Autoimmune Protocol Diet (AIP) for Food Allergies: A Novel Immunonutrition Approach
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Mechanistic Basis for Diet in Allergic Reactions
3.1. The Gut Barrier and Oral Tolerance
3.2. Non-IgE Mast Cell Activation
3.3. Role of the Gut Microbiota
3.4. Link Between Allergies and Autoimmunity
4. Histamine Intolerance
5. Elimination Diets for Allergies
6. The Autoimmune Protocol Diet
7. Implementing the AIP Diet on Food Allergies
7.1. Elimination Phase
7.2. Reintroduction Phase
7.3. Maintenance Phase
8. Implementing the AIP Diet on Histamine Intolerance
9. Clinical Considerations and Limitations
9.1. Limitations
9.2. Conceptual Comparison Between AIP Reintroduction and Allergy Immunotherapy
10. Future Research Directions
10.1. Implications and Next Steps
10.2. Potential Applications of the AIP
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADHD | Attention-deficit/hyperactivity disorder |
| AIP | Autoimmune Protocol |
| CD103+ | Cluster of Differentiation 103-positive |
| DAO | Diamine oxidase |
| EU | European Union |
| FcεRI | Fc epsilon RI |
| FFED | Four-food elimination diet |
| Foxp3+ | Forkhead box P3-positive |
| GI | Gastrointestinal |
| HNMT | Histamine-N-methyltransferase |
| HIT | Histamine intolerance |
| IBD | Inflammatory bowel disease |
| IL-13 | Interleukin-13 |
| IL-4 | Interleukin-4 |
| IgA | Immunoglobulin A |
| IgAN | IgA nephropathy |
| IgE | Immunoglobulin E |
| IgG | Immunoglobulin G |
| OFED | One-food elimination diet |
| PAMPs | Pathogen-associated molecular patterns |
| PRRs | Pattern-recognition receptors |
| RIG-I–like | Retinoic acid-inducible gene-I-like |
| SFED | Six-food elimination diet |
| TED | Targeted elimination diet |
| Th1 | T helper type 1 cell |
| Th2 | T helper type 2 cell |
| Th17 | T helper type 17 cell |
| Tregs | Regulatory T cells |
| SCFAs | Short-chain fatty acids |
| SIBO | Small intestinal bacterial overgrowth |
References
- Loh, W.; Tang, M.L.K. The Epidemiology of Food Allergy in the Global Context. Int. J. Environ. Res. Public Health 2018, 15, 2043. [Google Scholar] [CrossRef]
- Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- NIAID-Sponsored Expert Panel; Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Report of the NIAID-Sponsored Expert Panel. J. Allergy Clin. Immunol. 2010, 126, S1–S58. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef] [PubMed]
- Agata, H.; Kondo, N.; Fukutomi, O.; Shinoda, S.; Orii, T. Effect of Elimination Diets on Food-Specific IgE Antibodies and Lymphocyte Proliferative Responses to Food Antigens in Atopic Dermatitis Patients Exhibiting Sensitivity to Food Allergens. J. Allergy Clin. Immunol. 1993, 91, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Jones, M.; O’Neill, H.M. Prevalence of Intolerance to Amines and Salicylates in Individuals with Atopic Dermatitis: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 1628. [Google Scholar] [CrossRef] [PubMed]
- Pardali, E.C.; Gkouvi, A.; Gkouskou, K.K.; Manolakis, A.C.; Tsigalou, C.; Goulis, D.G.; Bogdanos, D.P.; Grammatikopoulou, M.G. Autoimmune Protocol Diet: A Personalized Elimination Diet for Patients with Autoimmune Diseases. Metab. Open 2025, 25, 100342. [Google Scholar] [CrossRef]
- Ballantyne, S. The Paleo Approach: Reverse Autoimmune Disease and Heal Your Body; Victory Belt Publishing: Las Vegas, NV, USA, 2013; ISBN 1936608391. [Google Scholar]
- Sun, N.; Ogulur, I.; Mitamura, Y.; Yazici, D.; Pat, Y.; Bu, X.; Li, M.; Zhu, X.; Babayev, H.; Ardicli, S.; et al. The Epithelial Barrier Theory and Its Associated Diseases. Allergy Eur. J. Allergy Clin. Immunol. 2024, 79, 3192–3237. [Google Scholar] [CrossRef]
- Yu, W.; Freeland, D.M.H.; Nadeau, K.C. Food Allergy: Immune Mechanisms, Diagnosis and Immunotherapy. Nat. Rev. Immunol. 2016, 16, 751–765. [Google Scholar] [CrossRef]
- Canva. Available online: https://www.canva.com/ (accessed on 22 January 2026).
- Gargano, D.; Appanna, R.; Santonicola, A.; De Bartolomeis, F.; Stellato, C.; Cianferoni, A.; Casolaro, V.; Iovino, P. Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients 2021, 13, 1638. [Google Scholar] [CrossRef]
- Akdis, C.A. Does the Epithelial Barrier Hypothesis Explain the Increase in Allergy, Autoimmunity and Other Chronic Conditions? Nat. Rev. Immunol. 2021, 21, 739–751. [Google Scholar] [CrossRef]
- Suzuki, T. Regulation of Intestinal Epithelial Permeability by Tight Junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef]
- Macura, B.; Kiecka, A.; Szczepanik, M. Intestinal Permeability Disturbances: Causes, Diseases and Therapy. Clin. Exp. Med. 2024, 24, 232. [Google Scholar] [CrossRef]
- Valenta, R.; Hochwallner, H.; Linhart, B.; Pahr, S. Food Allergies: The Basics. Gastroenterology 2015, 148, 1120–1131.e4. [Google Scholar] [CrossRef]
- Fukaya, T.; Uto, T.; Mitoma, S.; Takagi, H.; Nishikawa, Y.; Tominaga, M.; Choijookhuu, N.; Hishikawa, Y.; Sato, K. Gut Dysbiosis Promotes the Breakdown of Oral Tolerance Mediated through Dysfunction of Mucosal Dendritic Cells. Cell Rep. 2023, 42, 112431. [Google Scholar] [CrossRef]
- Poulsen, L.K.; Hummelshoj, L. Triggers of IgE Class Switching and Allergy Development. Ann. Med. 2007, 39, 440–456. [Google Scholar] [CrossRef]
- Deo, S.; Mistry, K.; Kakade, A.; Niphadkar, P. Role Played by Th2 Type Cytokines in IgE Mediated Allergy and Asthma. Lung India 2010, 27, 66. [Google Scholar] [CrossRef]
- Mu, Q.; Kirby, J.; Reilly, C.M.; Luo, X.M. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front. Immunol. 2017, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, A.; Rafaels, N.M.; McGirt, L.Y.; Ivanov, A.I.; Georas, S.N.; Cheadle, C.; Berger, A.E.; Zhang, K.; Vidyasagar, S.; Yoshida, T.; et al. Tight Junction Defects in Patients with Atopic Dermatitis. J. Allergy Clin. Immunol. 2011, 127, 773–786.e7. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.C.; Befus, A.D.; Kulka, M. Mast Cell Mediators: Their Differential Release and the Secretory Pathways Involved. Front. Immunol. 2014, 5, 569. [Google Scholar] [CrossRef] [PubMed]
- Blicharz, L.; Samborowska, E.; Zagożdżon, R.; Czuwara, J.; Zych, M.; Roszczyk, A.; Zaremba, M.; Dadlez, M.; Samochocki, Z.; Olszewska, M.; et al. Food Sensitization Is Associated with Atopic Dermatitis Severity, Gut-Derived Metabolites and Leaky Gut in Adults. Clin. Transl. Allergy 2025, 15, e70094. [Google Scholar] [CrossRef]
- Mathias, C.B.; Rovatti, J.; Polukort, S. IL-10 Enhances IgE-Independent IL-33-Mediated Mast Cell Cytokine Production. J. Immunol. 2017, 198, 145.8. [Google Scholar] [CrossRef]
- Arroyo Hornero, R.; Hamad, I.; Côrte-Real, B.; Kleinewietfeld, M. The Impact of Dietary Components on Regulatory T Cells and Disease. Front. Immunol. 2020, 11, 253. [Google Scholar] [CrossRef]
- McAlpine, S.M.; Enoksson, M.; Lunderius-Andersson, C.; Nilsson, G. The Effect of Bacterial, Viral and Fungal Infection on Mast Cell Reactivity in the Allergic Setting. J. Innate Immun. 2011, 3, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Toldi, G. The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients 2022, 14, 3670. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal Microbe-Derived Butyrate Induces the Differentiation of Colonic Regulatory T Cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- Szukalska, I.; Ziętek, M.; Brodowski, J.; Szczuko, M. The Association Between Short-Chain Fatty Acids and the Incidence of Food Allergies—Systematic Review. Nutrients 2025, 17, 3117. [Google Scholar] [CrossRef]
- Björkstén, B.; Sepp, E.; Julge, K.; Voor, T.; Mikelsaar, M. Allergy Development and the Intestinal Microflora during the First Year of Life. J. Allergy Clin. Immunol. 2001, 108, 516–520. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jeun, E.-J.; Hong, C.-P.; Kim, S.-H.; Jang, M.S.; Lee, E.-J.; Moon, S.J.; Yun, C.H.; Im, S.-H.; Jeong, S.-G.; et al. Extracellular Vesicle–Derived Protein from Bifidobacterium Longum Alleviates Food Allergy Through Mast Cell Suppression. J. Allergy Clin. Immunol. 2016, 137, 507–516.e8. [Google Scholar] [CrossRef]
- Enomoto, T.; Sowa, M.; Nishimori, K.; Shimazu, S.; Yoshida, A.; Yamada, K.; Furukawa, F.; Nakagawa, T.; Yanagisawa, N.; Iwabuchi, N.; et al. Effects of Bifidobacterial Supplementation to Pregnant Women and Infants in the Prevention of Allergy Development in Infants and on Fecal Microbiota. Allergol. Int. 2014, 63, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.L.K.; Ponsonby, A.-L.; Orsini, F.; Tey, D.; Robinson, M.; Su, E.L.; Licciardi, P.; Burks, W.; Donath, S. Administration of a Probiotic with Peanut Oral Immunotherapy: A Randomized Trial. J. Allergy Clin. Immunol. 2015, 135, 737–744.e8. [Google Scholar] [CrossRef]
- Grygiel-Górniak, B.; Rogacka, N.; Rogacki, M.; Puszczewicz, M. Antinuclear Antibodies in Autoimmune and Allergic Diseases. Rheumatology 2017, 55, 298–304. [Google Scholar] [CrossRef]
- Krishna, M.T.; Subramanian, A.; Adderley, N.J.; Zemedikun, D.T.; Gkoutos, G.V.; Nirantharakumar, K. Allergic Diseases and Long-Term Risk of Autoimmune Disorders: Longitudinal Cohort Study and Cluster Analysis. Eur. Respir. J. 2019, 54, 1900476. [Google Scholar] [CrossRef]
- Alonso, A.; Hernán, M.A.; Ascherio, A. Allergy, Family History of Autoimmune Diseases, and the Risk of Multiple Sclerosis. Acta Neurol. Scand. 2008, 117, 15–20. [Google Scholar] [CrossRef]
- Lu, Z.; Zeng, N.; Cheng, Y.; Chen, Y.; Li, Y.; Lu, Q.; Xia, Q.; Luo, D. Atopic Dermatitis and Risk of Autoimmune Diseases: A Systematic Review and Meta-Analysis. Allergy Asthma Clin. Immunol. 2021, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Lamminsalo, A.; Lundqvist, A.; Virta, L.J.; Gissler, M.; Kaila, M.; Metsälä, J.; Virtanen, S.M. Cow’s Milk Allergy in Infancy and Later Development of Type 1 Diabetes–Nationwide Case-Cohort Study. Pediatr. Diabetes 2021, 22, 400–406. [Google Scholar] [CrossRef]
- White, M.V. The Role of Histamine in Allergic Diseases. J. Allergy Clin. Immunol. 1990, 86, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Maintz, L.; Novak, N. Histamine and Histamine Intolerance. Am. J. Clin. Nutr. 2007, 85, 1185–1196. [Google Scholar] [CrossRef]
- Lieberman, P. The Basics of Histamine Biology. Ann. Allergy Asthma Immunol. 2011, 106, S2–S5. [Google Scholar] [CrossRef]
- Enko, D.; Meinitzer, A.; Mangge, H.; Kriegshaüser, G.; Halwachs-Baumann, G.; Reininghaus, E.Z.; Bengesser, S.A.; Schnedl, W.J. Concomitant Prevalence of Low Serum Diamine Oxidase Activity and Carbohydrate Malabsorption. Can. J. Gastroenterol. Hepatol. 2016, 2016, 4893501. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pérez, S.; Comas-Basté, O.; Duelo, A.; Veciana-Nogués, M.T.; Berlanga, M.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients 2022, 14, 1774. [Google Scholar] [CrossRef]
- Reese, I.; Ballmer-Weber, B.; Beyer, K.; Fuchs, T.; Kleine-Tebbe, J.; Klimek, L.; Lepp, U.; Niggemann, B.; Saloga, J.; Schäfer, C.; et al. German Guideline for the Management of Adverse Reactions to Ingested Histamine. Allergo J. Int. 2017, 26, 72–79. [Google Scholar] [CrossRef]
- Hrubisko, M.; Danis, R.; Huorka, M.; Wawruch, M. Histamine Intolerance—The More We Know the Less We Know. A Review. Nutrients 2021, 13, 2228. [Google Scholar] [CrossRef] [PubMed]
- Kanta, D.; Katsamakas, E.; Gudiksen, A.M.B.; Jalili, M. Histamine Metabolism in IBD: Towards Precision Nutrition. Nutrients 2025, 17, 2473. [Google Scholar] [CrossRef] [PubMed]
- Schnedl, W.J.; Mangge, H.; Schenk, M.; Enko, D. Non-Responsive Celiac Disease May Coincide with Additional Food Intolerance/Malabsorption, Including Histamine Intolerance. Med. Hypotheses 2021, 146, 110404. [Google Scholar] [CrossRef]
- Sánchez-Pérez, S.; Comas-Basté, O.; Duelo, A.; Veciana-Nogués, M.T.; Berlanga, M.; Vidal-Carou, M.C.; Latorre-Moratalla, M.L. The Dietary Treatment of Histamine Intolerance Reduces the Abundance of Some Histamine-Secreting Bacteria of the Gut Microbiota in Histamine Intolerant Women. A Pilot Study. Front. Nutr. 2022, 9, 1018463. [Google Scholar] [CrossRef]
- Comas-Basté, O.; Latorre-Moratalla, M.L.; Rabell-González, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Lyophilised Legume Sprouts as a Functional Ingredient for Diamine Oxidase Enzyme Supplementation in Histamine Intolerance. LWT 2020, 125, 109201. [Google Scholar] [CrossRef]
- San Mauro Martin, I.; Brachero, S.; Garicano Vilar, E. Histamine Intolerance and Dietary Management: A Complete Review. Allergol. Immunopathol. 2016, 44, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Lackner, S.; Malcher, V.; Enko, D.; Mangge, H.; Holasek, S.J.; Schnedl, W.J. Histamine-Reduced Diet and Increase of Serum Diamine Oxidase Correlating to Diet Compliance in Histamine Intolerance. Eur. J. Clin. Nutr. 2019, 73, 102–104. [Google Scholar] [CrossRef]
- Rosell-Camps, A.; Zibetti, S.; Pérez-Esteban, G.; Vila-Vidal, M.; Ferrés-Ramis, L.; García-Teresa-García, E. Histamine Intolerance as a Cause of Chronic Digestive Complaints in Pediatric Patients. Rev. Española Enfermedades Dig. 2013, 105, 201–207. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Comas-Basté, O.; Bover-Cid, S.; Vidal-Carou, M.C. Tyramine and Histamine Risk Assessment Related to Consumption of Dry Fermented Sausages by the Spanish Population. Food Chem. Toxicol. 2017, 99, 78–85. [Google Scholar] [CrossRef]
- Sánchez-Pérez, S.; Comas-Basté, O.; Rabell-González, J.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Biogenic Amines in Plant-Origin Foods: Are They Frequently Underestimated in Low-Histamine Diets? Foods 2018, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pérez, S.; Comas-Basté, O.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Low-Histamine Diets: Is the Exclusion of Foods Justified by Their Histamine Content? Nutrients 2021, 13, 1395. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.A.; Inniss, S.; Kumagai, T.; Rahman, F.Z.; Smith, A.M. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front. Immunol. 2022, 13, 866059. [Google Scholar] [CrossRef]
- Järvinen, K.M.; Westfall, J.E.; Seppo, M.S.; James, A.K.; Tsuang, A.J.; Feustel, P.J.; Sampson, H.A.; Berin, C. Role of Maternal Elimination Diets and Human Milk IgA in the Development of Cow’s Milk Allergy in the Infants. Clin. Exp. Allergy 2014, 44, 69–78. [Google Scholar] [CrossRef]
- Groetch, M.; Venter, C. Nutritional Management of Food Allergies. J. Food Allergy 2020, 2, 131–141. [Google Scholar] [CrossRef]
- Pastorello, E.A.; Stocchi, L.; Pravettoni, V.; Bigi, A.; Schilke, M.L.; Incorvaia, C.; Zanussi, C. Role of the Elimination Diet in Adults with Food Allergy. J. Allergy Clin. Immunol. 1989, 84, 475–483. [Google Scholar] [CrossRef]
- World Health Organization (WHO). In Brief: Priority Food Allergens. Available online: https://www.who.int/publications/i/item/B09009 (accessed on 15 December 2025).
- Mayerhofer, C.; Kavallar, A.M.; Aldrian, D.; Lindner, A.K.; Müller, T.; Vogel, G.F. Efficacy of Elimination Diets in Eosinophilic Esophagitis: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 2197–2210.e3. [Google Scholar] [CrossRef]
- Zalewski, A.; Doerfler, B.; Krause, A.; Hirano, I.; Gonsalves, N. Long-Term Outcomes of the Six-Food Elimination Diet and Food Reintroduction in a Large Cohort of Adults with Eosinophilic Esophagitis. Am. J. Gastroenterol. 2022, 117, 1963–1970. [Google Scholar] [CrossRef]
- Oykhman, P.; Dookie, J.; Al-Rammahy, H.; de Benedetto, A.; Asiniwasis, R.N.; LeBovidge, J.; Wang, J.; Ong, P.Y.; Lio, P.; Gutierrez, A.; et al. Dietary Elimination for the Treatment of Atopic Dermatitis: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2022, 10, 2657–2666.e8. [Google Scholar] [CrossRef]
- Meyer, R.; De Koker, C.; Dziubak, R.; Godwin, H.; Dominguez-Ortega, G.; Chebar Lozinsky, A.; Skrapac, A.-K.; Gholmie, Y.; Reeve, K.; Shah, N. The Impact of the Elimination Diet on Growth and Nutrient Intake in Children with Food Protein Induced Gastrointestinal Allergies. Clin. Transl. Allergy 2016, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Toohey, L.; Smith, M.J.; Hickey, M.S. Modulation of Immune Function by Dietary Lectins in Rheumatoid Arthritis. Br. J. Nutr. 2000, 83, 207–217. [Google Scholar] [CrossRef]
- Cordain, L. Cereal Grains: Humanity’s Double-Edged Sword. World Rev. Nutr. Diet. 1999, 84, 19–73. [Google Scholar] [CrossRef]
- Abbott, R.D.; Sadowski, A.; Alt, A.G. Efficacy of the Autoimmune Protocol Diet as Part of a Multi-Disciplinary, Supported Lifestyle Intervention for Hashimoto’s Thyroiditis. Cureus 2019, 11, e4556. [Google Scholar] [CrossRef]
- Ihnatowicz, P.; Gębski, J.; Drywień, M.E. Effects of Autoimmune Protocol (AIP) Diet on Changes in Thyroid Parameters in Hashimoto’s Disease. Ann. Agric. Environ. Med. 2023, 30, 513–521. [Google Scholar] [CrossRef]
- Konijeti, G.G.; Kim, N.; Lewis, J.D.; Groven, S.; Chandrasekaran, A.; Grandhe, S.; Diamant, C.; Singh, E.; Oliveira, G.; Wang, X.; et al. Efficacy of the Autoimmune Protocol Diet for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 2054–2060. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Molparia, B.; Akhtar, E.; Wang, X.; Lewis, J.D.; Chang, J.T.; Oliveira, G.; Torkamani, A.; Konijeti, G.G. The Autoimmune Protocol Diet Modifies Intestinal RNA Expression in Inflammatory Bowel Disease. Crohn’s Colitis 360 2019, 1, otz016. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Groven, S.; Lewis, J.D.; Levy, S.S.; Diamant, C.; Singh, E.; Konijeti, G.G. An Autoimmune Protocol Diet Improves Patient-Reported Quality of Life in Inflammatory Bowel Disease. Crohn’s Colitis 360 2019, 1, otz019. [Google Scholar] [CrossRef]
- McNeill, J.; Zinn, C.; Mearns, G.; Grainger, R. What Is the Efficacy of the Autoimmune Protocol (AIP) Diet in People with Rheumatoid Arthritis? A Mixed-Methods Pilot Intervention Study. Med. Sci. Forum 2023, 18, 10. [Google Scholar]
- NCT07022574. Autoimmune Protocol Diet Intervention on Proteinuria in IgA Nephropathy Patients. ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT07022574 (accessed on 23 December 2025).
- Sturgeon, C.; Fasano, A. Zonulin, a Regulator of Epithelial and Endothelial Barrier Functions, and Its Involvement in Chronic Inflammatory Diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef]
- Drago, S.; El Asmar, R.; Di Pierro, M.; Clemente, M.G.; Tripathi, A.; Sapone, A.; Thakar, M.; Iacono, G.; Carroccio, A.; D’Agate, C.; et al. Gliadin, Zonulin and Gut Permeability: Effects on Celiac and Non-Celiac Intestinal Mucosa and Intestinal Cell Lines. Scand. J. Gastroenterol. 2006, 41, 408–419. [Google Scholar] [CrossRef]
- Lerner, A.; Matthias, T. Changes in Intestinal Tight Junction Permeability Associated with Industrial Food Additives Explain the Rising Incidence of Autoimmune Disease. Autoimmun. Rev. 2015, 14, 479–489. [Google Scholar] [CrossRef]
- Waserman, S.; Watson, W. Food Allergy. Allergy Asthma Clin. Immunol. 2011, 7, S7. [Google Scholar] [CrossRef]
- Issazadeh-Navikas, S.; Teimer, R.; Bockermann, R. Influence of Dietary Components on Regulatory T Cells. Mol. Med. 2012, 18, 95–110. [Google Scholar] [CrossRef]
- Wilders-Truschnig, M.; Mangge, H.; Lieners, C.; Gruber, H.J.; Mayer, C.; März, W. IgG Antibodies against Food Antigens Are Correlated with Inflammation and Intima Media Thickness in Obese Juveniles. Exp. Clin. Endocrinol. Diabetes 2008, 116, 241–245. [Google Scholar] [CrossRef]
- Mankarious, S.; Lee, M.; Fischer, S.; Pyun, K.H.; Ochs, H.D.; Oxelius, V.A.; Wedgwood, R.J. The Half-Lives of IgG Subclasses and Specific Antibodies in Patients with Primary Immunodeficiency Who Are Receiving Intravenously Administered Immunoglobulin. J. Lab. Clin. Med. 1988, 112, 634–640. [Google Scholar]
- MacGlashan, D. Blocking Antibodies in Immunotherapy: Quality versus Quantity. J. Allergy Clin. Immunol. 2019, 144, 1177–1179. [Google Scholar] [CrossRef]
- Joneja, J.M.V. Dealing with Food Allergies: A Practical Guide to Detecting Culprit Foods and Eating a Healthy, Enjoyable Diet; Bull Publishing Company: Boulder, CO, USA, 2003; ISBN 092352164X. [Google Scholar]
- Haque, T.T.; Frischmeyer-Guerrerio, P.A. The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation. Int. J. Mol. Sci. 2022, 23, 10864. [Google Scholar] [CrossRef]
- Martner-Hewes, P.; Hunt, I.; Murphy, N.; Swendseid, M.; Settlage, R. Vitamin B-6 Nutriture and Plasma Diamine Oxidase Activity in Pregnant Hispanic Teenagers. Am. J. Clin. Nutr. 1986, 44, 907–913. [Google Scholar] [CrossRef]
- Ionescu, G.; Kiehl, R. Cofactor Levels of Mono- and Diamine Oxidase in Atopic Eczema. Allergy 1989, 44, 298–300. [Google Scholar] [CrossRef]
- Jarisch, R.; Weyer, D.; Ehlert, E.; Koch, C.H.; Pinkowski, E.; Jung, P.; Kähler, W.; Girgensohn, R.; Kowalski, J.; Weisser, B.; et al. Impact of Oral Vitamin C on Histamine Levels and Seasickness. J. Vestib. Res. 2014, 24, 281–288. [Google Scholar] [CrossRef]
- Muraro, A.; Tropeano, A.; Giovannini, M. Allergen Immunotherapy for Food Allergy: Evidence and Outlook. Allergol. Sel. 2022, 6, 285–292. [Google Scholar] [CrossRef]
- Schofield, A. A Case of Egg Poisoning. Lancet 1908, 171, 716. [Google Scholar] [CrossRef]
- Qin, L.; Tang, L.-F.; Cheng, L.; Wang, H.-Y. The Clinical Significance of Allergen-Specific IgG4 in Allergic Diseases. Front. Immunol. 2022, 13, 1032909. [Google Scholar] [CrossRef]
- Valero-Moreno, S.; Torres-Llanos, R.; Pérez-Marín, M. Impact of Childhood Food Allergy on Quality of Life: A Systematic Review. Appl. Sci. 2024, 14, 10989. [Google Scholar] [CrossRef]
- Protudjer, J.L.P.; Davis, C.M.; Gupta, R.S.; Perry, T.T. Social Determinants and Quality of Life in Food Allergy Management and Treatment. J. Allergy Clin. Immunol. Pract. 2025, 13, 745–750. [Google Scholar] [CrossRef]
- Antolín-Amérigo, D.; Manso, L.; Caminati, M.; de la Hoz Caballer, B.; Cerecedo, I.; Muriel, A.; Rodríguez-Rodríguez, M.; Barbarroja-Escudero, J.; Sánchez-González, M.J.; Huertas-Barbudo, B.; et al. Quality of Life in Patients with Food Allergy. Clin. Mol. Allergy 2016, 14, 4. [Google Scholar] [CrossRef] [PubMed]


| AIP Phase | Duration | Key Actions | Mechanistic Effects Relevant to Allergy | Clinical Outcome |
|---|---|---|---|---|
| Elimination | 6 weeks– 6 months | Remove pro-inflammatory and potentially barrier-disrupting foods | ↓ Gut inflammation, ↑ epithelial tight junction integrity, ↓ mast-cell priming, ↓ Th2/Th17 activation, ↑ Treg differentiation, ↑ SCFA production | Reduced symptom severity, minimized acute allergic reactions, stabilized immune thresholds |
| Reintroduction | Symptom-guided | Gradual reintroduction of eliminated foods | Identify individual IgE- and non-IgE triggers, promote allergen-specific IgG (“blocking antibodies”), monitor barrier and immune recovery | Personalized allergen identification, improved tolerance, reduced risk of new sensitizations |
| Maintenance | Ongoing | Nutrient-dense, anti-inflammatory diet | Sustain gut barrier function, support beneficial microbiota, maintain Treg activity, prevent mast-cell hyperreactivity | Long-term allergy management, reduced flare frequency, improved quality of life |
| Food Category | Foods That Are Allowed in Both the AIP Diet and Histamine Intolerance Management |
|---|---|
| Animal proteins | Fresh, unprocessed meats (beef, chicken, lamb, pork, turkey, wild game) Freshly caught low-histamine fish (cod, tilapia, halibut, mahi mahi, snapper, trout, salmon [with caution]) |
| Oils & Fats | Coconut oil, olive oil, avocado oil/butter |
| Herbs & spices | Fresh or dried non-seed herbs (thyme, oregano, basil, rosemary, dill, ginger, sage, chives, bay leaf, peppermint, mint, turmeric) |
| Fruit | Most fresh, ripe fruits that are low in histamine (apples, pears, blueberries, cranberries, melon, papaya, mango [moderate]) |
| Vegetables | Fresh, low-histamine vegetables (broccoli, zucchini, carrots, lettuce, cabbage, kale, collard greens, turnips, radishes, watercress) |
| Sweeteners | Honey, maple syrup, coconut sugar, date sugar |
| Non-dairy fermented foods | None |
| Beverages | Herbal teas (chamomile, mint), plain mineral water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pardali, E.C.; Grammatikopoulou, M.G. Autoimmune Protocol Diet (AIP) for Food Allergies: A Novel Immunonutrition Approach. Appl. Sci. 2026, 16, 1364. https://doi.org/10.3390/app16031364
Pardali EC, Grammatikopoulou MG. Autoimmune Protocol Diet (AIP) for Food Allergies: A Novel Immunonutrition Approach. Applied Sciences. 2026; 16(3):1364. https://doi.org/10.3390/app16031364
Chicago/Turabian StylePardali, Eleni C., and Maria G. Grammatikopoulou. 2026. "Autoimmune Protocol Diet (AIP) for Food Allergies: A Novel Immunonutrition Approach" Applied Sciences 16, no. 3: 1364. https://doi.org/10.3390/app16031364
APA StylePardali, E. C., & Grammatikopoulou, M. G. (2026). Autoimmune Protocol Diet (AIP) for Food Allergies: A Novel Immunonutrition Approach. Applied Sciences, 16(3), 1364. https://doi.org/10.3390/app16031364

