Impact of Visual Magnification on MB2 Canal Detection in a Laboratory-Based Study Using Standardized 3D-Printed Maxillary Molars
Abstract
1. Introduction
- There is no difference in MB2 detection rates among the three magnification groups.
- Operator experience has no effect on MB2 detection or procedural performance.
- The use of ultrasonic tips has no effect on the frequency of procedural errors, including access cavity perforation or MB2 scouting perforation.
2. Materials and Methods
2.1. 3D-Printed Tooth Model
2.2. Participants and Group Allocation
- Naked eye (NE)-no magnification
- Dental loupes (DL)-3.5× magnification (Zumax, Suzhou, China)
- Dental operating microscope (DOM)-variable magnification (Zeiss, Oberkochen, Germany)
2.3. Phantom Head and Clinical Setup
- high-speed and low-speed handpieces,
- suction and air spray,
- stainless steel size-10 K-files (Dentsply Sirona, Charlotte, NC, USA),
- DG16 endodontic explorer (Dentsply Sirona, Charlotte, NC, USA),
- low-speed long-shank round bur (CJM Engineering, Ojai, CA, USA),
- high-speed endo access bur, (Dentsply Sirona, Charlotte, NC, USA),
- ultrasonic (US) tip No. 3 from the StartX tips kit (Dentsply Maillefer, Tulsa, OK, USA),
- 0.9% normal saline for irrigation.
2.4. Clinical Procedures
2.4.1. Step 1: Access Cavity Preparation
2.4.2. Step 2: MB2 Canal Detection
2.5. Time Recording
- Step 1 time: from the start of access preparation to identification of the three main canals.
- Step 2 time: from completion of Step 1 to confirmed MB2 detection.
2.6. Collected Variables
- age and gender,
- professional experience level (endodontic resident/endodontist),
- assigned magnification group (NE, DL, DOM),
- use of ultrasonic tips (yes/no),
- use of long shank round burs (yes/no),
- MB2 detection (yes/no),
- procedural errors:
- ○
- none,
- ○
- perforation during access cavity preparation,
- ○
- perforation during MB2 scouting.
2.7. Statistical Analysis
2.8. Sample Size Considerations
3. Results
3.1. Demographic Associations
3.2. MB2 Detection and Categorical Variables
3.3. Regression Analysis
4. Discussion
5. Conclusions
Clinical Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eichenberger, M.; Perrin, P.; Neuhaus, K.W.; Bringolf, U.; Lussi, A. Visual acuity of dentists under simulated clinical conditions. Clin. Oral Investig. 2013, 17, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Mora, A.F.; Schmidt, R. Microscope-assisted precision dentistry. Compend. Contin. Educ. Dent. 1999, 20, 723–728, 730–731, 735–736; quiz 737. [Google Scholar]
- Friedman, M.J. Magnification in a restorative dental practice: From loupes to microscopes. Compend. Contin. Educ. Dent. 2004, 25, 48, 50, 53–55. [Google Scholar]
- Carr, G.B. Microscopes in endodontics. J. Calif. Dent. Assoc. 1992, 20, 55–61. [Google Scholar]
- Perrin, P.; Eichenberger, M.; Neuhaus, K.W.; Lussi, A. Visual acuity and magnification devices in dentistry. Swiss Dent. J. 2016, 126, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, M.; Perrin, P.; Neuhaus, K.W.; Bringolf, U.; Lussi, A. Influence of loupes and age on the near visual acuity of practicing dentists. J. Biomed. Opt. 2011, 16, 035003. [Google Scholar] [CrossRef]
- Forgie, A.H. Magnification: What is available, and will it aid your clinical practice? Dent. Update 2001, 28, 125–128, 130. [Google Scholar] [CrossRef]
- Chauhan, S.; Chauhan, R.; Bhasin, P.; Bhasin, M. Magnification: The game changer in dentistry. World J. Methodol. 2025, 15, 100937. [Google Scholar] [CrossRef]
- Perrin, P.; Neuhaus, K.W.; Lussi, A. The impact of loupes and microscopes on vision in endodontics. Int. Endod. J. 2014, 47, 425–429. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Asgary, S.; Shalavi, S.; Abbott, P.V. Clinical Update on the Different Methods to Decrease the Occurrence of Missed Root Canals. Iran. Endod. J. 2016, 11, 208–213. [Google Scholar]
- AAE Special Committee to Develop a Microscope Position Paper. AAE Position Statement. Use of microscopes and other magnification techniques. J. Endod. 2012, 38, 1153–1155. [CrossRef]
- Wolf, T.G.; Wentaschek, S.; Wierichs, R.J.; Briseño-Marroquín, B. Interradicular Root Canals in Mandibular First Molars: A Literature Review and Ex Vivo Study. J. Endod. 2019, 45, 129–135. [Google Scholar] [CrossRef]
- de Oliveira, L.O.; Silva, M.H.C.; Bastos, H.J.S.; de Jesus Soares, A.; Frozoni, M. The impact of a dental operating microscope on the identification of mesiolingual canals in maxillary first molars. Gen. Dent. 2019, 67, 73–75. [Google Scholar]
- Schmidt, B.S.; Zaccara, I.M.; Reis Só, M.V.; Kuga, M.C.; Palma-Dibb, R.G.; Kopper, P.M. Influence of operating microscope in the sealing of cervical perforations. J. Conserv. Dent. JCD 2016, 19, 152–156. [Google Scholar]
- Sharma, S.; Haldar, P.; Kumar, V.; Chawla, A.; Logani, A. Learning Curve for Dynamic Navigation Procedure during Endodontic Management of Permanent Maxillary Anterior Teeth with Pulp Canal Calcification: A Risk-Adjusted Cumulative Summation Analysis of a Single Operator’s Experience. J. Endod. 2025, 51, 295–302. [Google Scholar] [CrossRef]
- Schwarze, T.; Baethge, C.; Stecher, T.; Geurtsen, W. Identification of second canals in the mesiobuccal root of maxillary first and second molars using magnifying loupes or an operating microscope. Aust. Endod. J. 2002, 28, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Buhrley, L.J.; Barrows, M.J.; BeGole, E.A.; Wenckus, C.S. Effect of magnification on locating the MB2 canal in maxillary molars. J. Endod. 2002, 28, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Hiebert, B.M.; Abramovitch, K.; Rice, D.; Torabinejad, M. Prevalence of Second Mesiobuccal Canals in Maxillary First Molars Detected Using Cone-beam Computed Tomography, Direct Occlusal Access, and Coronal Plane Grinding. J. Endod. 2017, 43, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Forgie, A.H.; Pine, C.M.; Longbottom, C.; Pitts, N.B. The use of magnification in general dental practice in Scotland--a survey report. J. Dent. 1999, 27, 497–502. [Google Scholar] [CrossRef]
- Farook, S.A.; Stokes, R.J.; Davis, A.K.; Sneddon, K.; Collyer, J. Use of dental loupes among dental trainers and trainees in the UK. J. Investig. Clin. Dent. 2013, 4, 120–123. [Google Scholar] [CrossRef]
- Anderson, J.; Wealleans, J.; Ray, J. Endodontic applications of 3D printing. Int. Endod. J. 2018, 51, 1005–1018. [Google Scholar] [CrossRef]
- Cresswell-Boyes, A.; Davis, G.; Baysan, A. Students’ perceptions of endodontic typodont teeth with simulated canals printed from novel materials. Front. Dent. Med. 2024, 5, 1373922. [Google Scholar] [CrossRef] [PubMed]
- Dental Engineering Laboratories. TrueTooth® Endodontic Training Replicas-Product Catalogue; Dental Engineering Laboratories: Santa Barbara, CA, USA, 2004; Available online: https://delendo.com/ (accessed on 22 December 2025).
- Teixeira, F.B.; Sano, C.L.; Gomes, B.P.; Zaia, A.A.; Ferraz, C.C.; Souza-Filho, F.J. A preliminary in vitro study of the incidence and position of the root canal isthmus in maxillary and mandibular first molars. Int. Endod. J. 2003, 36, 276–280. [Google Scholar] [CrossRef] [PubMed]
- von Arx, T. Frequency and type of canal isthmuses in first molars detected by endoscopic inspection during periradicular surgery. Int. Endod. J. 2005, 38, 160–168. [Google Scholar] [CrossRef]
- Di Lorenzo, I.; del Hougne, M.; Krastl, G.; Schmitter, M.; Höhne, C. 3D printed tooth for endodontic training in dental education. Sci. Rep. 2025, 15, 20185. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef]
- Reis, T.; Barbosa, C.; Franco, M.; Baptista, C.; Alves, N.; Castelo-Baz, P.; Martin-Cruces, J.; Martin-Biedma, B. 3D-Printed Teeth in Endodontics: Why, How, Problems and Future—A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 7966. [Google Scholar] [CrossRef]
- Duan, M.; Lv, S.; Fan, B.; Fan, W. Effect of 3D printed teeth and virtual simulation system on the pre-clinical access cavity preparation training of senior dental undergraduates. BMC Med. Educ. 2024, 24, 913. [Google Scholar] [CrossRef]
- Monsarrat, P.; Arcaute, B.; Peters, O.A.; Maury, E.; Telmon, N.; Georgelin-Gurgel, M.; Maret, D. Interrelationships in the Variability of Root Canal Anatomy among the Permanent Teeth: A Full-Mouth Approach by Cone-Beam CT. PLoS ONE 2016, 11, e0165329. [Google Scholar] [CrossRef]
- Wolcott, J.; Ishley, D.; Kennedy, W.; Johnson, S.; Minnich, S.; Meyers, J. A 5 Yr Clinical Investigation of Second Mesiobuccal Canals in Endodontically Treated and Retreated Maxillary Molars. J. Endod. 2005, 31, 262–264. [Google Scholar] [CrossRef]
- Song, M.; Kim, H.C.; Lee, W.; Kim, E. Analysis of the cause of failure in nonsurgical endodontic treatment by microscopic inspection during endodontic microsurgery. J. Endod. 2011, 37, 1516–1519. [Google Scholar] [CrossRef]
- Alotaibi, B.B.; Khan, K.I.; Javed, M.Q.; Dutta, S.D.; Shaikh, S.S.; Almutairi, N.M. Relationship between apical periodontitis and missed canals in mesio-buccal roots of maxillary molars: CBCT study. J. Taibah Univ. Med. Sci. 2024, 19, 18–27. [Google Scholar] [CrossRef]
- Huang, D.; Wang, X.; Liang, J.; Ling, J.; Bian, Z.; Yu, Q.; Hou, B.; Chen, X.; Li, J.; Ye, L.; et al. Expert consensus on difficulty assessment of endodontic therapy. Int. J. Oral Sci. 2024, 16, 22. [Google Scholar] [CrossRef]
- Nouroloyouni, A.; Nazi, Y.; Mikaieli Xiavi, H.; Noorolouny, S.; Kuzekanani, M.; Plotino, G.; Walsh, J.L.; Sheikhfaal, B.; Alyali, R.; Tavakkol, E. Cone-Beam Computed Tomography Assessment of Prevalence of Procedural Errors in Maxillary Posterior Teeth. Biomed. Res. Int. 2023, 2023, 4439890. [Google Scholar] [CrossRef]
- Baruwa, A.O.; Martins, J.N.R.; Meirinhos, J.; Pereira, B.; Gouveia, J.; Quaresma, S.A.; Monroe, A.; Ginjeira, A. The Influence of Missed Canals on the Prevalence of Periapical Lesions in Endodontically Treated Teeth: A Cross-sectional Study. J. Endod. 2020, 46, 34–39.e1. [Google Scholar] [CrossRef] [PubMed]
- Vizzotto, M.B.; Silveira, P.F.; Arus, N.A.; Montagner, F.; Gomes, B.P.; da Silveira, H.E. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: Effect of voxel size and presence of root filling. Int. Endod. J. 2013, 46, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.N.R.; Alkhawas, M.A.M.; Altaki, Z.; Bellardini, G.; Berti, L.; Boveda, C.; Chaniotis, A.; Flynn, D.; Gonzalez, J.A.; Kottoor, J.; et al. Worldwide Analyses of Maxillary First Molar Second Mesiobuccal Prevalence: A Multicenter Cone-beam Computed Tomographic Study. J. Endod. 2018, 44, 1641–1649.e1. [Google Scholar] [CrossRef]
- Al-Shehri, S.; Al-Nazhan, S.; Shoukry, S.; Alshwaimi, E.; Al-Sadhan, R.E.; Al-Shemmery, B. Root and canal configuration of the maxillary first molar in a Saudi subpopulation: A cone-beam computed tomography study. Saudi Endod. J. 2017, 7, 69–76. [Google Scholar]
- Alfouzan, K.; Alfadley, A.; Alkadi, L.; Alhezam, A.; Jamleh, A. Detecting the Second Mesiobuccal Canal in Maxillary Molars in a Saudi Arabian Population: A Micro-CT Study. Scanning 2019, 2019, 9568307. [Google Scholar] [CrossRef] [PubMed]
- Abduljabbar, F.; Mengari, L.F.; Bahkali, A.; Essa, G.M.F.; Farahat, F.M.; Abdelaal, R.M. Long Term Study of the Prevalence of Second Mesiobuccal canal in Maxillary First Molar of Saudi Population. EC Dental Sci. 2019, 18, 1014–1020. [Google Scholar]
- Su, C.C.; Huang, R.Y.; Wu, Y.C.; Cheng, W.C.; Chiang, H.S.; Chung, M.P.; Cathy Tsai, Y.W.; Chung, C.H.; Shieh, Y.S. Detection and location of second mesiobuccal canal in permanent maxillary teeth: A cone-beam computed tomography analysis in a Taiwanese population. Arch. Oral Biol. 2019, 98, 108–114. [Google Scholar] [CrossRef]
- Barbhai, S.; Shetty, R.; Joshi, P.; Mehta, V.; Mathur, A.; Sharma, T.; Chakraborty, D.; Porwal, P.; Meto, A.; Wahjuningrum, D.A.; et al. Evaluation of Root Anatomy and Canal Configuration of Human Permanent Maxillary First Molar Using Cone-Beam Computed Tomography: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 10160. [Google Scholar] [CrossRef]
- Misuriya, A.; Bhardwaj, A.; Bhardwaj, A.; Aggrawal, S.; Kumar, P.P.; Gajjarepu, S. A comparative antimicrobial analysis of various root canal irrigating solutions on endodontic pathogens: An in vitro study. J. Contemp. Dent. Pract. 2014, 15, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Chehroudi, B.; Coil, J. Identification of Possible Factors Impacting Dental Students’ Ability to Locate MB2 Canals in Maxillary Molars. J. Dent. Educ. 2014, 78, 789–795. [Google Scholar] [CrossRef]
- Pazos, J.M.; Regalo, S.C.H.; de Vasconcelos, P.; Campos, J.; Garcia, P. Effect of magnification factor by Galilean loupes on working posture of dental students in simulated clinical procedures: Associations between direct and observational measurements. PeerJ 2022, 10, e13021. [Google Scholar] [CrossRef] [PubMed]
- Wajngarten, D.; Garcia, P. Effect of magnification devices on dental students’ visual acuity. PLoS ONE 2019, 14, e0212793. [Google Scholar] [CrossRef] [PubMed]
- Leggat, P.; Smith, D. Musculoskeletal disorders self-reported by dentists in Queensland, Australia. Aust. Dent. J. 2007, 51, 324–327. [Google Scholar] [CrossRef]
- Swartz, D.B.; Skidmore, A.E.; Griffin, J.A., Jr. Twenty years of endodontic success and failure. J. Endod. 1983, 9, 198–202. [Google Scholar] [CrossRef]
- Manigandan, K.; Ravishankar, P.; Sridevi, K.; Keerthi, V.; Prashanth, P.; Pradeep Kumar, A.R. Impact of dental operating microscope, selective dentin removal and cone beam computed tomography on detection of second mesiobuccal canal in maxillary molars: A clinical study. Indian. J. Dent. Res. 2020, 31, 526–530. [Google Scholar]
- Parirokh, M.; Manochehrifar, H.; Kakooei, S.; Nakhaei, N.; Abbott, P. Variables That Affect the Ability to Find the Second Mesiobuccal Root Canals in Maxillary Molars. Iran. Endod. J. 2023, 18, 248–253. [Google Scholar]
- Mulay, S.; Kadam, G.; Jain, H. Accuracy of various diagnostic aids in detection of MB2 canal in maxillary first molar: In vivo. World J. Dent. 2016, 7, 78–82. [Google Scholar] [CrossRef]
- Nath, K.; Shetty, K. Comparative evaluation of second mesiobuccal canal detection in maxillary first molars using magnification and illumination. Saudi Endod. J. 2017, 7, 166–169. [Google Scholar] [CrossRef]
- Plotino, G.; Pameijer, C.H.; Grande, N.M.; Somma, F. Ultrasonics in endodontics: A review of the literature. J. Endod. 2007, 33, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Studebaker, B.; Hollender, L.; Mancl, L.; Johnson, J.D.; Paranjpe, A. The Incidence of Second Mesiobuccal Canals Located in Maxillary Molars with the Aid of Cone-beam Computed Tomography. J. Endod. 2018, 44, 565–570. [Google Scholar] [CrossRef]
- Coelho, M.S.; Lacerda, M.; Silva, M.H.C.; Rios, M.A. Locating the second mesiobuccal canal in maxillary molars: Challenges and solutions. Clin. Cosmet. Investig. Dent. 2018, 10, 195–202. [Google Scholar] [CrossRef]




| Variable | Mean ± SD | Range |
|---|---|---|
| Age (years) | 35.6 ± 9.6 | 25–67 |
| Clinical experience (years) | 7.0 ± 6.0 | 1–30 |
| Variable | Category | n | % |
|---|---|---|---|
| Gender | Male | 27 | 45.8% |
| Female | 32 | 54.2% | |
| Experience level | Resident | 21 | 35.6% |
| Endodontist | 38 | 64.4% | |
| Magnification group | NE | 20 | 33.9% |
| DL | 19 | 32.2% | |
| DOM | 20 | 33.9% | |
| Ultrasonic use | Yes | 28 | 47.5% |
| No | 31 | 52.5% | |
| Long-shank bur use | Yes | 39 | 66.1% |
| No | 20 | 33.9% | |
| Procedural errors | None | 48 | 81.4% |
| Access cavity | 2 | 3.4% | |
| MB2 scouting | 9 | 15.3% |
| Experience Level | MB2 Detected | Step 1 (Mean ± SD) | Step 2 (Mean ± SD) | p-Value (Detection Effect) * |
|---|---|---|---|---|
| Endodontist | Yes | 276.97 ± 157.24 | 193.30 ± 130.01 | Step 1: 0.8600 Step 2: 0.0446 |
| No | 257.22 ± 135.96 | 328.15 ± 289.25 | ||
| Resident | Yes | 528.30 ± 254.02 | 403.30 ± 185.78 | Step 1: 0.8600 Step 2: 0.0446 |
| No | 523.22 ± 453.50 | 507.69 ± 265.80 |
| Variable | MB2 Detected | No MB2 Detected | p-Value * |
|---|---|---|---|
| Age (years) | 37.17 ± 10.58 | 34.13 ± 8.38 | 0.226 |
| Clinical experience (years) | 8.55 ± 7.89 | 5.70 ± 3.96 | 0.089 |
| Variable | Category | MB2 Detected n (%) | Not Detected n (%) | p-Value * |
|---|---|---|---|---|
| Gender | Male | 14 (51.9%) | 13 (48.1%) | 0.703 |
| Female | 15 (46.9%) | 17 (53.1%) | ||
| Experience level | Resident | 10 (47.6%) | 11 (52.4%) | 0.861 |
| Endodontist | 19 (50.0%) | 19 (50.0%) | ||
| Magnification | NE | 8 (40.0%) | 12 (60.0%) | 0.071 |
| DL | 7 (36.8%) | 12 (63.2%) | ||
| DOM | 14 (70.0%) | 6 (30.0%) | ||
| Ultrasonic use | Yes | 12 (42.9%) | 16 (57.1%) | 0.009 |
| No | 17 (54.8%) | 14 (45.2%) | ||
| Long-shank bur use | Yes | 19 (48.7%) | 20 (51.3%) | 0.926 |
| No | 10 (50.0%) | 10 (50.0%) | ||
| Procedural errors | None | 27 (56.3%) | 21 (43.8%) | 0.003 |
| Access perforation | 2 (100.0%) | 0 (0.0%) | ||
| MB2 scouting perforation | 0 (0.0%) | 9 (100.0%) |
| Variable | Category | No Perforation | Access Perforation | MB2 Scouting Perforation | p-Value |
|---|---|---|---|---|---|
| Gender | Male | 22 (81.5%) | 1 (3.7%) | 4 (14.8%) | 0.990 |
| Female | 26 (81.3%) | 1 (3.1%) | 5 (15.6%) | ||
| Experience level | Resident | 19 (90.5%) | 0 (0.0%) | 2 (9.5%) | 0.343 |
| Endodontist | 29 (76.3%) | 2 (5.3%) | 7 (18.4%) | ||
| Magnification | NE | 16 (80.0%) | 1 (5.0%) | 3 (15.0%) | 0.897 |
| DL | 15 (78.9%) | 1 (5.3%) | 3 (15.8%) | ||
| DOM | 17 (85.0%) | 0 (0.0%) | 3 (15.0%) | ||
| Ultrasonic use | Yes | 24 (85.7%) | 1 (3.6%) | 3 (10.7%) | 0.654 |
| No | 24 (77.4%) | 1 (3.2%) | 6 (19.4%) | ||
| Long-shank bur use | Yes | 32 (82.1%) | 1 (2.6%) | 6 (15.4%) | 0.887 |
| No | 16 (80.0%) | 1 (5.0%) | 3 (15.0%) |
| Predictor | Category/Unit | OR | 95% CI | p-Value |
|---|---|---|---|---|
| Age (years) | Continuous | 1.04 | 0.98–1.09 | 0.229 |
| Gender | Female vs. Male | 0.82 | 0.29–2.28 | 0.703 |
| Experience level | Endodontist vs. Resident | 1.10 | 0.38–3.19 | 0.861 |
| Years of experience | Continuous | 1.08 | 0.99–1.19 | 0.095 |
| Magnification (ref = NE) | DL | 0.88 | 0.24–3.19 | 0.839 |
| DOM | 3.50 | 0.95–12.96 | 0.061 | |
| Ultrasonic use | No vs. Yes | 1.62 | 0.58–4.53 | 0.359 |
| Long-shank bur use | No vs. Yes | 1.05 | 0.36–3.09 | 0.926 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Farrash, H.S.; Alsofi, L.; Balto, K. Impact of Visual Magnification on MB2 Canal Detection in a Laboratory-Based Study Using Standardized 3D-Printed Maxillary Molars. Appl. Sci. 2026, 16, 493. https://doi.org/10.3390/app16010493
Farrash HS, Alsofi L, Balto K. Impact of Visual Magnification on MB2 Canal Detection in a Laboratory-Based Study Using Standardized 3D-Printed Maxillary Molars. Applied Sciences. 2026; 16(1):493. https://doi.org/10.3390/app16010493
Chicago/Turabian StyleFarrash, Hussam Sultan, Loai Alsofi, and Khaled Balto. 2026. "Impact of Visual Magnification on MB2 Canal Detection in a Laboratory-Based Study Using Standardized 3D-Printed Maxillary Molars" Applied Sciences 16, no. 1: 493. https://doi.org/10.3390/app16010493
APA StyleFarrash, H. S., Alsofi, L., & Balto, K. (2026). Impact of Visual Magnification on MB2 Canal Detection in a Laboratory-Based Study Using Standardized 3D-Printed Maxillary Molars. Applied Sciences, 16(1), 493. https://doi.org/10.3390/app16010493

