Chemical Composition and Nutritional Quality of Commercial Tahini
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Standard and Reagents
2.3. Proximate Composition
2.4. Total Lipids
2.5. Fatty Acid (FA) Analysis
(n-3 PUFA/n-6 PUFA)]
2.6. Phytosterols Analysis
2.7. Inorganic Elements Analysis
2.8. Mercury Analysis
2.9. Element Uptake
2.10. Statistical Analysis
3. Results and Discussions
3.1. Proximate Composition
3.2. Total Lipids
3.3. FA Composition
3.4. Sterols
3.5. Inorganic Elements
3.6. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef]
- Mostashari, P.; Mousavi Khaneghah, A. Sesame Seeds: A Nutrient-Rich Superfood. Foods 2024, 13, 1153. [Google Scholar] [CrossRef]
- Torlak, E.; Akan, I.M. Aflatoxin contamination in tahini. Qual. Assur. Saf. Crops Foods 2013, 5, 221–225. [Google Scholar] [CrossRef]
- Sebaei, A.S.; Refai, H.M.; Elbadry, H.T.; Armeya, S.M. First risk assessment report of aflatoxins in Egyptian tahini. J. Food Compos. Anal. 2020, 92, 103550. [Google Scholar] [CrossRef]
- Sdiq, S.J.M.; Omer, Z.O.; Salih, A.M.; Ali, R.A.; Mahmood, A.A.; Sirwan, K.; Hameed, K. Comparative analysis of physicochemical and sensory properties of local sesame tahini. Eur. J. Nutr. Food Saf. 2025, 17, 74–83. [Google Scholar] [CrossRef]
- Haddad, M.A.; Yamani, M.I.; Jaradat, D.S.M.; Obeidat, M.; Abu-Romman, S.M.; Parisi, S. Traditional Foods in Jordan and Traceability. Hummus and Related Variations. In Food Traceability Jordan: Current. Perspective; Springer: Cham, Switzerland, 2021; pp. 25–40. [Google Scholar] [CrossRef]
- Sakketou, E.K.I.; Baxevanis, G.K.; Kanellos, P.T. The nutritional value and health properties of tahini and tahini-based products. J. Atheroscler. Prev. Treat. 2024, 15, 9–17. [Google Scholar] [CrossRef]
- Data Bridge Market Research. Europe Tahini Market Size, Share, and Trends Analysis Report—Industry Overview and Forecast to 2032. 2025. Available online: https://www.databridgemarketresearch.com/reports/europe-tahini-market#:~:text=Europe%20Tahini%20Market%20size%20was,period%20of%202025%20to%202032 (accessed on 24 November 2025).
- Zion Market Research. Tahini Market by Product (Sauces/Dips, Desserts and Other Sweets, And Paste and Spreads), by Distribution Channel (Online and Offline), and by Region—Global and Regional Industry Overview, Market Intelligence, Comprehensive Analysis, Historical Data, and Forecasts 2024–2032. 2024. Available online: https://www.zionmarketresearch.com/report/tahini-market (accessed on 24 November 2025).
- Ogutcu, M.; Arifoglu, N.; Dincer, E.; Yilmaz, E. Factors affecting tahini quality. Agric. Food 2017, 5, 366–373. Available online: https://www.scientific-publications.net/en/article/1001428/ (accessed on 24 November 2025).
- Kilci, Z.; Çetin, R.Ü. Chemical Properties of Tahini Halva Marketed in The Southern Marmara Region of Turkey and Their Compliance with Turkish Food Codex. Akad. Gıda 2023, 21, 20–26. [Google Scholar] [CrossRef]
- Sumaina, G.; Laban, L. Tahini: The magical condiment In-Depth Look at its Nutritional and Health Benefits. J. Food Process Technol. 2021, 12, 859. [Google Scholar]
- Labban, L.; Sumainah, G. The Nutritive and Medicinal Properties of Tahini: A Review. Int. J. Nutr. Sci. 2021, 6, 172–179. [Google Scholar] [CrossRef]
- Pathak, N.; Rai, A.K.; Kumari, R.; Bhat, K.V. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014, 8, 147–155. [Google Scholar] [CrossRef]
- Attiyah, S. Chromatography Profile of Sugars and Minerals Detected in Ajwa and Tahini in Comprising with Their Mixture. Int. J. Chem. Biochem. Sci. 2023, 24, 793–806. [Google Scholar]
- Kilci, Z.; Çetin, R.Ü. Determination of chemical and microbiological quality in commercial tahini samples. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 2977–2981. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Food Composition Databases of the United States Department of Agriculture. 2019. Available online: https://fdc.nal.usda.gov/ (accessed on 27 November 2025).
- Batu, A.; Batu, H.S. The place of sesame and tahini in Turkish gastronomy. Aydın Gastron. 2020, 4, 83–100. Available online: https://www.academia.edu/65362435/The_Place_of_Sesame_and_Tahini_in_Turkish_Gastronomy (accessed on 24 November 2025).
- Sadeghi, N.; Rezaei Behzadi, H.; Behzad, M.; Jannat, B.; Hajimahmoodi, M. Simultaneous determination of heavy metals in Tahini by anodic stripping voltammetry. Hum. Health Halal Metr. 2021, 2, 40–45. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2010; ISBN 978-0-935584-80-6. [Google Scholar]
- Association of Official Anayltical Chemists—AOAC International. AOAC Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Nava, V.; Turco, V.L.; Licata, P.; Panayotova, V.; Peycheva, K.; Fazio, F.; Rando, R.; Di Bella, G.; Potortì, A.G. Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods. Foods 2023, 12, 2631. [Google Scholar] [CrossRef]
- Lo Turco, V.; Sgrò, B.; Albergamo, A.; Nava, V.; Rando, R.; Potortì, A.G.; Di Bella, G. Assessment of the Accuracy of Nutrition Label and Chemical Composition of Plant-Based Milks Available on the Italian Market. Foods 2023, 12, 3207. [Google Scholar] [CrossRef]
- Litrenta, F.; Nava, V.; Albergamo, A.; Potortì, A.G.; Sturniolo, R.; Lo Turco, V.; Di Bella, G. Unveiling the Nutritional Quality of the Sicilian Strawberry Tree (Arbutus unedo L.), a Neglected Fruit Species. Foods 2025, 14, 2734. [Google Scholar] [CrossRef]
- Ben Amar, Y.M.; Potortì, A.G.; Albergamo, A.; Litrenta, F.; Rando, R.; Mouad, L.B.; Brigui, J.; Chouaibi, N.; Di Bella, G. Study of the lipid fraction of Moroccan and Italian carobs (Ceratonia siliqua L.). Eur. J. Lipid Sci. Technol. 2024, 126, 2400036. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation. (EU) No 1348/2013 of 16 December 2013 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2014, 57, 1–28. [Google Scholar]
- Nava, V.; Rechidi-Sidhoum, N.; Lo Turco, V.; Spanò, I.M.; Albergamo, A.; Benklaouz, M.B.; Benameur, Q.; Litrenta, F.; Potortì, A.G.; Di Bella, G. Safety and Toxicological Risk Assessment of Northern Algerian Honeys. Agriculture 2025, 15, 2421. [Google Scholar] [CrossRef]
- Di Bella, G.; Turco, V.L.; Potorti, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Ben Amar, Y.M.; Nava, V.; Mouad, L.B.; Brigui, J.; Chouaibi, N.; Potortì, A.G.; Litrenta, F.; Albergamo, A.; Di Bella, G. Proximate composition and mineral profile of Moroccan and Italian carobs. J. Food Compos. Anal. 2025, 143, 107628. [Google Scholar] [CrossRef]
- European Communities Commission. DIRECTIVE 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Off. J. Eur. Union 2008, L 285, 9–12. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0100 (accessed on 20 December 2025).
- European Communities Commission. Regulation (EU). No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance. Available online: http://data.europa.eu/eli/reg/2011/1169/2018-01-01 (accessed on 20 December 2025).
- Schrauzer, G.N. Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Scientific opinion on arsenic in food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel. Risk assessment of complex organoarsenic species in food. EFSA J. 2024, 22, e9112. [Google Scholar] [PubMed]
- EFSA (European Food Safety Authority). Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel. Scientific Opinion on the update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 6268. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization Statistic Database. 2013. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 20 December 2025).
- Guide for Competent Authorities for Monitoring Compliance with the Following EU Legislative Acts: Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 Concerning the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Council Directive 87/250/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC, and Commission Regulation (EC) No 608/2004.496/EEC of 24 September 1990 on Nutrition Labelling for Foodstuffs, Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the Approximation of the Laws of the Member States Relating to Food Supplements, and Commission Regulation (EC) No 608/2004. 2012. Available online: https://food.ec.europa.eu/system/files/2021-11/labelling_nutrition-vitamins_minerals-guidance_tolerances_1212_it.pdf (accessed on 12 January 2026).
- Ahmed, I.A.M.; AlJuhaimi, F.; Özcan, M.M.; Ghafoor, K.; Şimşek, Ş.; Babiker, E.E.; Osman, M.A.; Gassem, M.A.; Salih, H.A.A. Evaluation of chemical properties, amino acid contents and fatty acid compositions of sesame seed provided from different locations. J. Oleo Sci. 2020, 69, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.B.; Wang, M.L.; Tonnis, B.D. Variability for oil, protein, lignan, tocopherol, and fatty acid concentrations in eight sesame (Sesamum indicum L.) genotypes. Ind. Crops Prod. 2021, 164, 113355. [Google Scholar] [CrossRef]
- Beshaw, T.; Demssie, K.; Tefera, M.; Guadie, A. Determination of proximate composition, selected essential and heavy metals in sesame seeds (Sesamum indicum L.) from the Ethiopian markets and assessment of the associated health risks. Toxicol. Rep. 2022, 9, 1806–1812. [Google Scholar] [CrossRef]
- Derrar, S.; Nava, V.; Ayad, M.A.; Saim, M.S.; Aggad, H.; Spanò, I.M.; Litrenta, F.; Leonardi, M.; Albergamo, A.; Lo Turco, V.; et al. Safety Assessment of Honeys from Northern and Southern Algerian Regions. Agriculture 2024, 14, 1503. [Google Scholar] [CrossRef]
- Seid, F.; Mehari, B. Elemental and proximate compositions of sesame seeds and the underlying soil from Tsegede, Ethiopia. Int. J. Anal. Chem. 2022, 1, 1083196. [Google Scholar] [CrossRef]
- Asghar, A.; Majeed, M.N. Chemical characterization and fatty acid profile of different sesame verities in Pakistan. Am. J. Sci. Ind. Res. 2013, 4, 540–545. [Google Scholar]
- Dimassi, O. Water Activity as a Central Determinant of Tahini Quality, Safety, and Shelf Stability. J. Food Sci. 2026, 91, e70810. [Google Scholar] [CrossRef]
- Singer, S.D.; Zou, J.; Weselake, R.J. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016, 243, 1–9. [Google Scholar] [CrossRef]
- Rajagukguk, Y.V.; Utcu, M.A.; Islam, M.; Muzolf-Panek, M.; Tomaszewska-Gras, J. Authenticity Assessment from Sesame Seeds to Oil and Sesame Products of Various Origin by Differential Scanning Calorimetry. Molecules 2022, 27, 7496. [Google Scholar] [CrossRef]
- Shaltout, O.E.; El-Difrawy, E.A.; El-yazeed, A.M.A.; El-Sorady, M.E.I. Effect of some heat treatments on chemical composition and oil characteristics of sesame seeds (Sesamum indicum L.). J. Food Dairy Sci. 2014, 5, 701–716. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef] [PubMed]
- Rubis, B.; Paszel, A.; Kaczmarek, M.; Rudzinska, M.; Jelen, H.; Rybczynska, M. Beneficial or harmful influence of phytosterols on human cells? Br. J. Nutr. 2008, 100, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Vecka, M.; Staňková, B.; Kutová, S.; Tomášová, P.; Tvrzická, E.; Žák, A. Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds, and kernel. SN Appl. Sci. 2019, 1, 1531. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, Y.; Zhang, H.; Xia, L. Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Front. Oncol. 2022, 12, 926975. [Google Scholar] [CrossRef]
- Babu, S.; Jayaraman, S. An Update on b-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomed. Pharmacother. 2020, 131, 110702. [Google Scholar] [CrossRef]
- Sharmila, R.; Sindhu, G. Evaluate the Antigenotoxicity and Anticancer Role of b-Sitosterol by Determining Oxidative DNA Damage and the Expression of Phosphorylated Mitogen-Activated Protein Kinases’, C-Fos, C-Jun, and Endothelial Growth Factor Receptor. Pharmacogn. Mag. 2017, 13, 95–101. [Google Scholar]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.-H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Kaushik, D.; Kumar, A.; Rasane, P.; Oz, E.; Kumar, V.; Patra, K.; Oz, F.; Proestos, C.; Kumar, M. Unveiling the approach of campesterol: Its application and circular bio-economy. CABI Rev. 2025, 20, 0049. [Google Scholar] [CrossRef]
- Miszczuk, E.; Bajguz, A.; Kiraga, Ł.; Crowley, K.; Chłopecka, M. Phytosterols and the Digestive System: A Review Study from Insights into Their Potential Health Benefits and Safety. Pharmaceuticals 2024, 17, 557. [Google Scholar] [CrossRef] [PubMed]
- Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R.; et al. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother. Res. 2021, 36, 299–322. [Google Scholar] [CrossRef]
- Zio, S.; Tarnagda, B.; Tapsoba, F.; Zongo, C.; Savadogo, A. Health interest of cholesterol and phytosterols and their contribution to one health approach. Heliyon 2024, 10, e40132. [Google Scholar] [CrossRef]
- Kassaw, G.; Badessa, T.S.; Ezez, D. Mineral contents and health risk assessment of sesame (Sesamum Indicum Linn) seeds grown in Ethiopia. J. Food Compos. Anal. 2023, 123, 105562. [Google Scholar] [CrossRef]
- Pop, M.S.; Cheregi, D.C.; Onose, G.; Munteanu, C.; Popescu, C.; Rotariu, M.; Turnea, M.-A.; Dogaru, G.; Ionescu, E.V.; Oprea, D.; et al. Exploring the Potential Benefits of Natural Calcium-Rich Mineral Waters for Health and Wellness: A Systematic Review. Nutrients 2023, 15, 3126. [Google Scholar] [CrossRef]
- Abu-Almaaly, R.A. Estimate the contamination by some heavy metals in sesame seeds and Rashi product that available in local markets. Plant Archives 2019, 19, 3217–3222. [Google Scholar]
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and human health: Perspectives and research directions. Int. J. Endocrinol. 2018, 1, 9041694. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, L. Potassium Intake and Human Health. Nutrients 2024, 16, 833. [Google Scholar] [CrossRef]
- Serna, J.; Bergwitz, C. Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients 2020, 12, 3001. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Mansour, E.H. Nutritional and physicochemical evaluations of tahina (sesame butter) prepared from heat-treated sesame seeds. J. Sci. Food Agric. 2000, 80, 2005–2011. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, L. Assessment of microelements in six varieties of sesame seeds using ICP-MS. IOP Conf. Ser. Earth Environ. Sci. 2019, 330, 042063. [Google Scholar] [CrossRef]
- Kurt, C.; Kizildag, N.; Arioglu, H. Determination of content of micronutrients in some sesame (Sesamum indicum L.) accession. Fresenius Environ. Bull. 2018, 27, 8456–8462. [Google Scholar]
- Kurt, C.; Demirbas, A.; Nawaz, M.A.; Chung, G.; Baloch, F.S.; Altunay, N. Determination of Se content of 78 sesame accessions with different geographical origin. J. Food Compos. Anal. 2020, 94, 103621. [Google Scholar] [CrossRef]
- Taskozhina, G.; Batyrova, G.; Umarova, G.; Issanguzhina, Z.; Kereyeva, N. The Manganese–Bone Connection: Investigating the Role of Manganese in Bone Health. J. Clin. Med. 2024, 13, 4679. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Foodstuffs and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:32023R0915 (accessed on 20 December 2025).
- Korkmaz, A.; Özcan, M.M.; Özcan, M.M. Determination of the distribution of macro-, micro-and toxic element contents in different halva samples produced by grinding sesame seeds. J. Agroaliment. Process. Technol. 2024, 30, 293. [Google Scholar] [CrossRef]
| Sample Code | Sample | Tahini Composition | Geographical Origin |
|---|---|---|---|
| T-1 | Organic tahini hulled seed sesame | 100% Sesame Seeds | Turkey |
| T-2 | Tahini sesame seed paste | Toasted Hulled Sesame Seeds | Israel |
| T-3 | Light tahini sesame cream | 100% Hulled Sesame Seed. This product may contain traces of nuts, lupin beans, milk and peanuts | Germany |
| T-4 | Hulled original tahini | Sesame Seeds | Non-UE |
| T-5 | Tahini 100% organic | Sesame Seeds | Lebanon |
| T-6 | Whole tahini sesame cream | Whole toasted sesame seeds. This product may contain soia, nuts, and peanuts | Non-UE |
| T-7 | Tahini sesame paste | 100% Ground Sesame Seeds | Greece |
| Sample | Moisture (%) | Proteins (%) | Fibres (%) | Ash (%) | ||||
|---|---|---|---|---|---|---|---|---|
| Experimental | Declared | Experimental | Declared | Experimental | Declared | Experimental | Declared | |
| T-1 | 5.0 ± 0.10 | - | 22.4 ± 0.20 | 22.3 | 9.4 ± 0.10 | 9.78 | 4.5 ± 0.06 | - |
| T-2 | 3.0 ± 0.06 | - | 24.1 ± 0.18 | 24.0 | 7.2 ± 0.08 | - | 5.1 ± 0.05 | - |
| T-3 | 3.5 ± 0.05 | - | 25.2 ± 0.08 | 25.0 | 7.6 ± 0.06 | 8.1 | 3.8 ± 0.04 | - |
| T-4 | 4.0 ± 0.05 | - | 27.0 ± 0.13 | 27.0 | 8.0 ± 0.11 | - | 5.3 ± 0.06 | - |
| T-5 | 4.5 ± 0.03 | - | 26.0 ± 0.14 | 27.0 | 6.5 ± 0.06 | - | 5.9 ± 0.07 | - |
| T-6 | 4.0 ± 0.04 | - | 24.0 ± 0.19 | 26.0 | 11.0 ± 0.15 | 10.0 | 6.3 ± 0.05 | - |
| T-7 | 3.5 ± 0.05 | - | 24.0 ± 0.22 | 25.0 | 8.0 ± 0.08 | - | 4.5 ± 0.07 | - |
| p-value | <0.05 | - | <0.05 | - | <0.05 | - | <0.05 | - |
| Sample | Lipid Content (%) | |
|---|---|---|
| Experimental | Declared | |
| T-1 | 61.0 ± 0.1 | 61 |
| T-2 | 60.0 ± 0.1 | 60 |
| T-3 | 62.0 ± 0.2 | 60 |
| T-4 | 56.8 ± 0.2 | 58 |
| T-5 | 59.5 ± 0.1 | 60 |
| T-6 | 54.9 ± 0.2 | 57 |
| T-7 | 58.8 ± 0.1 | 60 |
| p-value | <0.05 | |
| T-1 | T-2 | T-3 | T-4 | T-5 | T-6 | T-7 | p-Value | |
|---|---|---|---|---|---|---|---|---|
| C12:0 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.00 | <0.05 |
| C14:0 | 0.09 ± 0.01 | 0.07 ± 0.01 | 0.03 ± 0.00 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.04 ± 0.00 | 0.03 ± 0.00 | <0.05 |
| C15:0 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.02 ± 0.00 | 0.03 ± 0.00 | <0.05 |
| C16:0 | 9.59 ± 0.83 | 10.78 ± 0.95 | 10.04 ± 0.91 | 10.27 ± 0.75 | 10.09 ± 0.78 | 10.07 ± 0.87 | 9.92 ± 0.89 | >0.05 |
| C17:0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.00 | 0.07 ± 0.01 | <0.05 |
| C18:0 | 5.40 ± 0.46 | 5.53 ± 0.49 | 4.69 ± 0.32 | 6.08 ± 0.56 | 4.91 ± 0.36 | 5.96 ± 0.50 | 6.14 ± 0.78 | <0.05 |
| C20:0 | 0.48 ± 0.03 | 0.41 ± 0.03 | 0.47 ± 0.02 | 0.54 ± 0.02 | 0.45 ± 0.02 | 0.29 ± 0.01 | 0.31 ± 0.02 | <0.05 |
| C22:0 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.08 ± 0.00 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.11 ± 0.01 | <0.05 |
| C24:0 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.00 | 0.04 ± 0.00 | <0.05 |
| ∑ SFA | 15.76 ± 0.41 | 16.97 ± 0.47 | 15.44 ± 0.57 | 17.14 ± 0.57 | 15.71 ± 1.16 | 16.64 ± 1.38 | 16.66 ± 0.11 | |
| C16:1 n-9 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.03 ± 0.00 | 0.10 ± 0.01 | 0.06 ± 0.01 | <0.05 |
| C16:1 n-7 | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.00 | <0.05 |
| C17:1 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.00 | 0.02 ± 0.01 | 0.02 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.00 | <0.05 |
| C18:1 n-9 | 38.81 ± 2.14 | 37.17 ± 1.53 | 36.57 ± 1.65 | 41.13 ± 2.78 | 36.45 ± 1.72 | 37.00 ± 1.66 | 41.24 ± 2.08 | <0.05 |
| C18:1 n-7 | 0.97 ± 0.08 | 0.96 ± 0.07 | 1.01 ± 0.08 | 0.91 ± 0.06 | 1.39 ± 0.11 | 1.26 ± 0.11 | 1.73 ± 0.11 | <0.05 |
| C20:1 n-9 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.00 | 0.11 ± 0.00 | 0.15 ± 0.00 | <0.05 |
| ∑ MUFA | 40.13 ± 2.07 | 38.49 ± 1.60 | 37.93 ± 1.60 | 42.42 ± 2.71 | 38.17 ± 1.67 | 38.64 ± 1.76 | 43.36 ± 1.97 | |
| C18:2 n-6 | 42.47 ± 2.35 | 43.18 ± 2.23 | 44.82 ± 2.70 | 39.17 ± 2.03 | 43.94 ± 2.82 | 43.39 ± 1.58 | 38.18 ± 1.86 | <0.05 |
| C18:3 n-6 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.05 ± 0.01 | 0.01 ± 0.00 | 0.06 ± 0.00 | 0.11 ± 0.01 | 0.04 ± 0.00 | <0.05 |
| C18:3 n-3 | 0.38 ± 0.03 | 0.37 ± 0.02 | 0.27 ± 0.01 | 0.31 ± 0.02 | 0.28 ± 0.01 | 0.35 ± 0.01 | 0.29 ± 0.01 | <0.05 |
| ∑ PUFA | 42.86 ± 2.34 | 43.56 ± 2.22 | 45.14 ± 2.71 | 39.49 ± 2.05 | 44.27 ± 2.81 | 43.84 ± 1.57 | 38.51 ± 1.86 | |
| SFA/UFA | 0.19 | 0.21 | 0.19 | 0.21 | 0.19 | 0.20 | 0.20 | |
| O/L | 0.91 | 0.86 | 0.82 | 1.05 | 0.83 | 0.85 | 1.08 | |
| AI | 0.12 | 0.13 | 0.12 | 0.13 | 0.13 | 0.12 | 0.12 | |
| TI | 0.36 | 0.39 | 0.35 | 0.39 | 0.36 | 0.38 | 0.39 |
| Sterol | T-1 | T-2 | T-3 | T-4 | T-5 | T-6 | T-7 | p-Value |
|---|---|---|---|---|---|---|---|---|
| Campesterol | 16.20 ± 0.55 | 17.66 ± 0.03 | 17.72 ± 0.06 | 16.96 ± 0.36 | 16.23 ± 0.17 | 18.10 ± 0.03 | 16.05 ± 0.03 | <0.05 |
| Stigmasterol | 6.86 ± 0.19 | 7.22 ± 0.08 | 6.48 ± 0.02 | 8.41 ± 0.24 | 7.64 ± 0.03 | 8.30 ± 0.02 | 7.09 ± 0.04 | <0.05 |
| Clerosterol | 1.64 ± 0.07 | 1.65 ± 0.01 | 2.10 ± 0.09 | 0.61 ± 0.05 | 1.43 ± 0.10 | 0.86 ± 0.05 | 1.97 ± 0.06 | <0.05 |
| β-Sitosterol | 56.06 ± 1.33 | 56.23 ± 0.19 | 61.23 ± 0.28 | 54.26 ± 1.16 | 53.43 ± 0.10 | 55.92 ± 0.13 | 57.89 ± 0.29 | <0.05 |
| Δ-5-avenasterol | 14.37 ± 0.37 | 12.38 ± 0.04 | 7.59 ± 0.09 | 16.71 ± 0.34 | 12.86 ± 0.03 | 12.90 ± 0.01 | 9.38 ± 0.02 | <0.05 |
| Δ-5,24-stigmastadienol | 3.57 ± 0.11 | 3.50 ± 0.04 | 3.38 ± 0.05 | 1.94 ± 0.12 | 3.42 ± 0.03 | 1.59 ± 0.06 | 3.12 ± 0.06 | <0.05 |
| Δ-7-stigmastenol | 0.57 ± 0.04 | 0.62 ± 0.01 | 0.75 ± 0.04 | 0.36 ± 0.02 | 3.22 ± 0.03 | 0.65 ± 0.02 | 0.85 ± 0.08 | <0.05 |
| Δ-7-avenasterol | 0.74 ± 0.01 | 0.73 ± 0.01 | 0.76 ± 0.00 | 0.76 ± 0.06 | 1.78 ± 0.04 | 1.68 ± 0.02 | 3.66 ± 0.07 | <0.05 |
| Total sterols (mg/kg) | 4591.51 ± 73.75 | 4418.22 ± 47.59 | 4005.11 ± 42.78 | 4136.07 ± 109.79 | 2982.49 ± 19.15 | 3012.27 ± 26.13 | 3753.66 ± 43.10 |
| T-1 | T-2 | T-3 | T-4 | T-5 | T-6 | T-7 | p-Value | |
|---|---|---|---|---|---|---|---|---|
| Macro-Elements | ||||||||
| Ca | 2929.37 ± 78.38 | 1299.89 ± 50.77 | 5105.53 ± 39.50 | 3250.48 ± 115.86 | 4387.88 ± 28.65 | 3380.50 ± 24.69 | 3796.11 ± 17.31 | <0.05 |
| K | 5191.27 ± 84.55 | 4699.85 ± 51.28 | 4159.36 ± 80.91 | 5069.67 ± 48.07 | 4473.71 ± 48.34 | 5095.87 ± 28.98 | 4939.51 ± 25.81 | <0.05 |
| Na | 1986.47 ± 23.73 | 381.98 ± 27.80 | 672.14 ± 14.48 | 30.95 ± 2.35 | 763.35 ± 7.50 | 433.18 ± 11.62 | 160.52 ± 2.18 | <0.05 |
| Mg | 2495.54 ± 0.83 | 2401.14 ± 55.56 | 2925.25 ± 40.49 | 2094.11 ± 32.89 | 2338.20 ± 62.98 | 2784.51 ± 64.30 | 2285.88 ± 592.20 | <0.05 |
| P | 9434.88 ± 14.99 | 8538.09 ± 46.25 | 8666.49 ± 45.63 | 9077.47 ± 85.41 | 9155.90 ± 61.75 | 8186.24 ± 44.02 | 7951.51 ± 66.26 | <0.05 |
| Trace Elements | ||||||||
| Fe | 62.98 ± 1.93 | 56.17 ± 1.03 | 47.40 ± 1.14 | 53.81 ± 1.17 | 83.13 ± 1.10 | 66.62 ± 0.93 | 72.10 ± 1.58 | <0.05 |
| Zn | 72.83 ± 2.29 | 61.45 ± 2.49 | 68.25 ± 2.82 | 86.80 ± 1.17 | 67.45 ± 1.80 | 54.75 ± 1.80 | 60.17 ± 1.11 | <0.05 |
| Cu | 9.80 ± 0.47 | 10.71 ± 0.21 | 13.20 ± 0.57 | 11.10 ± 0.13 | 13.63 ± 0.47 | 9.59 ± 0.36 | 15.00 ± 0.12 | <0.05 |
| Se | 1.11 ± 0.03 | 0.91 ± 0.03 | 0.76 ± 0.03 | 0.93 ± 0.02 | 0.88 ± 0.03 | 1.04 ± 0.02 | 0.72 ± 0.03 | <0.05 |
| Mn | 18.56 ± 0.42 | 15.83 ± 0.68 | 21.03 ± 0.34 | 14.29 ± 0.28 | 16.19 ± 0.63 | 17.81 ± 0.41 | 13.51 ± 0.34 | <0.05 |
| Cr | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Mo | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Toxic and potentially toxic elements | ||||||||
| Cd | 0.35 ± 0.02 | 0.01 ± 0.00 | <LOQ | <LOQ | 0.02 ± 0.00 | <LOQ | 0.01 ± 0.00 | <0.05 |
| Pb | 0.50 ± 0.02 | 0.01 ± 0.00 | <LOQ | <LOQ | 0.01 ± 0.00 | <LOQ | <LOQ | - |
| As | 0.20 ± 0.02 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Hg | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Be | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Li | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Ni | 0.05 ± 0.01 | 0.10 ± 0.01 | 0.03 ± 0.00 | 0.04 ± 0.01 | 0.08 ± 0.02 | 0.04 ± 0.01 | 0.02 ± 0.00 | <0.05 |
| Sn | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| Sb | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
| T-1 | T-2 | T-3 | T-4 | T-5 | T-6 | T-7 | |
|---|---|---|---|---|---|---|---|
| Macro-Elements | |||||||
| Ca | <1 | <1 | 1 | <1 | <1 | <1 | <1 |
| K | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
| Na | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
| Mg | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| P | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Trace Elements | |||||||
| Fe | <1 | <1 | <1 | 1 | <1 | <1 | <1 |
| Zn | <1 | 1 | 1 | 1 | 1 | <1 | 1 |
| Cu | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Se | 2 | 2 | 1 | 2 | 2 | 2 | 1 |
| Mn | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Toxic and potentially toxic elements | |||||||
| Cd | 1 | <1 | - | - | <1 | - | <1 |
| Pb | 1 | <1 | - | - | <1 | - | - |
| As | 1 | - | - | - | - | - | - |
| Ni | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Potortì, A.G.; Albergamo, A.; Nava, V.; Lo Turco, V.; Litrenta, F.; Spanò, I.M.; Di Bella, G. Chemical Composition and Nutritional Quality of Commercial Tahini. Appl. Sci. 2026, 16, 1400. https://doi.org/10.3390/app16031400
Potortì AG, Albergamo A, Nava V, Lo Turco V, Litrenta F, Spanò IM, Di Bella G. Chemical Composition and Nutritional Quality of Commercial Tahini. Applied Sciences. 2026; 16(3):1400. https://doi.org/10.3390/app16031400
Chicago/Turabian StylePotortì, Angela Giorgia, Ambrogina Albergamo, Vincenzo Nava, Vincenzo Lo Turco, Federica Litrenta, Irene Maria Spanò, and Giuseppa Di Bella. 2026. "Chemical Composition and Nutritional Quality of Commercial Tahini" Applied Sciences 16, no. 3: 1400. https://doi.org/10.3390/app16031400
APA StylePotortì, A. G., Albergamo, A., Nava, V., Lo Turco, V., Litrenta, F., Spanò, I. M., & Di Bella, G. (2026). Chemical Composition and Nutritional Quality of Commercial Tahini. Applied Sciences, 16(3), 1400. https://doi.org/10.3390/app16031400

