide
us with information regarding the fine-grained nature of music similarity. Interestingly, music and
biological sequences share a number of parallel concepts; from the natural sequence-representation,
to their mechanisms of generating variations, i.e., oral transmission and evolution respectively.
As such, there is a great potential for applying scientific methods and tools from bioinformatics
to music. Stripped-down from biological heuristics, certain bioinformatics approaches can be
generalized to any type of sequence. Consequently, reliable and unbiased data-driven solutions to
problems such as biological sequence similarity and conservation analysis can be applied to music
similarity and stability analysis. Our paper relies on such an approach to tackle a number of tasks
and more notably to model global melodic similarity.
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1. Introduction

In 2016, digital music revenues overtook physical revenues for the first time (www.ifpi.org/
downloads/GMR2016.pdf), a testament to the music industry’s adaptability to the digital age. Listeners
are currently able to stream and explore massive collections of music such as Spotify’s (www.spotify.
com) library of around 30 million tracks. Such a development has changed not only the way people
listen to music, but also the way they interact with it. According to a 2015 survey (www.midiaresearch.
com/blog/midia-chart-of-the-week-music-discovery), 35% of users of streaming services use them to
discover new songs and artists, new and exciting music for their unique personal taste or listening
habits. At the same time, the proliferation of digital music services has raised the listeners’ interest
in the accompaniment chords (www.chordify.com), the lyrics (www.musixmatch.com), the original
versions of a cover, the sample (loop) (www.whosampled.com) that a song uses and many more
scenarios that service providers cannot deal with manually.

This development brings Music Information Retrieval (MIR) to the centre of attention. The field
includes research about accurate and efficient computational methods, applied to various music
retrieval and classification tasks such as melody retrieval, cover song detection, automatic chord
extraction and of course music recommendation. Such applications require us to build representations
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of previously seen classes (e.g., sets of covers of the same song), which can be only compared to
a query (e.g., a cover song whose original is unknown) by means of a meaningful music similarity
function. A robust MIR system should model the fuzziness and uncertainty of the differences between
two musical items perceived as similar. As Van Kranenburg argues specifically about folk song
melodies: “knowledge about the relation between a desired melody and the way this melody is sung
from memory” can increase the robustness of melody retrieval tasks [1].

However, this “knowledge”, the exact mechanics of perceived similarity, is still unknown
or incomplete [2]. This is not surprising considering music’s inherently complex nature [3,4].
The perceived similarity between two musical pieces is known to be subjective: judgements of different
individuals can vary significantly. Marsden [5] argues that similarity involves interpretation, which by
itself is a personal creative act. Ellis et al. [6] argue that the individual perception of similarity can
show variation depending on the listener’s mood or familiarity with the musical culture and can even
change through time. The individual interpretation can be affected also by the multidimensionality of
music, since similarity between two songs can be a function of timbre, melody, rhythm, structure or
indeed any combinations of those (or other) dimensions. To make matters worse, music similarity is
known to be contextual, thus depending on the circumstances of comparison. Deliège [7] argues that
similarity can appear as stable only when the context, “the structure of the natural world or a specific
cultural system” is quite stable itself.

To overcome, or avoid addressing the aforementioned issues, many MIR approaches to similarity
rely on cognition studies, expert heuristics, music theory or formalized models in general. Cognition
studies are scientifically well-founded, but often cannot capture the general consensus due to practical
limitations, such as access to a sufficient number of participants that fit a certain profile for the study.
Expert knowledge, on the other hand, can be a valuable source of information, but with regard to
music, expert knowledge cannot fully explain its highly complex nature and the sophisticated human
perception. In addition, heuristic approaches have the risk of being descriptive rather than predictive.
Formalized models founded on music theory typically neglect that it is not a theory of music perception
of similarity. In addition, such models have the highest risk of being solely descriptive, thus not
providing us with new knowledge. To their defence, all such approaches can have a certain practical
validity, but limited explanatory power, as long as they are evaluated only on a reliable ground-truth
and are applied to narrow contexts. Human ratings of similarity are highly problematic with studies
showing that subjects are inconsistent with each other and even with themselves [8,9]. Regarding the
assessment of similarity between song-triads particularly, Tversky [10] argues that subjects are affected
by the song order of appearance and even the song popularity. Regarding the context, a one-fits-all
model of similarity is impossible, and as Marsden argues: “the best one can hope for is a measure
which will usefully approximate human judgements of similarity in a particular situation” [5].

As long as music cognition fails to provide us a blueprint of how to develop a computational,
generalizable model of music similarity, we are required to explore alternative, data-driven approaches
that aim to model the knowledge extracted from the data and the data relations. Data-driven
music similarity is not a new concept in MIR, but such studies [11,12] have focused on high-level
similarity (genre, artist) where listeners’ opinions are fuzzy. Approaches on more fine-grained music
similarity at the note or chord level, such as the work of Hu et al. [13], are scarce for a legitimate
reason: in order for the data relations to be bias-free and visible, the data need to be organized
in a proper-for-knowledge-extraction form. Properly annotated and disambiguated corpora of
note-to-note or chord-to-chord relationships are extremely hard to find.

Fortunately, algorithms that properly organize sequential data have been widely used and
are fundamental in the field of bioinformatics. One of the most notable algorithms from the vast
bioinformatics toolbox, pairwise sequence alignment via dynamic programming, has been successfully
adapted by MIR to compare musical items such as melodies [14] or chord sequences [15]. On closer
look, musical and biological sequences are not as unrelated as one might think: even as early as the
1950s, it had been observed that they share a number of resembling concepts [16]. Krogh states that
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“the variation in a class of sequences can be described statistically, and this is the basis for most methods
used in biological sequence analysis” [17]. By acknowledging that the variation of certain quantifiable
musical features in a group of related music sequences can be described statistically, as well [18],
we gain access to a number of sophisticated, data-driven approaches and bias-free tools that can be
adopted from bioinformatics, allowing the modelling of music similarity.

1.1. From Bioinformatics to MIR

Bioinformatics use statistical and computational techniques to connect molecular biology and
genetics. Bioinformatics deal with different types of data. DNA sequences carry most of the inherited
genetic information of living organisms. These sequences can be represented as a string over
a four-letter alphabet {A,C,G,T}, where each symbol represents a nucleotide base. DNA sequences
can be as long as several billion symbols, depending on the organism. The instructions to form
proteins, which are essential to living organisms, are encoded in the DNA in the form of subsequences
or sections called genes. Through a translation process, certain genes are mapped into long chains
of amino acids, which fold into three-dimensional protein structures. For computational purposes,
proteins can likewise be considered as strings of characters (typically several hundred symbols) from
a 20-letter alphabet (since there are 20 different common amino acids).

Music, unlike static forms of art, has a temporal nature. As such, music perception relies on
temporal processing [19]. As Gurney argues regarding melodies specifically: “The elements are units
succeeding one another in time; and though each in turn, by being definitely related to its neighbours,
is felt as belonging to a larger whole” [20]. The same idea actually holds for other music elements,
such as chords (notes sounding almost simultaneously) or rhythm. It is therefore not surprising that
certain music items, such as symbolic scores, chord transcriptions and others, similarly to DNA or
proteins, can be naturally represented as sequences of characters from a finite alphabet. When it comes
to music applications, the importance of sequence representation has been demonstrated most notably
by Casey and Slaney [21] and by numerous other works that adopted it over the years.

A core assumption of molecular biology is that of homology: related sequences diverge from
a common ancestor through random processes, such as mutation, insertion, deletion, and more
complex events, aided by natural selection. This process of genetic variation provides the basis for
the biodiversity of organisms. Homologues might share preferentially “conserved” regions, subjected
to fewer mutations compared to the rest of the sequence [22], which are considered crucial for the
functionality of a protein [23]. Similarly, a fundamental observation in music is that music information
passing orally, or in other form, can be subjected to noise. Due to our limited cognitive capacity,
or for artistic purposes, a musical piece can change throughout a network of musical actors. A folk
song that has been transmitted from mouth to mouth and from generation to generation, might differ
dramatically from its original version. Even recorded songs can differ when covered by other artists or
performed live. There is a strong resemblance to biological evolution since music homologues can occur
by altering, inserting, deleting or duplicating music elements to a certain extent [16]. Intuitively also,
certain salient parts of a melody or a chord progression are less likely to mutate, thus remaining
“conserved”, in an alternative version.

Identifying similarity is crucial not only for MIR, but for bioinformatics applications, as well.
Finding homologues through sequence-similarity search is key. Besides the systematic organization,
homologue search can help relate certain characteristic behaviours of a poorly-known protein
sequence [24]. In addition, experimental results on model species can be applied to humans.
Pairwise sequence alignment is the most popular method for assessing the similarity of two sequences.
The idea is to introduce gaps ‘-’ to sequences so that they share the same length, while placing
“related” sequence elements in the same positions. As such, pairwise alignment aims to find the
optimal alignment with respect to a scoring function that optimally captures the evolutionary
relatedness between amino acids (how probable it is for one amino acid to be mutated to another).
Another important bioinformatics application is finding conserved regions or patterns among multiple
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homologue sequences which allows for the estimation of their evolutionary distance, for phylogenetic
analysis and more. This is achieved by aligning three or more sequences simultaneously, a process
typically called Multiple Sequence Alignment (MSA).

1.2. Contribution

In this paper, we argue that MIR can benefit immensely by exploring the full potential of tools,
methods and knowledge from the field of bioinformatics and biological sequence analysis, particularly
considering melodic-similarity related applications. Despite the high resemblance of concepts
(see Table 1), MIR has yet to fully adopt sophisticated solutions such as multiple sequence alignment.
As Van Kranenburg suggested, there is a potential for MIR to harvest the bioinformatics’ long history
of algorithm development, improvement and optimization for biological sequence analysis [1].

Table 1. Shared concepts and terms between music and bioinformatics.

Music Bioinformatics

Melodies, chord progressions DNA, proteins
Oral transmission, cover songs Evolution

Variations, covers Homologues
Tune family, clique Homology, family

Cover song identification, melody retrieval Homologue detection
Stability Conservation

Our previous works on aligning polyphonic voices [25] and melody retrieval [26] more notably,
briefly touched on the relationship between MIR and bioinformatics. However, their ideas and
bioinformatics-inspired solutions facilitated the work presented in this paper. As such, this paper’s
contribution relies first on establishing a strong connection between musical and biological sequences.
This allows us to adopt analysis pipelines and algorithms from bioinformatics to: (a) gain new
insights regarding music similarity by performing a stability analysis, and (b) present novel solutions
for tackling melody retrieval by modelling global similarity. Most importantly, our pipelines are
purely data-driven and free of heuristics, as opposed to other MIR methods. To validate the
generalization-ability of our approach, we apply it to two melodic datasets of different music.
As such, we diverge from previous MIR studies that focused on a specific subset of all possible
music. In addition, previous work on datasets of chord sequences [27] also supports the usability of
this approach to more than melodic data.

The remainder of this paper is organized as follows: Section 2 acts as an introduction the
fundamental sequence comparison and analysis tools derived from bioinformatics. Section 3 describes
the musical datasets used in our work. From there on, we apply the bioinformatics methods and tools
to the datasets. Section 4 investigates the concept of “meaningful” alignments, while Section 5 uses
the findings of 4 to present an analysis of music stability. Section 6 tackles the problems of modelling
global similarity. Finally, Section 7 discusses the conclusions of this paper.

2. Methods and Tools

This section aims to describe the fundamental methods used in biological sequence analysis:
pairwise alignment and multiple sequence alignment. Understanding their mechanics and limitations
is crucial for successfully applying them to MIR tasks. However, the reader familiar with these methods
can skip to Section 3 directly.

2.1. Pairwise Alignment

An intuitive method for DNA or protein sequence comparison is the Levenshtein (or Edit)
distance, which computes the minimal number of one-symbol substitutions, insertions and deletions
to transform one sequence into the other. Such operations can be naturally mapped to the biological
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process of mutation. Given a cost for each operation, the weighted Levenshtein distance can be
computed using dynamic programming. The major drawback of the Levenshtein distance is that
it captures the divergence of the two sequences rather than their relatedness or, the important to
this paper, similarity. In addition, it does not allow for identifying conserved regions between the
sequences, since it is a purely mathematical distance function. As such, computing the similarity of
two DNA or protein sequences is typically performed using alignment, the converse to Edit distance.
During alignment, gaps ‘-’ that represent symbols that were deleted from the sequences via the process
of evolution [28], are introduced in the sequences, until they have the same length and the amount of
“relatedness” between symbols at corresponding positions is maximized.

More formally, consider two sequences over an alphabet of symbols A, X := x1, x2, .., xn and
Y := y1, y2, .., ym with all xi, yi ∈ A. An alignment A of X and Y, consists of two sequences X′ and Y′

over {−} ∪A, such that |X′| = |Y′| = L, where if we remove all ‘-’ from X′, Y′ we are left with X and
Y respectively. The number of possible alignments A for a pair of sequences is exponential in n and
m, so an optimal alignment should be selected given a scoring function that typically derives from
a model of “relatedness” between the symbols of A, where the goal is to put similar symbols at the
same position. The most typical such scoring function is the alignment score:

c(A) =
L

∑
p=1

v(x′p, y′p) (1)

where v : A×A → IR. The scoring function v is typically encoded as an |A| × |A|matrix called the
substitution matrix. Most pairwise alignment methods use a Dynamic Programming (DP) method,
credited to Needleman and Wunsch [29], which computes the optimal (highest scoring) alignment by
filling a cost matrix D recursively:

D(i, j) = max


D(i− 1, j− 1) + v(xi, yj)

D(i− 1, j)− γ

D(i, j− 1)− γ

(2)

where γ is the gap penalty for aligning a symbol to a gap. An extension uses an affine gap penalty
based on the assumption that the occurrence of consecutive deletions/insertions is more probable than
the occurrence of the same amount of isolated mutations [28]: for a gap of length z, the gap penalty
would be:

γ(z) = −d− (z− 1)e (3)

where d and e are the gap open and gap extension penalties respectively. To optimize an alignment that
uses an affine gap penalty requires a slightly more complex DP algorithm [30]. In the simple non-affine
gap case, the score of the optimal alignment is stored in D(n, m), while the alignment itself can be
obtained by backtracking from D(n, m) to D(0, 0). The Needleman and Wunsch approach is a global
alignment method, since it aims to find the best score among alignments of full-length sequences.
On the other hand, the local alignment framework, first optimized by Smith and Waterman [31], aims to
find the highest scoring alignments of partial sequences by tracking back from max(D(i, j)) instead of
D(n, m), and by forcing all D(i, j) to be non-negative. Local alignment allows for the identification of
substrings (patterns) of high similarity.

When affine gaps are not considered, meaningful, high-quality alignments are solely dependent
on the knowledge captured by the substitution matrix used [30]: optimal alignments with good scoring
matrices will assign high scores to pairs of related sequences, while giving a low alignment score to
unrelated sequences. More formally, given the two sequences X, Y their alignment score c(A) should
represent the relative likelihood that the two sequences are related as opposed to being unrelated
(aligned by chance). This is typically modelled by a ratio, denoted as odds ratio:
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P(X, Y|M)

P(X, Y|R) (4)

where M is a probabilistic model of related sequences and R is a model generating unrelated sequences.
If qa is the frequency of a symbol a, and both X and Y have the same distribution under R, then for the
random alignment case aligned pairs happen independently, which translates to:

P(X, Y|R) = P(X|R)P(Y|R) = ∏
i

qxi ∏
j

qyj (5)

For the matching case, where aligned pairs happen with a joint probability p, the probability for
the alignment is:

P(X, Y|M) = ∏
i

pxiyi (6)

In order to get an additive scoring system, it is standard practice to get the logarithm of
Equation (3), which after substitution becomes:

log
P(X, Y|M)

P(X, Y|R) = ∑
i

log
( pxiyi

qxi qyi

)
(7)

A substitution matrix can be considered nothing more than a matrix arrangement of the
log(pxiyi /qxi qyi ) values (scores) of all possible pairwise symbol combinations.

Sequence alignment via dynamic programming and its time-series counterpart, Dynamic Time
Warping (DTW), have been fundamental tools for many MIR tasks since first being applied in a melody
retrieval task by Mongeau and Sankoff [32]. Alignment, despite being considered an ill-posed problem
for strongly deviating versions of a musical piece [33], has proven to be very useful for identification
or classification tasks where strong similarities are present [1,34] and high scoring alignment has
been shown to correlate well with human judgements [35,36]. It has been used for cover song
detection [37], pattern mining [38], extensively for query-by-humming [14,39] and in other MIR tasks.
Interestingly, DTW has been extended to align items that cannot be naturally represented as single
sequences, such as polyphonic music [40] or audio [41,42]. Consequently, alignment has been also key
to finding correspondences among related music items of not the same format (typically called music
synchronization): it has been used for score following, the task of aligning different music representations
such as audio and score or MIDI (Musical Instrument Digital Interface) [41,43]. Describing alignment’s
numerous MIR applications exceeds the scope of this study. However, a complete overview of DTW in
music up until 2007 can be found in the work of Müller [44].

2.2. Multiple Sequence Alignment

A multiple sequence alignment inserts gaps into more than two sequences over an alphabet
so that they have the same length and the relatedness between symbols in the same columns is
maximized. Formally, given k sequences s1, s2, ..., sk over an alphabet A and a gap symbol ‘-’ /∈ A,
and let g : ({−} ∪ A)∗ → A∗ be a mapping that removes all gaps from a sequence containing gaps.
A multiple sequence alignment A consists of k sequences s′1, s′2, ..., s′k over {−} ∪A such that g(s′i) = si
for all i, (s′1,p, s′2,p, .., s′k,p) 6= (−, ...,−) for all p, and |s′i| = L for all i.

Similar to pairwise alignment, there is a great number of possible MSAs for a single input of
sequences [30]. We typically want to pick the most “meaningful” considering our task at hand.
More formally: given an objective scoring function c : A → IR that maps each alignment to a real
number, we are interested in A′ = arg maxA(c(A)). There are many such functions [28], but the
most widely used is the Weighted Sum-Of-Pairs (WSOP or SOP) [45], a summing of scores of all
symbol-pairs per column. Let mj

i be the i-th column j-th row of A, the SOP is defined as such:
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c(A) =
L

∑
i

∑
k<l

wk,lv(mk
i , ml

i) (8)

where wk,l is a weight assigned to the pair of sequences k, l and k < l corresponds to an iteration over
all pairs of rows in the column. Naturally, the objective function can be adapted to accommodate
affine gaps. Computing the optimal MSA is unfortunately NP-complete [46] and cannot be used in
realistic scenarios that include numerous and long sequences. Therefore in the field of bioinformatics,
heuristic approaches that give good alignments, though not guaranteed to be optimal, have been
developed. According to Kemena and Notredame [47], more than 100 different MSA algorithms have
been proposed over the last 30 years but discussing them in detail exceeds the scope of this paper.

MSA algorithms have found a rather small application in MIR. Liu [48] uses the progressive
alignment algorithm to compare different music performances represented as strings derived from
chroma features (distribution of the signal’s energy across a set of pitch classes). In a similar manner
Wang et al. [49] showed that progressive alignment of multiple versions can stabilize the comparison for
hard-to-align recordings that can lead to an increase in alignment accuracy and robustness. Finally in
a tangential task, Knees et al. [50] use a progressive alignment approach to align multiple lyrics
gathered from various online sources.

3. Melodic Sequence Data

Music comprises sound events that can be pitched or unpitched (percussive) with either stable
or unstable pitch. In the context of this paper we consider the tone, a fixed frequency sound (pitch),
to be the most important musical element. In music notation (scores), tones are represented as
notes with accompanying duration values. A series of notes arranged in time and perceived as
a distinct group or idea, is what we roughly define as a melody, although years of musicological
studies have failed to agree on a consensus definition. Poliner et al. [51] define it as “the single
(monophonic) pitch sequence that a listener might reproduce if asked to whistle or hum a piece of
polyphonic music, and that a listener would recognize as being the essence of that music when heard
in comparison.” As Kim et al. [52] also mention, one can recognize a song (out of all known songs) just
by its melody even though it might have been corrupted with noise or cut short. This observation is
a testament to melody’s importance to music perception. As such, melodies have been at the centre of
musicological research [53] and music cognition [54]. In MIR, melody extraction from audio has been
an active research topic, since melodies can act as robust and efficient features for song retrieval [55].
Query-by-humming, i.e., retrieving similar items using a sung melody as a query, has been also an
important, on-going MIR task [56,57].

When it comes to comparing melodies in terms of their similarity, sequence representation is key;
we need to carefully select the music features that we will represent as sequences [47]. As Volk et al. [2]
argue based on relevant studies, music similarity works on many dimensions, such as melodic,
rhythmic or harmonic, but the musicological insights regarding the relative importance of each
dimension are insufficient. The works of Van Kranenburg [1] and Hillewaere et al. [58] revealed the
importance of the pitch dimension, so our work considers melodies as pitch-contours, meaning series
of relative pitch transitions constrained to the region between +11 and −11 semitones (folded to one
octave so that a jump of an octave is treated as unison and therefore ignored). Besides their simplicity
and key-invariance, pitch contours have been found to be more significant to listeners for assessing
melodic similarity than alternative representations [59]. In our work, all sequences of pitch transitions
are mapped to an extension of the 20-letter alphabet that is used to represent the naturally occurring
amino acid for ease of adaptation.

3.1. Datasets

Reliable analysis and modelling of similarity requires first and foremost datasets of unambiguous
relationships between music items. Marsden [5] among others, makes a strong case regarding the
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validity of similarity ranking annotations, considering the paradigm differences of the listening
experiments that generated them. However, he is more supportive to binary or definite annotations of
similarity, such as songs known to be covers, or songs known to be related from musicological studies.
Such data can be used to verify a computational model with regard to its retrieval or classification
performance, since the distance for music items within a category should be less than the distance
of items belonging to different categories. As such, this paper uses two datasets of symbolically
represented melodies of varying size and nature, containing melodies that are considered related
(e.g., covers of the same song) grouped into definite groups called either families, classes or cliques.
Summary statistics for both sets are presented in Table 2.

The Annotated Corpus of the Meertens Tune Collections [60], or TUNEFAM-26, is a set of 360 Dutch
folk songs grouped into 26 “tune families” by Meertens Institute experts. Each contains a group of
melody renditions related through an oral transmission process. For this dataset, expert annotators
assessed the perceived similarity of every melody over a set of dimensions (contour, rhythm, lyrics,
etc.) to a set of 26 prototype “reference melodies”. In addition, the dataset contains 1426 annotated
motif occurrences grouped into 104 classes, where “motifs” correspond to recurring patterns inside the
melodies of a tune family. The Cover Song Variation dataset [61], or CSV-60, is a set of expert-annotated,
symbolically-represented vocal melodies derived from matching structural segments (such as verses
and choruses) of different renditions of sixty pop and rock songs. CSV-60 is inherently different from
TUNEFAM-26 in two ways. First, the grouping of melodies into classes is certain: the songs were
pre-chosen as known covers of songs of interest. Secondly, cover songs are typically not a by-product
of an oral transmission process since cover artists have access to the original version.

Table 2. Summary statistics for the datasets considered in our work. We also present the Area Under
the Curve (AUC) value for the Receiver Operating Characteristic curve (ROC) on the Percentage
Sequence Identity (PID). Given two aligned sequences, the PID score is simply the number of identical
positions in the alignment divided by the number of aligned positions [62]. The higher the AUC PID
the more similar the sequences are in a clique compared to the whole dataset. It should be noted that
the alphabet size presented corresponds to the number of unique symbols appearing in the dataset.

Summary statistics TUNEFAM-26 CSV-60

Number of cliques 26 60
Clique Size median (var) 13.0 (4.016) 4.0 (1.146)

Sequence Length median (var) 43.0 (15.003) 26.0 (10.736)
AUC PID 0.84 0.94

Alphabet Size 22 22

4. Multiple Sequence Alignment Quality for Melodic Sequences

This paper’s main approach on modelling melodic similarity relies on capturing the variation
among two or more perceived-as-similar melodies. For that we need trustworthy, “meaningful”
alignments of related music sequences, such that the statistical properties of the alignment can inform
us about the note-to-note relationships. Since such data can be hard to find, we are required to align
related sequences using alignment algorithms. Alignment, pairwise or otherwise, with notable
exceptions [63,64] has been typically used as an out-of-the-box tool to align instances of music
sequences, with the sole purpose of using its score output further in a retrieval pipeline. The quality
or musical appropriateness of the alignment of symbols themselves has always been evaluated via
a proxy, i.e., some kind of music retrieval scenario. As long as the alignment-pipeline outperformed
other approaches, its utility was considered significant. The major problem however, is that outside
the proxy strategy, there are no studies or musical intuition to prefer one alignment over the other.

Identifying the features that make a “good”, meaningful alignment is an intricate task, not only
for musical but biological sequences as well. Interestingly, proteins are folded into diverse and complex
three-dimensional structures. Structure motifs (not to be confused with the homonym musical concept)
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diverge slower in the evolutionary time scale than sequences, and consequently homology detection
among highly divergent sequences is easier in the structural than the sequence domain, though the
actual algorithms for three-dimensional shape alignment are complex. As such, structure motifs have
been used to aid the alignment of highly-divergent sequences [65]. In addition, reference alignments
produced from biological information, such as a conserved structure, have been frequently used to
assess the quality of an MSA [66].

We argue that similar to biological sequences, a “good” meaningful alignment of musical
significance, can be only evaluated via a trustworthy reference alignment. Previous related work [67]
generated “trustworthy” alignments of the CSV-60 set by using a progressive alignment algorithm
extended on three musical dimensions (pitch, onset, duration). Bountouridis and Van Balen’s choice
was based largely on intuition, since there is no literature supporting those three dimensions. Prätzlich
and Müller [64] investigated the evaluation of music alignment by using solely triplets of recordings of
the same piece and made clear that there are theoretical considerations of alignment quality-assessment
without a reference alignment. Therefore, the question becomes whether there exists a musical analogy
to the protein structure motifs.

In musicology shared, transformed but yet recognizable musical patterns are called “variations”
and according to musicological and cognitive studies, variations are essential to the human perception
of music similarity [2]. Specifically when it comes to classifying folk songs into tune families,
i.e., groups of songs with a common ancestor, Cowdery [68] considers the shared patterns to be a key
criterion. An annotation study on Dutch folk songs by Volk and Van Kranenuburg [4] also supported
this claim by proving that shared, stable musical patterns, called motifs were important for the expert
assessment of music similarity. Consequently, we can theoretically use the motif alignment as reference
for evaluating the quality of musical sequence alignment. For example, consider the following
sequences with expert annotated motifs “AB” (red) and “AFF” (cyan): AFFGABBBBC, ABDDBBC and
AFFABB. Two possible alignments with equal SOP scores are:

AFFGABB-BBC AFFGABB-BBC
––––ABDDBBC A––––BDDBBC
AFF-ABB–––– AFF-ABB––––

From a musicological perspective though, the first alignment is considered of higher quality,
since it aligns perfectly those subsequences that are annotated as same-label motifs. It is of high
importance to investigate which MSA algorithms and settings are optimal with regard to motif
alignment (for example, which algorithm would be more likely to generate the first alignment
rather than the second). The following paragraphs describe the appropriate experiments to answer
such question.

Our experiment pipeline comprises aligning a group of related sequences (that include motifs)
using different motif-agnostic MSA strategies, and then comparing the resulting alignment of motifs
to a reference optimal motif alignment. The comparison is not based on a distance function between
the alignments, but rather on assigning a score to both of them. Besides the different MSA strategies
(to be discussed in Section 4.3), the pipeline requires the following: first, a motif alignment scoring
function that is well-founded (see Section 4.1). Secondly, it requires a dataset of musical sequences that
contain annotated motifs for each clique, combined with trustworthy alignments of these motifs that
would act as a reference (see Section 4.2).

4.1. Motif Alignment Scoring

The only information available to compute a meaningful motif-based MSA score is the motifs’
position in the sequence, length and notes they contain. Due to the lack of knowledge regarding which
pairs of pitches should be aligned together, the motif alignment scoring method cannot be founded
on the pitch dimension. We are confident for only one thing: the notes belonging to same-labelled
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motifs should be somehow aligned. As a consequence, we focus on an intuitive scoring function that
is maximized when same-labelled motifs are maximally overlapped. Given a function label(xi) that
returns the motif label of the i-th note of a sequence X, the WSOP score (denoted motif-SOP) of an MSA
is based on the following scoring function:

v(xm, ym) =


+1 if label(xm) = label(ym)

−1 if label(xm) 6= label(ym)

0 if label(xm) = ∅ or label(ym) = ∅
(9)

In other words, we only penalize those alignments that align notes belonging to different motifs.
Alignment between notes not belonging to any motif (label(xi) = ∅), and labelled notes are considered
neutral since no studies or intuition suggests otherwise. The particular scoring function would assign
the same motif-SOP score for both the following alignments, since only the alignment of motif labels
(represented as colours) is taken into consideration:

AFFGABB-BBC -AFFGABB-BBC
––––ABDDBBC –––––ABDDBBC
-AFFABB–––– A-FF-ABB––––

4.2. Dataset and Reference Motif Alignments

The TUNEFAM-26 dataset is the best benchmark for our experiment, since it contains related
melodies (grouped into tune families) with a number of subsequences annotated by experts and
uniquely labelled as motifs (see Figure 1). It is however, not the optimal benchmark since the expert
annotated motifs of the same label, which can be of different lengths, do not come pre-aligned; we know
which sub-sequences in the family’s melodies are motifs, but we do not know their note-to-note
alignment. Since there are no trustworthy motif alignments, the optimal alignment should be
a by-product of the motif-SOP function and the intuition behind it, i.e., the reference alignment
should be the one that maximizes the motif-SOP score. In order to acquire that for each family,
through visual inspection, we manually align the motif variations. At the same time, we consider
the motif-SOP score of the original unaligned sequences as the lower bound minmSOP, i.e., the worst
possible scenario. The minmSOP and maxmSOP scores allow us to normalize any motif-SOP score to
a meaningful [0, 1] range.
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Figure 1. The 15 unaligned sequences of the tune family “Daar ging een heer”. Colours correspond to
motif labels. White colour indicates no motif label.

4.3. Multiple Sequence Alignment Algorithms and Settings

From the numerous MSA algorithms, we selected three based on many factors including simplicity,
popularity or quality of results on several bioinformatic benchmarks. One of the simplest approaches
to MSA, named “star” alignment, aims at employing only pairwise alignments for building the final
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MSA. The idea is to first find the most “central” among the sequences, pairwise align it to each one of
the rest and then combine the pairwise alignments into a single MSA. This method does not necessarily
attempt to optimize the objective function (see Section 2.2) and as such is rarely used. In our case,
star alignment can act as a naive baseline for the more sophisticated algorithms to be compared against.

Progressive Alignment (PA) [69] is one of the most popular and intuitive approaches, and it
comprises three fundamental steps. At first, all pairwise alignments between sequences are computed
to determine the similarity between each pair. At the second step, a similarity tree (guide tree) is
constructed using a hierarchical clustering method, which in biological sequences is sometimes used
to attempt to identify evolutionary relationships between taxa. Finally, working from the leaves of
the tree to the root, one aligns alignments, until reaching the root of the tree, where a single MSA
is built. The drawback of PA, is that incorrect gaps (especially those at early stages) are retained
throughout the process since the moment they are first inserted (the “once a gap, always a gap” rule).
Iterative refinement methods [70,71] aim to tackle this problem by iteratively removing each sequence
and realigning it with a profile created from the MSA of the rest, until an objective function has been
maximized. Our experiments use the PA-based T-COFFEE software (Tree-based consistency objective
function for alignment evaluation) [72]. T-COFFEE aims to tackle the problem by making better use
of information in the early stages . It uses an objective function (called COFFEE [73]) that first builds
a library of all optimal pairwise alignments and secondly, scores a multiple sequence alignment by
measuring its consistency with the library: how many of the aligned pairs in the MSA appear in
the library.

Locating very similar short and shared sub-regions between large sequences has been in important
task in bioinformatics. Such segments can efficiently reduce MSA runtimes and as a consequence,
MSA solutions that incorporate some of form of segmentation, such as DIALIGN[74] and MAFFT [75],
have found successful application. MAFFT in particular, is a progressive alignment method at its core,
but incorporates the Fast Fourier Transform (FFT) for biological sequences. In addition, MAFFT allows
the usage of the iterative refinement method. For non-biological sequences, MAFFT offers a “text”
alignment option that excludes biological and chemically-inspired heuristics from its pipeline. In such
a case, segmenting the sequences becomes a by-product of MAFFT’s objective function that incorporates
both a WSOP and a COFFEE-like scoring. According to MAFFT’s website (mafft.cbrc.jp/alignment/
software), “the use of the WSOP score has the merit that a pattern of gaps can be incorporated into the
objective function”.

MAFFT offers three different strategies for the initial pairwise alignment, that behave differently
with regard to the structure of the sequences. Local alignment with affine gap costs localpair is
appropriate for unaligned sequences centred around a conserved region. The genafpair strategy
uses local alignment with generalized affine gap costs [76] and is appropriate for sequences with
several conserved sub-sequences in long unalignable regions. Global alignment with affine gap costs
globalpair is appropriate for throughout alignable sequences. A lesser known option, which can
be applied on top of localpair and globalpair strategies, is allowshift which is appropriate for
sequences that are largely similar but contaminated by small dissimilar regions.

Each MSA algorithm aims to find the alignment that maximizes the SOP score on the Identity
(ID) scoring scheme, i.e., v(x, y) = +1 if x = y and v(x, y) = −1 if x 6= y. As a matrix, the ID scheme
has +1 in the diagonal and −1 otherwise. The effect and importance of gap penalties, or gap settings
(see Equation (3)), is well known for biological sequences [77] and for musical sequences as well [78].
Understanding their behaviour with regard to the MSA is crucial, especially when different matrices
are used. Since literature suggests setting them empirically [77] and the ID matrix is used on each
MSA algorithm in our case, we experiment with a only a small variety of gap settings. At the same
time, we keep in mind that there is no guarantee that these settings optimize the performance of
all MSA algorithms. Regarding T-COFFEE, such penalties are not essential when building the MSA,
since in theory the penalties are estimated from the library of pairwise alignments. In practice, it is
suggested to experiment with different settings while keeping in mind that the penalties are not related

mafft.cbrc.jp/alignment/software
mafft.cbrc.jp/alignment/software
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to the substitution matrix. Gap open can be in the range of [0,−5000] and gap extension in the range
of [−1,−10].

4.4. Results

For each clique of sequences we generated a reference motif alignment manually, and computed its
motif-SOP score (called Sre f ). At the same time, for each motif-agnostic configuration (MSA algorithm,
gap settings), we aligned the melodic sequences. Each resulting alignment was also assigned
a motif-SOP score (called Sauto). In order to identify the best MSA configuration with respect to
motif alignment, we compute its normalized motif-SOP score Sre f /Sauto.

Before proceeding into the quantitative results, it is worth visually examining the alignments
created by the MSA algorithms. Figure 2 presents different alignments of the tune family
“Daar_ging_een_heer_1” for a number of configurations. Regarding quantitative results, Figure 3 and
Table 3 present the normalized motif-SOP score for different configurations. There are a number of
observations that become immediately apparent: first, the normalized motif-SOP score can be less than
zero, since the original unaligned sequences, that act as the lower bound, may include correctly aligned
motifs by random chance (see Figure 1). Secondly as expected, star alignment is the worst performing
algorithm across all gap settings. Regarding the relative performance of the configurations themselves
(excluding star alignment), a Friedman significance test showed that there was a statistically significant
difference in motif-SOP depending on the configuration with p = 0.041. However, post hoc analysis
with Wilcoxon signed-rank tests and Bonferroni correction, revealed that there were no significant
differences among any pair of configurations.

Regarding the overall performance of the algorithms themselves, a Friedman significance test
showed that there was a statistically significant difference in normalized motif-SOP depending on
the algorithm with p < 10−6. Post hoc analysis with Wilcoxon signed-rank tests and a Bonferroni
correction resulted in a significance level set at p < 0.003. p values for all possible pairs are presented
in Table 4. It is clear that MAFFT, run with the globalpair strategy, outperforms T-COFFEE and that
of the three MAFFT strategies, globalpair performs the best. A Wilcoxon signed-rank test between
all the MAFFT algorithms using and not using the allowshift option, revealed that the allowshift
option does not have a significant impact on the results, p = 0.11.

Finally, regarding the gap settings, significance tests showed that for MAFFT and T-COFFEE

in general, there is a significant difference depending on the gap penalties used. For T-COFFEE in
particular, large gap settings such as (−60,−3) or (−40,−2) are not recommended. For MAFFT on the
other hand, small gap penalties, such as (−0.8,−0.5) should be avoided. However it should be noted
that for each particular MAFFT strategy, gap settings have no significant effect.
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Figure 2. Automatically aligned melodic sequences of the tune family “Daar ging een heer” using the
following configurations (top–bottom): MAFFT-genafpair-4.-2., MAFFT-globalpair-allowshift-4.-2.,
MAFFT-loacalpair-2.-1.5, MAFFT-localpair-allowshift-3.-1.5 and T-COFFEE-8-0.5. Colours
correspond to motif labels. White colour indicates no motif label.
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Figure 3. Normalized motif-Sum-Of-Pairs (SOP) score (y-axis) for different gap settings (x-axis) and
Multiple Sequence Alignment (MSA) algorithms.

Table 3. Median (standard deviation) normalized motif-SOP scores for different MSA algorithms and
gap settings. For T-COFFEE, the gap open values are multiplied by 10.

Algorithm 0.8–0.5 1–0.5 2–1.0 2–1.5 3–1.5 4–2 6–3

MAFFT-genaf 0.57 (0.95) 0.61 (0.83) 0.71 (0.68) 0.71 (0.68) 0.70 (0.61) 0.76 (0.53) 0.75 (0.80)
MAFFT-global 0.72 (0.60) 0.78 (0.60) 0.77 (0.49) 0.77 (0.48) 0.75 (0.50) 0.75 (0.41) 0.76 (0.25)

MAFFT-global-allowshift 0.76 (0.83) 0.75 (0.70) 0.78 (0.49) 0.78 (0.47) 0.76 (0.46) 0.82 (0.40) 0.76 (0.26)
MAFFT-local 0.72 (0.58) 0.71 (0.57) 0.75 (0.50) 0.78 (0.45) 0.73 (0.46) 0.76 (0.38) 0.71 (0.24)

MAFFT-local-allowshift 0.69 (0.68) 0.67 (0.72) 0.78 (0.60) 0.77 (0.45) 0.79 (0.45) 0.77 (0.35) 0.77 (0.29)
T-COFFEE 0.65 (0.72) 0.65 (0.72) 0.62 (0.78) 0.62 (0.78) 0.63 (0.80) 0.58 (0.95) 0.58 (1.04)

Star 0.00 (0.49) 0.00 (0.48) 0.04 (0.33) 0.08 (0.37) 0.13 (0.37) 0.12 (0.29) 0.12 (0.24)

Table 4. p values of the Wilcoxon signed-rank tests for pairs of algorithms with regard to the normalized
motif-SOP score. “-a” indicates the allowshift option. p-values larger than 0.05 are not presented.

Algorithm MAFFT-genaf MAFFT-global MAFFT-global-a MAFFT-local MAFFT-local-a

MAFFT-global < 10−6

MAFFT-global-a < 10−5

MAFFT-local
MAFFT-local-a < 10−3

T-COFFEE < 10−4 < 10−4

4.5. Discussion

In this section, we first established a measure of MSA quality based on motifs. Secondly,
we evaluated different MSA algorithms and gap settings on a dataset of folk song melodies. Despite the
small dataset of 26 tune families, the results offer strong proof about the benefits of the MSA algorithms,
and MAFFT in particular. Regarding MAFFT’s success, we hypothesize that it can be attributed to its
objective function that results to gap-free segments. According to Margulis [79], the phrase structure of
a melody is of major importance for the human perception of variation patterns. By treating the located
sub-regions as gap-free segments, MAFFT can be the closest to partitioning melodies into perceptually
meaningful units without using heuristics or expert knowledge.

In general, by establishing a reliable strategy to align multiple instances of melodies, we eliminate
the prerequisite to invent a retrieval/classification proxy to assess the quality of an alignment.
We can also now benefit from both the alignment score and the alignment’s structure itself.
Particularly regarding the latter, since the alignment of notes is musically significant, we can now
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extract knowledge about their relationships. For example, we can perform reliable analysis on notions
such as stability (as we do in the following Section 5) or generate models of similarity (as we do in
Section 6).

5. Analysis of Melodic Stability

It has been theorized that our perception and memorization of melodies is dynamic, meaning
that certain musical events throughout a melody’s length, can be perceived as more stable (resistant to
change) than others depending on the context [80]. Klusen et al. [81] showed that every note in
a melody can be altered in an oral transmission scenario, but some notes are more stable than others.
Numerous studies from cognition [80,82,83] to corpus-based analysis points-of-view [84], have also
evaluated the importance of certain musical factors with regard to their influence on the perceived
music stability. Since the alteration of stable elements can affect the process of recognition, stability is
also a key component for understanding music similarity. Unsurprisingly, stability and music variation
(stability’s counterpart ) have been at the core of both musicology and MIR. From a musicological
perspective, knowledge of the mechanics of those concepts would allow researchers to trace, classify or
possibly even pinpoint in time variations of songs. Similarly, scientists from computational disciplines
may use knowledge of stable musical elements to improve the automatic classification and retrieval of
musical objects, such as the work of Van Balen et al. [85]. Therefore, before proceeding into modelling
music similarity (see Section 6), it is worth investigating the complementary concept of music stability.

Interestingly, conservation is at the centre of biological sequence analysis, in the same way that
stability is at the core of musicology or MIR. As Valdar [23] nicely describes, a multiple sequence
alignment of protein homologue sequences (together with the phylogeny) is a historical record that
tells a story about the evolutionary processes applied and how they shaped a protein through time.
Useful and important regions of a protein sequence often appear as “conserved” columns in the MSA,
and major sequence events that appear on a phylogenetic tree often correspond to epochal moments in
natural history.

In this section we argue that, much as an MSA of protein homologues can inform us about the
statistical properties of the evolutionary processes, an MSA of related melodies can provide us with
valuable information regarding the processes of musical variation. We aim to determine and analyse
regions of less variation inside a selection of related melodies, or in other words, regions of melodic
stability. Analysing stability requires trustworthy MSAs such that the assignment of corresponding
notes across different versions can be directly observed by looking at the MSA’s columns. The findings
of Section 4 allows us to be confident regarding the results of a stability analysis since it can be
conducted on high-quality, musically meaningful alignments.

5.1. Setup

We are interested in applying the best alignment configuration (as established on Section 4) to
the TUNEFAM-26 and CSV-60 melodic datasets. We can later perform an analysis on the aligned
cliques (tune families or cover song melodies) by using an appropriate measure of stability applied
on each column of the MSA. The results from Section 4 have indicated that the best MSA algorithm
for melodic sequences is MAFFT, while its globalpair and localpair strategies are indistinguishable
in terms of alignment quality. Gap settings have little or no effect per strategy, MAFFT options and
gap penalties had minimal effect on alignment quality, so we explored several parameterizations:
MAFFT-globalpair with (−4,−2) gap penalties, MAFFT-globalpair-allowshift with (−4,−2) gap
penalties and MAFFT-localpair-allowshift with (−2,−1) gap penalties.

A quantitative measure of stability, suitable for music sequences, does not exist as a result of
the lack of supporting literature and research. Nevertheless, Bountouridis and Van Balen [67] use
a probabilistic interpretation of the WSOP measure that aims to answer the following question: given
that we observe a single, randomly chosen melodic element, what is the probability for this element to
appear unchanged when we observe a new, unseen a variation of it. In practice, given a set of k aligned



Appl. Sci. 2017, 7, 1242 16 of 29

sequences of length m such as Si : si,1, , si,2, ..., si,m, the stability of the non-gap symbol e in position j is
defined as:

stab(e, j) =
∑k

i=1 |si,j = e| − 1
k− 1

(10)

while the stability of the j-th MSA column is simply PSj = ∑ stab(e, j) over all unique e.
It is worth examining the related bioinformatics literature regarding the equivalent concept of

conservation scores. Valdar [23] mentions that “there is no rigorous mathematical test for judging
a conservation measure”. A scoring method can be only judged with respect to biochemical intuition,
and therefore a number of conservation scores have been proposed through the years [22]. The same
authors list a number of intuitive prerequisites that a conservation score should fulfil, including
sequence weighting (to avoid bias due to near-duplicate sequences) or the consideration of prior amino
acid frequencies. However, applying the same prerequisites to music sequences is not supported by any
musical literature. Consequently, our analysis adopts two widely used and interpretable conservation
scores from bioinformatics: the WSOP score (already discussed thoroughly) and Information Content
(IC). Based on Shannon’s entropy, the IC score of the j-th column is defined as such:

ICj =
Na

∑
i=1

Pe,jlog(
Pe,j

Qe
) (11)

where Na is alphabet size, Pe,j is the frequency of a particular symbol e in the j-th column, while Qe is
the expected frequency of symbol e in the dataset (prior). It should be noted that symbols in a column
with zero frequency are not taken into account.

5.2. Analysis

The next paragraphs present a brief analysis on stability and variation with regard to two music
dimensions, position and pitch intervals. However, it is possible to extend the analysis to dimensions
such as note durations [67] or interval n-grams. Janssen et al. [84] on their corpus-based analysis on
the TUNEFAM-26 dataset, investigated stability with regard to global features related to memorability,
i.e., a phrase length, its position in the melody, its repetitiveness and others.

We hypothesize that certain parts of a melody, such as the beginning or end, are more robust to
variations. We are therefore interested in the stability with regard to a note’s relative position in the
melody. Each column j of an MSA has a computed stability score. Each i-th index of a sequence in
the MSA is assigned the stability score of its corresponding column. It should be noted that due to
gaps, the i-th index of two different sequences may not correspond to the same j column. For each
dataset (TUNEFAM-26 and CSV-60) we accumulate all the position versus stability data, where position
corresponds the i-th index normalized to the [0, 1] range. Figures 4 and 5 present the stability scores
using different scoring methods (computed over three different alignment configurations) versus the
relative position of a note (interval in our case) for the TUNEFAM-26 and CSV-60 datasets respectively.
The corresponding gap ratio of the MSA versus the note position is also presented as a reference,
since all conservation scores are affected by the amount of gaps per column.
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Figure 4. Position versus various stability scores (Information Content (IC), Weighted Sum-Of-Pairs
(WSOP) and PS) for the TUNEFAM-26 dataset using three different alignment configurations. Position
versus gap ratio is also presented (first to the left). Points are quantised to 10 bins.
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Figure 5. Position versus various stability scores (IC, WSOP and PS) for the CSV-60 dataset using
three different alignment configurations. Position versus gap ratio is also presented (first to the left).
Points are quantised to 10 bins.

For both datasets there are a number of observations (trends) that become immediately apparent:
first, there is a strong indication that roughly the first half of a melody (up until 60% of its length) is
more stable than the remaining. The downward slope after position 0.6 is prominent in both datasets
and on all different stability scoring methods. This observation seems to agree with findings of
Janssen et al. [84]; stable phrases occur relatively early in the melody. Secondly, the stability towards
the final notes of a melody seems to be increasing. For the TUNEFAM-26 dataset in particular, the final
20% of the melody is very stable. The trend is less obvious on the CSV-60 dataset. However, it should
be reminded that TUNEFAM-26 contains whole folk tune melodies, while CSV-60 contains melodies
corresponding to structural segments of pop/rock songs; we cannot expect certain trends to be
completely shared by both sets.

A potential explanation for this trend would be that artists interpreting a song creatively start out
with an emphasis on the familiar material and take more liberty as the melody or segment progresses,
introducing more variation along the way. But in contrast to the findings of Bountouridis and Van Balen,
our results indicate that artists end with a familiar set of notes (for folk tunes more notably). This can
be potentially attributed to the capacity of our short-memory; after a considerable part of varied
material, our brain requires familiarity as to identify the whole piece as a variation of the original.
For the CSV-60 dataset, since the melodies are shorter, the effect of short-term memory’s capacity is
weaker thus explaining the less obvious trend.

We now turn our focus to pitch intervals. We hypothesize that certain pitch intervals are more
stable than others, i.e., certain transitions are less likely to be varied in a variation of the melody. To test
our hypothesis, we need to measure the overall stability for each interval, while avoiding biases related
to their likelihood of appearing in a sequence or column. We use the Information Content measure,
computed for each symbol (note interval) e in the j-th index of the MSA as such:

ICj(e) = Pe,jlog(
Pe,j

Qe
) (12)
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where Pe,j is the frequency of a particular symbol e in the jth column, while Qe is the expected frequency
of symbol e (prior).

Figure 6 presents the overall stability scores per interval for the whole TUNEFAM-26 and CSV-60
datasets, in addition to their interval distribution. We show the results for the 13 most frequent
intervals, since the remaining are too scarce for reliable analysis. Starting our analysis from the
interval distribution profiles, we observe that they agree with Schoenberg’s “singableness” hypothesis,
that posits (among others) that a melody consists of more stepwise than leap intervals as a result of the
human voice’s nature [86]. The scarcity of chromatic jumps can be explained if we consider them as
short excursions from the scale, which offer difficulties as well according to Schoenberg.
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Figure 6. Pitch interval versus IC stability for the TUNEFAM-26 (left) and CSV-60 (right) datasets using
three different alignment configurations. Interval frequencies per dataset are also presented. Results
for only the 13 most frequent intervals are presented.

Regarding the stability-per-interval profiles, on first look, they are quite similar for the two
datasets. Interestingly, the variance seems proportional to the interval’s frequency despite the fact that
our stability measure IC is normalized for the expected frequency per interval. On closer look and
regarding the TUNEFAM-26 dataset, the ±1 and ±5 intervals are significantly more stable than the
±3, ±4 intervals of similar frequency of appearance. In addition, the +7 interval is as stable as the
very frequent ±2 intervals. Therefore, we conclude that there is something inherently salient about
the ±1 and ±5 intervals (at least in the TUNEFAM-26 dataset), but it is unsafe to make hypothesis
regarding why this is the case. It should be noted that the findings of Janssen et al. [84] indicated that
stable phrases are likely to comprise (among others) small pitch intervals and little surprising melodic
material. However, their analysis approach is focused on stable phrases’ global features, while ours
on note-level features. Therefore, a direct comparison of findings, at least for pitch intervals, cannot
be performed.

6. Data-Driven Modelling of Global Similarity

The findings of our stability analysis validated the intuitive hypothesis that some notes are
more likely to be altered in a melodic variation than others. As such, any fine-grained melodic
similarity function needs to accommodate for that fact by integrating meaningful scores for any
pair of notes. In pairwise alignment via dynamic programming, integrating domain knowledge is
only possible through the substitution matrix, which constitutes a model of global similarity, since it
identifies notes commonly changed into other notes. Van Kranenburg [1] extended the DTW scoring
function to include multiple musical dimensions, such as inner-metric analysis or phrase boundaries.
On a melody classification task, he showed that expert-based heuristics could achieve almost perfect
results. De Haas [87] showed that with regard to chord sequence similarity, local alignment with
a substitution matrix based on simple heuristics [15], significantly outperforms his more sophisticated
geometric model that takes into consideration the temporal relations between chords. Despite their
success, the major concern with such approaches is their reliance on heuristics with known issues,
such as limited generalization (see Section 1).

Interestingly in bioinformatics, the problem of meaningful substitution matrices, has been
addressed following a data-driven approach. The major difficulty of the scoring matrix calculation is
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the computation of the joint probability pxiyi (see Equation 7) that expresses the likelihood of the two
symbols at homologous sites. In bioinformatics, the key idea for solving this problem is that trusted
alignments of related sequences can provide information regarding the mutability of symbols. One of
the most widely-used matrices for protein comparison, BLOSUM [88], is actually derived from a large
number of manually constructed, expert-aligned amino-acid sequences by counting how often certain
amino-acids are substituted (mutated).

It follows naturally to investigate the potential of data-driven approaches in the MIR domain as
well. Hirjee and Brown [89,90] generated a data-driven phoneme substitution matrix from misheard
lyrics, gathered from online sources, and successfully applied it on a lyrics retrieval task. Similarly,
Bountouridis et al. [27] used online sources to generate a chord similarity matrix for the task of cover
song detection. Hu et al. [13] on the other hand, based their approach on pairs of aligned sung and
reference melodies for the task of query-by-humming, but failed to significantly outperform a simple
heuristic matrix. This might be attributed to the lack of experimentation with gap penalties or the
noisy frame-based instead of note-based representation. Another major drawback for them was the
amount of data, which consisted of only 40 sung melodies. We argue that expert-based alignments are
generally problematic due to their limited quantity. Online sources have been shown to be potential
solutions for lyrics or chords, but their existence cannot be guaranteed for all possible musical items
such as melodies.

To eliminate the need for trustworthy pre-aligned melodic variations, in this section we propose
the usage of trusted alignment algorithms as discussed in Section 4. Alignments generated by such
algorithms can provide us with the appropriate information to generate a substitution matrix by
computing log odds ratios for any pairs of symbols. While trusted alignment algorithms reduce
the need for expert or crowd-sourced alignments, they still require melodies grouped (by experts
preferably) into related cliques or tune families. These are still hard to find and as such, the applicability
of our approach in real-life scenarios can be limited. Interestingly, in the same way that melody cliques
contain melodic variants, melodies themselves may contain short recurring fragments, intra-song
motifs. Such motifs may appear in variations throughout the melody. It is therefore also possible
to generate a model of similarity among intra-song motifs if properly aligned. We hypothesize that
intra-song motivic similarity can approximate the melodic similarity, or in other words, independent
melodies contain enough information to explain variations in melodic cliques.

In the following paragraphs we present two data-driven approaches for capturing global similarity
realized as substitution matrices for the TUNEFAM-26 and CSV-60 datasets. First, a matrix generated by
alignments of melodic variations belonging to a clique (denoted simply melodic similarity). Secondly,
matrices generated from different alignments of individual melodies with themselves (denoted
intra-song motivic similarity). In order to assess their quality, we later perform an experiment to
evaluate their retrieval performance.

6.1. Generating Substitution Matrices

Before discussing the alignments used, we explain the general process of converting them
into a scoring system (a substitution matrix). The SubsMat package from the bioinformatics library
Biopython provides routines for creating the typical log-odds substitution matrices. For our data,
we firstly create the Accepted Replacement Matrix (ARM), meaning the counted number of
replacements (confusions) according to the alignments. In order to avoid matrix entries of value
zero, we apply pseudo-counts, meaning we add one to each entry. We generate the log-odds matrix
M by applying a function that builds the observed frequency matrix from the ARM. We use the
default settings: log base b = 10 and a multiplication factor f of 10. For two symbols x and y,
their corresponding log-odds score is:

M(x, y) = logb

( pxy

qxqy

)
× f (13)
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with M(x, y) rounded to the nearest integer. We normalize the matrix by dividing each of its elements
with max(M(x, y)), so that the maximum score assigned to a pair of symbols is one.

6.2. Computing the Alignments for Melodic and Intra-Song Motivic Similarity

For the modelling of melodic similarity, the results from Section 4 have indicated that, although
MAFFT is the best alignment strategy, the differences between various configurations are rather
insignificant. Therefore, instead of generating a substitution matrix from clique alignments of one
configuration only, we decided to use the following: MAFFT-globalpair with (−4,−2) gap penalties,
MAFFT-globalpair-allowshiftwith (−4,−2) gap penalties and MAFFT-localpair-allowshiftwith
(−2,−1) gap penalties. The melodic similarity matrices generated for the TUNEFAM-26 and CSV-60
datasets are denoted TFAM-matrix and CSV-matrix respectively.

For the modelling of intra-song motivic similarity, the idea is to align each sequence with
artificial versions of itself, such that all possible instances of intra-song motifs are aligned. In such
a context, a useful and informative version of a sequence is one that when aligned to the original,
maximizes the overlap between different instances of perceived-as-similar motifs. This informativeness
criterion partially agrees with Hertz’s and Stormo’s definition of interesting alignments: those whose
symbol frequencies most differ from the a priori probabilities of the symbols [91]. However,
since informativeness can be erroneously biased, we are interested in alignments that at the same time
minimize the overlap between perceptually different motifs.

Let us consider an example sequence So with two known motif instances “ABF” (cyan),
“AGG” (green) of label L1 and one motif instance “KLM” (red) of label L2: XXABFXXXAGGXXXKLM.
Furthermore, consider three versions of the So sequence based on arbitrary splitting in segments and
further duplication or shuffling: KLXXXXABFXXXAGGXF, XAGGXXABFXAGGX and AGGXXKLMXXXABFXXX.
Three possible pairwise alignments of the versions with the original are:

–––-XXABFXXXAGGXXXKLM XXABFXXXAGGXXXKLM– XXABFXXX–––––AGGXXXKLM
LMXXXXABFXXXAGG––XK–– X–AGGXX–ABFX––AGGX ––AGGXXXKLMXXABFXXX–––

The first example contains alignment of same-label motif instances with themselves (e.g., ABF
to ABF), which provide no new information regarding their variation and therefore is of no value.
The second alignment matches different instances of same-label motifs (e.g., ABF to AGG) but incorrectly
aligns different-label motifs (e.g., AGG to KLM). It is only the third case that satisfies our criteria of a
useful version of a sequence.

In order to identify the method that can be better used in practice to align any intra-song
motifs (where the actual motifs are unknown), we design a simple experiment: we select all single
sequences from the TUNEFAM-26 dataset that contain annotated motifs with two instances and devise
three version-creation methods based on intuition. We then pairwise-align each original sequence to
its different versions using different configurations of motif-agnostic alignment algorithms. In our
experiment, the usefulness criteria are formulated as such: we are given the set L of all motif labels
in a sequence S and Mk = {mk

1, mk
2, ..., mk

j }, the set of all instances of intra-song motifs of label k ∈ L.
We are interested in generating and pairwise-aligning different sequence versions with S, such that
average relative likelihood RM that the different instances ∈ Mk, ∀ k are aligned as opposed to be
aligned by chance, is greater than one and maximal:

rk
M = ∑

i,j j 6=i

pmk
i mk

j

qmk
i
qmk

j

RM =
1
L ∑

k∈L
rk

M (14)

At the same time the average relative likelihood RNM that any instances of different-labels motifs
are aligned as opposed to be aligned by chance should be less than one and minimal:
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RNM =
1
L ∑

k,l k 6=l
∑
i,j

pmk
i ml

j

qmk
i
qml

j

(15)

In practice, we are interested in the setup (version method plus alignment configuration) that
maximizes RM − RNM. We experiment with three different automatic methods for version creation.
Each method generates θ versions of the original sequence which is then pairwise-aligned to the
original. We experiment with θ = {4, 8, 12, 16}. The automatic methods for version creation are
as follows:

1. Permutations: The original sequence is first split into n same-size segments. Each version is one of
the n! rearrangements of the segments. In our case n is arbitrarily set to four. Although automatic
melody segmentation algorithms could have been used, we decided to used a fixed number of
segments for the sake of simplicity.

2. Halves: The original sequence is iteratively split in subsequences of half size until their length
is equal to four or their number is equal to θ. Each version is a sequence of length equal to the
original, created by the concatenation of one of the subsequences.

3. Halves and shifts: A set of versions created by shifting the sequence by 1/k of its length to the
right k times, resulting to k versions. The idea is to fuse the current set with the halves. We do that
by randomly selecting θ/2 versions from the halves method and θ/2 versions from the current set.

The different versions are pairwise-aligned to the original using the following alignment
configurations: MAFFT-globalpair with (−4,−2) gap penalties, MAFFT-globalpair-allowshift
with (−4,−2) gap penalties and MAFFT-localpair-allowshift with (−2,−1) gap penalties.

The RM, RNM and RM − RNM figures for each version-creation method over all θ and for
each alignment configuration, are presented in Figure 7. We notice that RM is greater than one
and RNM is less than 1 for most setups, meaning that useful alignments are indeed generated.
However, the versions created with the halves method (θ = {4, 6}) and aligned to the original
with localpair-allowshift with (−2,−1) gap penalties, achieve the highest RM − RNM (see the third
column, second row in Figure 7). As such, we generate matrices (denoted halves-θ:4 and halves-θ:6 for
both datasets) based on this configurations.
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Figure 7. The average relative likelihood RM (first column) that the different motif instances are
aligned as opposed to be aligned by chance, the average relative likelihood RNM (middle column)
that any instances of different-labels motifs are aligned as opposed to be aligned by chance,
and RM − RNM (last column) figures for each version-creation method (per row) over all θ and
for each alignment configuration.

6.3. Experimental Setup

We are interested in evaluating whether the scoring matrices generated from alignments using
the methods of the previous Section 6.2, outperform the the standard ±1 scoring matrix on the
TUNEFAM-26 and CSV-60 datasets. In the retrieval case, we want to rank higher those melodies
belonging to the same tune family or clique as the query. In the classification task, we want the tune
family or clique of the highest ranked melody to correspond to the query’s (that is, we are doing
a k-Nearest Neighbour (kNN) classification experiment with k = 1).

Regarding the gap settings for this experiment, we should be extremely careful: the significant
variation among the distribution of scores in between the matrices, renders the effect of the gap
settings unpredictable, which can be problematic when aiming for a fair matrix comparison. Intuitively,
there are two possible solutions: either compute the optimal gap settings per matrix, e.g., via a training
process that optimizes the sensitivity (true positive rate) and selectivity (true negative rate) [92],
or present their performance across a set of different penalties. The first approach is suitable for
large datasets but is prone to over-fitting, and lacks a proper theoretical framework [93]. The second
approach resembles the task of systematically comparing classifiers , which allows for a more complete
view of each matrix by exploring the effect of the gap settings. Such an approach follows an intuitive
classifier quality principle that agrees with our goal to develop generalizable solutions: “if a good
classification is achieved only for a very small range in the parameter space, then for many applications
it will be very difficult to achieve the best accuracy rate provided by the classifier” [94].

Picking a range of gap settings for each matrix that fairly represent its quality is not trivial.
To solve the problem of fair matrix comparison, we need a meaningful intermediate mapping between
two gap spaces GA ∈ R2 and GB ∈ R2 that work on matrices A and B respectively; or a single
function f : Rn → R under which (GA,A) and (GB,B) have the same image (are equivalent). Given two
sequences to be aligned, we argue that two settings (ga ∈ GA, A) and (gb ∈ GB, B) are equivalent
and comparable only when they are of same flexibility, meaning they result to alignments of equal
length relative to the original sequences (which translates to equal ratio of gaps to non-gap symbols
for both settings). This idea is based on the observation that for two settings that result to the same
amount of gaps, the alignment quality is solely dependent on the matrices used; as such, the matrices
can be compared fairly. To compute the flexibility values for each of the TUNEFAM-26 and CSV-60
datasets, we randomly selected a subset of 50 sequences and pairwise aligned them using a range of
different gap settings per matrix (d, e ∈ [0.1, 2.0] with 0.1 intervals and e ≤ 0.5d). We used subsets
instead of whole datasets for efficiency reasons, while the gap boundaries 0.1 and 2.0 are considered
typical. For each alignment of sequences s1 and s2 of length l1 and l2 respectively, we computed the
gap to non-gap ratio r = (ng − |l1 − l2|)/(l1 + l2), where ng corresponds to the amount of gaps in the
alignment. The average r over all pairwise alignments using a gap setting on the matrix is what we
consider the setting’s flexibility for that particular dataset. Given the mapping of each gap setting to
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the flexibility space, we can now fairly compare matrices by investigating their retrieval performance
across different flexibility values.

6.4. Results

Figure 8a,b present the average precision and classification accuracy per substitution matrix
over a range of flexibility values for the TUNEFAM-26 and CSV-60 datasets respectively. For the
TUNEFAM-26 dataset and starting from the performance of the TFAM-matrix, we observe that it
significantly increases the retrieval performance across all gap settings. In average, the TFAM-matrix
increases the mean average precision from ID’s 0.65 to 0.69, indicating that some meaningful
similarity/variation knowledge has been indeed captured. The CSV-matrix presents a higher retrieval
performance than the ID matrix, but the significance is not constant across all flexibilities. The same
holds for the intra-song motivic matrices halves-θ:4 and halves-θ:6. If we concatenate the average
precision scores over all flexibilities per matrix, besides the TFAM-matrix (see Figure 8a (top-right))
and perform a Friedman test, we discover that there is a significant difference between the four
matrices. Post hoc analysis shows that the difference is due to the difference in between all pairs of
matrices except halves-θ:4 and halves-θ:6. With regard to the classification accuracy, we do not observe
a significant difference among the matrices.

For the CSV-60 dataset, the differences between matrices are more accentuated even through
visual inspection. The CSV-matrix and learned matrix from the folk tunes collection TFAM-matrix,
significantly outperform ID across almost all flexibilities. The implication of their similar performance
in average will be discussed in the next section. Regarding the intra-song motivic matrices, both present
significantly better performance than ID. Excluding CSV-matrix, a Friedman test with post hoc analysis
on the concatenated average precision, reveals significant difference between all pairs of matrices
except for the halves-θ:4 (0.74) and halves-θ:6 (0.75).
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Figure 8. Average precision and classification accuracy for each matrix over a range of flexibility values
(left) for the TUNEFAM-26 (a) and CSV-60 (b) datasets. The average precision and accuracy over all
flexibilities per matrix are also presented on the right.

6.5. Discussion

The results offer a number of interesting findings that are secondary to our main question,
e.g., the insignificant difference among matrices for the classification task implies the existence of
almost-duplicates for each query. Or the inverse relation between the retrieval performance of each
matrix to the flexibility value, indicates that real-life retrieval systems should aim for gap settings of low
flexibility. However, most importantly, our results strongly suggest that data-driven matrices, learned
from either melody variations or intra-song motif variations, capture some meaningful relationships
between notes that can find application in melody retrieval. In the case of TUNEFAM-26, the results are
obviously not impressive despite their statistical significance. Van Kranenburg’s heuristics on the same
dataset and task, pushed the MAP and classification accuracy to 0.85 and 0.98 respectively [1]. However,
Van Kranenburg used only one arbitrarily selected gap setting (−0.8, −0.5), thus leaving the effect of
gap settings uninvestigated. In our case however, we established a fairer framework for comparing
matrices. In addition compared to our data-driven approach, Van Kranenburg had to experiment
with a large number of heuristics to find the optimal. For the CSV-60 dataset, and in contrast to
TUNEFAM-26, learning note relationships from folk tune variations or intra-song motifs seems to
have a much more very positive effect in the overall retrieval performance. The reason behind this
difference is unclear, but we can speculate based on intuition. In general, we observe that the vertical
variation, i.e., among melodies belonging to the same family/clique, in the TUNEFAM-26 is more
informative than the vertical variation in CSV-60. This explains why the TFAM-matrix is successful
on both datasets, while CSV-matrix is only successful on CSV-60. Probably, tune families contain
an adequate amount of melodic variations that allows for the generation of an informative matrix.
At the same time the horizontal variation, i.e., among intra-song motifs, is similarly informative in
both datasets. This explains why the performance of halves-θ:4 and halves-θ:6 matrices lies in between
that of the ID and the best performing matrix for each dataset.
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In summary, the results indicate that vertical variation models are more beneficial in a retrieval
scenario. At the same time, the captured relationships of the horizontal models seem inadequate to
approximate their performance. This implies that the way a song varies across its length does not
follow the same principles as its variation through time, but further confirmation with note-to-note
alignments of intra-song motifs and melodic variations is required. Nevertheless, the modelling of
horizontal variation can be considered highly appropriate for practical scenarios of melody retrieval
and classification where clique information is unavailable.

7. Conclusions

Modelling music similarity is a fundamental, but intricate task in MIR. Most previous works
on music similarity, practical or theoretical, relied heavily on heuristics. In contrast, our work
focused on acquiring knowledge on music and melodic similarity in particular from the data itself.
Since data-driven methods and tools have been under development for years in bioinformatics,
and since biological and music sequence share resembling concepts, we investigated their applicability
inside a musical context.

First, we tackled the concept of meaningful and musically significant alignments of related
melodies, by applying the bioinformatics structural alignment metaphor to music motifs. Our results
revealed that the MAFFT multiple alignment algorithm, which uses gap-free sections as anchor points,
is a natural fit for multiple melodic sequences; a strong indication of the importance of musical patterns
for melodic similarity. Trusted MSA techniques made it possible to organize melodic variations such
that melodic stability/variation can be analysed. We argue that our stability analysis findings are free
of heuristics or biases that might have been introduced following other approaches.

Secondly, we investigated the modelling of global melodic similarity. We captured the probability
of one note to be changed to another in a variation and created musically appropriate note-substitution
scoring matrices for melodic alignment. We then put these matrices successfully to the test by designing
retrieval and classification tasks. Our data-driven modelling of music similarity outperforms the naive
±1 matrix, indicating that indeed some novel knowledge was captured. Additionally, we showed
that variations inside a melody can be an alternative source for modelling the similarity of variations
among tune families or cliques of covers.

In general, we showed that bioinformatics tools and methods can find successful application
in music, to answer in a reliable, data-driven way a number of important, on-going questions
in MIR. We argue data-driven approaches, such as ours, constitute an ideal balance between
the two occasionally contradicting goals of MIR, problem solving and knowledge acquisition.
Unfortunately, in the current age of big data, the potential in exploring musical relationships that can
aid both the digital music services and our understanding of music itself remains largely idle. We hope
that our work will stimulate future research to focus on a more constructive direction.
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