Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix
Abstract
1. Introduction
- –
- as powders, analyzed in solution via spectroscopic techniques,
- –
- as thin films, obtained by dispersing the complex in a PMMA (poly(methyl methacrylate)) matrix and depositing it onto silicon substrates via the spin-coating method.
2. Materials and Methods
2.1. Synthesis
- 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.60 (s, 1H, OH), 11.61 (s, 1H, OH), 10.79 (s, 1H, OH), 9.76 (s, 1H, OH), 7.57 (d, J = 8.7 Hz, 1H), 6.45 (s, 1H), 6.43 (d, J = 9.5 Hz, 1H), 6.24 (s, 1H), 6.18 (s, 1H).
- IR (KBr) νmax (cm−1): 1654, 1599, 1513, 1438, 1363, 1233, 1181, 1007, 974, 648.
2.2. Thin Films Preparation
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. UV-Vis and Fluorescence Spectroscopic Study of the Complex
3.3. Thin Films Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panhwar, Q.K.; Memon, S.; Bhanger, M.I. Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)–morin complex. J. Mol. Struct. 2010, 967, 47–53. [Google Scholar] [CrossRef]
- Woźnicka, E.; Zapała, L.; Pieniążek, E.; Kosińska, M.; Ciszkowicz, E.; Lecka-Szlachta, K.; Pusz, J.; Maciołek, U.; Dronka, J. Synthesis, characterization and antibacterial studies of Tm(III), Yb(III) and Lu(III) complexes of morin. J. Coord. Chem. 2017, 70, 1451–1463. [Google Scholar] [CrossRef]
- Jamali, A.A.; Tavakoli, A.; Ezzati Nazhad Dolatabadi, J. Analytical overview of DNA interaction with Morin and its metal complexes. Eur. Food Res. Technol. 2012, 235, 367–373. [Google Scholar] [CrossRef]
- Cornard, J.P.; Boudet, A.C.; Merlin, J.C. Complexes of Al(III) with 3′4′-dihydroxy-flavone: Characterization, theoretical and spectroscopic study. Spectrochim. Acta Part A 2001, 57, 591–602. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.M. Electrochemistry of Flavonoids: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 15667. [Google Scholar] [CrossRef]
- Engelmann, M.D.; Hutcheson, R.; Cheng, I.F. Stability of Ferric Complexes with 3-Hydroxyflavone (Flavonol), 5,7-Dihydroxyflavone (Chrysin), and 3‘,4‘-Dihydroxyflavone. J. Agric. Food. Chem. 2005, 53, 2953–2960. [Google Scholar] [CrossRef]
- Vimalraj, S.; Rajalakshmi, S.; Saravanan, S.; Thirumalai, D.; Kadarkarai, M.; Rajkumar, A.V.; Dhanasekaran, A. Zinc chelated morin promotes osteoblast differentiation over its uncomplexed counterpart. Process Biochem. 2019, 82, 167–172. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Flavonoid–Metal Ion Complexes: A Novel Class of Therapeutic Agents. Med. Res. Rev. 2014, 34, 677–702. [Google Scholar] [CrossRef]
- Arriagada, F.; Correa, O.; Günther, G.; Nonell, S.; Mura, F.; Olea-Azar, C.; Morales, J. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial. PLoS ONE 2016, 11, e0164507. [Google Scholar] [CrossRef]
- Sivaramakrishnan, V.; Devaraj, S.N. Morin fosters apoptosis in experimental hepatocellular carcinogenesis model. Chem. Biol. Interact. 2010, 183, 284–292. [Google Scholar] [CrossRef]
- Iglesias, C.V.; Aparicio, R.; Rodrigues-Simioni, L.; Camargo, E.A.; Antunes, E.; Marangoni, S.; Toyama, D.O.; Beriam, L.O.S.; Monteiro, H.S.A.; Toyama, M.H. Effects of morin on snake venom phospholipase A2 (PLA2). Toxicon 2005, 46, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Shin, Y.-K.; Song, J.-Y.; Lee, K.-W. Protective mechanism of morin against ultraviolet B-induced cellular senescence in human keratinocyte stem cells. Int. J. Radiat. Biol. 2014, 90, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Woźnicka, E.; Kopacz, M.; Umbreit, M.; Kłos, J. New complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin. J. Inorg. Biochem. 2007, 101, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Naso, L.G.; Lezama, L.; Rojo, T.; Etcheverry, S.B.; Valcarcel, M.; Roura, M.; Salado, C.; Ferrer, E.G.; Williams, P.A.M. Biological evaluation of morin and its new oxovanadium(IV) complex as antio-xidant and specific anti-cancer agents. Chem. Biol. Interact. 2013, 206, 289–301. [Google Scholar] [CrossRef]
- Jędrzejewska, B.; Gordel, M.; Szeremeta, J.; Grela, I.; Samoć, M. Photostability of push-pull phenanthroimidazole derivative upon one- and two-photon excitation. Dyes Pigm. 2017, 136, 150–160. [Google Scholar] [CrossRef]
- Olmsted, J. Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem. 1979, 83, 2581–2584. [Google Scholar] [CrossRef]
- Sendrayaperumal, V.; Iyyam Pillai, S.; Subramanian, S. Design, synthesis and characterization of zinc–morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD–STZ induced type 2 diabetes in rats. Chem. Biol. Interact. 2014, 219, 9–17. [Google Scholar] [CrossRef]
- Panhwar, Q.K.; Memon, S. Synthesis of Cr(III)-Morin Complex: Characterization and Antioxidant Study. Sci. World J. 2014, 2014, 845208. [Google Scholar] [CrossRef]
- Panhwar, Q.K.; Memon, S. Synthesis and evaluation of antioxidant and antibacterial properties of morin complexes. J. Coord. Chem. 2011, 64, 2117–2129. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Mei, P. Synthesis of Morin–Zinc(II) Complex and its Interaction with Serum Albumin. Biol. Trace Elem. Res. 2011, 143, 677–687. [Google Scholar] [CrossRef]
- Jabeen, E.; Janjua, N.K.; Ahmed, S.; Murtaza, I.; Ali, T.; Masood, N.; Rizvi, A.S.; Murtaza, G. DFT predictions, synthesis, stoichiometric structures and anti-diabetic activity of Cu (II) and Fe (III) complexes of quercetin, morin, and primuletin. J. Mol. Struct. 2017, 1150, 459–468. [Google Scholar] [CrossRef]
- Tanui, H.K.; Nkabyo, H.A.; Pearce, B.H.; Hussein, A.A.; Lopis, A.S.; Luckay, R.C. Iron(III) and copper(II) complexes derived from the flavonoids morin and quercetin: Chelation, crystal structure and DFT studies. J. Mol. Struct. 2022, 1257, 132591. [Google Scholar] [CrossRef]
- Sykuła, A.; Kowalska-Baron, A.; Gałęcki, K.; Błazińska, P.; Łodyga-Chruścińska, E. Structural and Spectral Investigation of a Series of Flavanone Derivatives. Molecules 2021, 26, 1298. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.G.; Veerasubam, R.; Muthukumaran, S.; Raja, V. Ni and Mn simultaneously doped ZnO nanoparticles under Ar ambiance: Structural and optical characterization. Surf. Interfaces 2019, 15, 148–156. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Jomová, K.; Hudecova, L.; Lauro, P.; Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Valko, M. A switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3′,4′-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper (II) ions: A spectroscopic, absorption titration and DNA damage study. Molecules 2019, 24, 4335. [Google Scholar] [CrossRef]
- Adhikari, A.; Darbar, S.; Chatterjee, T.; Das, M.; Polley, N.; Bhattacharyya, M.; Bhattacharya, S.; Pal, D.; Pal, S.K. Spectroscopic studies on dual role of natural flavonoids in detoxification of lead poisoning: Bench-to-bedside preclinical trial. ACS Omega 2018, 3, 15975–15987. [Google Scholar] [CrossRef]
- Ren, J.; Meng, S.; Lekka, C.E.; Kaxiras, E. Complexation of Flavonoids with Iron: Structure and Optical Signatures. J. Phys. Chem. B 2008, 112, 1845–1850. [Google Scholar] [CrossRef]
- Bukhari, S.B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M.I. Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim. Acta A 2009, 71, 1901–1906. [Google Scholar] [CrossRef]
- Demidov, O.O.; Chepeleva, L.V.; Shishkina, S.V.; Gladkov, E.S.; Kyrychenko, A.; Linnik, R.P.; Roshal, A.D. Influence of C3′-and C4′-substitutions on fluorescence, crystal packing, and physicochemical properties of flavonol. RSC Adv. 2025, 15, 36300–36318. [Google Scholar] [CrossRef]
- Sengupta, B.; Reilly, S.M.; Davis, D.E., Jr.; Harris, K.; Wadkins, R.M.; Ward, D.; Gholar, D.; Hampton, C. Excited state proton transfer of natural flavonoids and their chromophores in duplex and tetraplex DNAs. J. Phys. Chem. B 2015, 119, 2546–2556. [Google Scholar] [CrossRef] [PubMed]
- Deriabina, A.; Prutskij, T.; Morales Ochoa, H.D.; Gonzalez Jimenez, E.; Deriabin, S. Comparative analysis of fluorescence emission in myricetin, kaempferol, and quercetin powders and solutions. Int. J. Mol. Sci. 2024, 25, 2558. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Tan, X.; Liu, Q.; Cheng, P.; Fei, X.; Tian, J.; Wang, Y. Theoretical study on ESIPT of flavonol Galangin molecules in different solvents. J. Mol. Liq. 2025, 425, 127140. [Google Scholar] [CrossRef]
- Lakowicz, J.R. (Ed.) Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Vabre, R.; Legraverend, M.; Piguel, S. Synthesis and evaluation of spectroscopic properties of newly synthesized push–pull 6-amino-8-styryl purines. Dyes Pigm. 2014, 105, 145–151. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Pelecanou, M.; Hatzidimitriou, A.G. Structurally characterized zinc complexes of flavonoids chrysin and quercetin with antioxidant potential. Inorg. Chim. Acta 2021, 523, 120407. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Antonoglou, O.; Hatzidimitriou, A.; Sagnou, M.; Pantazaki, A.A.; Litsardakis, G.; Pelecanou, M. Structurally characterized gallium–chrysin complexes with anticancer potential. Dalton Trans. 2020, 49, 2734–2746. [Google Scholar] [CrossRef]
- Andelescu, A.A.; Cretu, C.; Sasca, V.; Marinescu, S.; Cseh, L.; Costisor, O.; Szerb, E.I. New heteroleptic Zn(II) and Cu(II) complexes with quercetine and N^N ligands, Polyhedron. Polyhedron 2018, 147, 120–125. [Google Scholar] [CrossRef]
- Sypniewska, M.; Szczesny, R.; Skowronski, L.; Kamedulski, P.; Gondek, E.; Apostoluk, A.; Derkowska-Zielinska, B. Optical and morphological properties of ZnO and Alq3 incorporated polymeric thin layers fabricated by the dip-coating method. Appl. Nanosci. 2023, 13, 4903–4912. [Google Scholar] [CrossRef]
- Woollam, J.A. Guide to Using WVASE32®; W.S.I.N. York, Ed.; NY, USA; J.A. Woollam Co., Inc.: Lincoln, NE, USA, 2010. [Google Scholar]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Abdi, G.; Połczyński, P.; Filip, A.; Kazimierczuk, K.; Jaroń, T.; Jurczakowski, R.; Colmenares, J.C.; Szczurek, A. The new Morin—Based three-dimensional carbon nanostructures with metal oxides deposits. From synthesis to electro- and photocatalytic applications. Mater. Today Commun. 2023, 35, 106073. [Google Scholar] [CrossRef]















| Sample | do (nm) | dr (nm) | A | E (eV) (nm) | Br (eV) | χ2 | Eg (eV) (nm) | Ra (nm) | Rq (nm) |
|---|---|---|---|---|---|---|---|---|---|
| Morin:PMMA | 55 ± 1 | 1 ± 1 | 0.34 ± 0.01 0.28 ± 0.01 0.24 ± 0.01 1.81 ± 0.06 | 3.32 ± 0.01 373 ± 2 3.69 ± 0.03 336 ± 3 4.71 ± 0.01 263 ± 2 8.16 ± 0.24 152 ± 8 | 0.44 ± 0.01 1.17 ± 0.04 0.37 ± 0.01 4.21 ± 0.31 | 3.59 | 3.02 ± 0.06 410 ± 8 | 4.5 | 5.8 |
| Morin-Zn:PMMA | 26 ± 4 | 22 ± 4 | 3.79 ± 0.28 0.53 ± 0.02 0.63 ± 0.18 4.60 ± 1.78 | 2.97 ± 0.01 421 ± 2 4.49 ± 0.25 276 ± 2 5.72 ± 0.16 216 ± 8 10.23 ± 0.96 121 ± 12 | 0.47 ± 0.03 0.78 ± 0.07 1.51 ± 0.39 3.69 ± 1.56 | 3.35 | 2.70 ± 0.03 459 ± 5 | 23.3 | 27.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sypniewska, M.; Jędrzejewska, B.; Pietrzak, M.; Trzcinski, M.; Szczęsny, R.; Chorobinski, M.; Skowronski, L. Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix. Appl. Sci. 2026, 16, 91. https://doi.org/10.3390/app16010091
Sypniewska M, Jędrzejewska B, Pietrzak M, Trzcinski M, Szczęsny R, Chorobinski M, Skowronski L. Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix. Applied Sciences. 2026; 16(1):91. https://doi.org/10.3390/app16010091
Chicago/Turabian StyleSypniewska, Malgorzata, Beata Jędrzejewska, Marek Pietrzak, Marek Trzcinski, Robert Szczęsny, Mateusz Chorobinski, and Lukasz Skowronski. 2026. "Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix" Applied Sciences 16, no. 1: 91. https://doi.org/10.3390/app16010091
APA StyleSypniewska, M., Jędrzejewska, B., Pietrzak, M., Trzcinski, M., Szczęsny, R., Chorobinski, M., & Skowronski, L. (2026). Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix. Applied Sciences, 16(1), 91. https://doi.org/10.3390/app16010091

