Evaluation of Mechanical Stability, and Magnetic and Acoustic Properties of a Transformer Core Made of Amorphous Steel Consolidated with a Silane-Based Hybrid Binder
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Amorphous Metal Ribbon
2.2. Preparation and Application of Sol Binders on Amorphous Steel Ribbon
2.3. Corrosion Resistance
2.4. Dielectric Properties
- ε*(f)—complex permittivity [F/m],
- ε′(f)—real part of complex permittivity [F/m],
- ε″(f)—imaginary part of complex permittivity [F/m].
2.5. Model Toroidal Magnetic Core
2.6. Magnetic Measurements
- H(t)—magnetizing force [A/m],
- NH—number of turns,
- I(t)—current [A],
- lm—mean magnetic path length [m].
2.7. Noise Emission
3. Results
3.1. Corrosion Resistance
3.2. Dielectric Properties
- the effect of volumetric thermal expansion;
- the effect of temperature on polarizability [41].
3.3. Magnetic Properties
3.4. Noise Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TEOS | tetraethyl orthosilicate |
BTSE | 1,2-bis(triethoxysilyl)ethane |
CTE | coefficient of thermal expansion |
AC | alternating current |
References
- Du, J.; Rasool, Y.; Kashif, U. Asymmetric Impacts of Environmental Policy, Financial, and Trade Globalization on Ecological Footprints: Insights from G9 Industrial Nations. Sustainability 2025, 17, 1568. [Google Scholar] [CrossRef]
- Borowski, P.F. Economic and Technological Challenges in Zero-Emission Strategies for Energy Companies. Energies 2025, 18, 898. [Google Scholar] [CrossRef]
- Chen, M.; Yu, Y.J.; Xiao, L.Y.; Wang, Q.L.; Chung, W.; Kim, K.; Baang, S. The Magnetic Properties of the Ferromagmetic Materials Used for HTS Transformers at 77K. IEEE Trans. Appl. Supercond. 2003, 13, 2313–2316. [Google Scholar] [CrossRef]
- Kurt, E.; Hatem, S. Design and Implementation of a MHz Frequency Transformer with a Ferromagnetic Fluid Core. Sustainability 2023, 15, 23. [Google Scholar] [CrossRef]
- Sima, W.; Liu, Y.; Sun, P.; Zhou, Y.; Peng, D.; Yang, M. The Effect of Different Core Materials on Transformer Inrush Currentsm. In Proceedings of the 2018 IEEE International Magnetics Conference (INTERMAG), Singapore, 23–27 April 2018. [Google Scholar]
- Heathcote, M.J. J&P Transformer Book, 12th ed.; Newnes: Oxford, UK, 1998; pp. 40–102+422–444. [Google Scholar]
- Molnar, A.; Smith, G.V.; Bartok, M. New Catalytic Materials from Amorphous Metal Alloys. Adv. Catal. 1989, 36, 329–383. [Google Scholar]
- McLyman, C.W.T. Transformer and Inductor Design Handbook, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; Volume 1, p. 11. [Google Scholar]
- Kronmuller, H.; Fahnle, M.; Domann, M.; Grimm, H.; Grimm, R.; Groger, B. Magnetic properties of amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 1979, 13, 53–70. [Google Scholar] [CrossRef]
- Ramanan, V.R.V.; Smith, C.H.; Fish, G.E. Metallic glasses in magnetic applications. Key Eng. Mater. 1987, 13–15, 849–861. [Google Scholar] [CrossRef]
- Azuma, D.; Hasegawa, R. Core Loss in Toroidal Cores Based on Fe-Based Amorphous Metglas 2605HB1 Alloy. IEEE Trans. Magn. 2011, 47, 3460–3462. [Google Scholar] [CrossRef]
- Sato, T.; Yamada, T. Improvement of core loss by chemical thinning in a thick amorphous alloy ribbon. IEEE Trans. Magn. 1972, 28, 2775–2777. [Google Scholar] [CrossRef]
- Distribution Goes Green. Available online: https://library.e.abb.com/public/4b6d4b3cfd353a88c1257a25002696a8/ABB%20Review%202-2012_72dpi.pdf (accessed on 14 February 2025).
- Ramanan, V.R.V.; Pasquale, M.; Bertotti, G. The influence of microstructure on power losses in Fe-B-Si metallic glasses. J. Magn. Magn. Mater. 1994, 133, 362–365. [Google Scholar] [CrossRef]
- Luborsky, F.; Becker, J.; McCary, R. Magnetic annealing of amorphous alloys. IEEE Trans. Magn. 1975, 11, 1644–1649. [Google Scholar] [CrossRef]
- Kmita, G.; Sekula, R.; Rybak, A.; Kozupa, M.; Klys, P. Method of Manufacturing an Amorphous Magnetic Core and Amorphous Magnetic Core. European Patent Application No. EP3035351B1, 20 February 2019. [Google Scholar]
- Grimes, F.H.; Krause, R.F. Methods of Consolidating a Magnetic Core. U.S. Patent Application No. US4615106A, 7 October 1986. [Google Scholar]
- Goldman, I.; Grant, T.W.; Grote, J.K.; Collins, R.L.; Houser, K. Edge Bonding for Amorphous Metal Transformer. U.S. Patent Application No. US6413351B1, 2 July 2002. [Google Scholar]
- Verbunt, J.P.M. Lamellar Magnetic Core Utilizing Low Viscosity Epoxy Adhesive. U.S. Patent Application No. US4713297A, 15 December 1987. [Google Scholar]
- Lupinski, J.H. Bonded Amorphous Metal Electromagnetic Components. U.S. Patent Application No. US4201837A, 6 May 1980. [Google Scholar]
- Columbus, M.R.; Brown, R.; Takahashi, K.; Hasegawa, R. Method of Reducing Audible Noise in Magnetic Cores and Magnetic Cores Having Reduced Audible Noise. U.S. Patent Application No. US8427272B1, 23 April 2013. [Google Scholar]
- Nieroda, J.; Kmita, G.; Kozupa, M.; Piela, S.; Rybak, A. The Use of Polyimide as a Bonding Material to Improve the Mechanical Stability, Magnetic and Acoustic Properties of the Transformer Core Based on Amorphous Steel. Polymers 2024, 16, 1840. [Google Scholar] [CrossRef]
- Nieroda, J.; Rybak, A.; Kmita, G.; Niziol, J.; Gondek, E.; Sitarz, M. Synthesis and characterization of silane based binder for the amorphous metal ribbon. Thin Solid Film. 2020, 716, 138433. [Google Scholar] [CrossRef]
- Dral, A.P.; Tempelman, K.; Kappert, E.J.; Winnubst, L.; Benes, N.E.; ten Elshofa, J.E. Long-term flexibility-based structural evolution and condensation in microporous organosilica membranes for gas separation. J. Mater. Chem. A. 2017, 5, 1268–1281. [Google Scholar] [CrossRef]
- Nitta, S.V.; Pisupatti, V.; Jain, A.; Wayner Jr, P.C.; Gill, W.N.; Plawsky, J.L. Surface modified spin-on xerogel films as interlayer dielectrics. J. Vac. Sci. Technol. B 1999, 14, 205–212. [Google Scholar] [CrossRef]
- Zhao, J.H.; Ryan, T.; Ho, P.S.; McKerrow, A.J.; Shih, W.Y. Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. J. Appl. Phys. 1999, 85, 6421–6424. [Google Scholar] [CrossRef]
- Dalmoroa, V.; dos Santos, J.H.Z.; Armelin, E.; Aleman, C.; Azambuja, D.S. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy. Appl. Surf. Sci. 2013, 273, 758–768. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Raeisi, E.; Mahdavian, M. Studying various mixtures of 3-aminopropyltriethoxysilane (APS) and tetraethylorthosilicate (TEOS)silanes on the corrosion resistance of mild steel and adhesion properties of epoxy coating. Int. J. Adhes. Adhes. 2015, 63, 166–176. [Google Scholar] [CrossRef]
- Atanacio, A.J.; Latella, B.A.; Barbe, C.J.; Swain, M.V. Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf. Coat. Tech. 2005, 192, 354–364. [Google Scholar] [CrossRef]
- Khramov, A.N.; Balbyshev, V.N.; Kasten, L.S.; Mantz, R.A. Sol–gel coatings with phosphonate functionalities for surface modification of magnesium alloys. Thin Solid Film. 2006, 514, 174–181. [Google Scholar] [CrossRef]
- Batan, A.; Brusciotti, F.; De Graeve, I.; Vereecken, J.; Wenkin, M.; Piens, M.; Pireaux, J.; Reniers, F.; Terryn, H. Comparison between wet deposition and plasma deposition of silane coatings on aluminium. Prog. Org. Coat. 2010, 69, 126–132. [Google Scholar] [CrossRef]
- Ciobotaru, I.A.; Vaireanu, D.I.; Ciobotaru, I.E.; Barbu, O.C. The Influence of the Curing Temperature on the Properties of Some Silane Films. Rev. Chim-Buchar. 2017, 78, 1413–1418. [Google Scholar] [CrossRef]
- Nieroda, J.; Mastalska-Poplawska, J.; Rybak, A.; Sitarz, M. Spectroscopic and rheological investigation of candidates for the double-layered binder for amorphous metal ribbon. J. Mol. Struct. 2020, 1207, 127763. [Google Scholar] [CrossRef]
- Farad, M.A. Catalysts and the structure of SiO2 sol-gel films. J. Mater. Sci. 2000, 35, 1835–1841. [Google Scholar] [CrossRef]
- Franquest, A.; Biesemans, M.; Willem, R.; Terryn, H.; Vereecken, J. Multinuclear 1D- and 2D-NMR study of the hydrolysis and condensation of bis-1,2-(trie triethoxysilyl) ethane. J. Adhes. Sci. Technol. 2004, 18, 765–778. [Google Scholar] [CrossRef]
- Van Schaftinghen, T.; Le Pena, C.; Terryn, H.; Horzenberger, F. Investigation of the barrier properties of silanes on cold rolled steel. Electrochim. Acta 2004, 49, 2997–3004. [Google Scholar] [CrossRef]
- Mahmoudi, C.H.; Hassanzadeh, A.; Golzan, M.M.; Sedgh, H.; Talebian, M. Frequency dependence of ultrahigh dielectric constant of novel synthesized SnO2 nanoparticles thick films. Curr. Appl. Phys. 2011, 11, 409–413. [Google Scholar] [CrossRef]
- Venkataraman, B.H.; Varma, K.B.R. Frequency-dependent dielectric characteristics of ferroelectric SrBi2Nb2O9 ceramics. Solid State Ion. 2004, 167, 197–202. [Google Scholar] [CrossRef]
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003; pp. 188–199. [Google Scholar]
- Alias, R. Ceramic Substrate with Varied Sintering Temperatures, in Sintering Applications. In Structural and Dielectric Properties of Glass; Ertung, B., Ed.; IntechOpen: Rijeka, Croatia, 2013; pp. 89–118. [Google Scholar]
- Havinga, E.E. The temperature dependence of dielectric constants. J. Phys. Chem. Solids 1961, 18, 253–255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieroda, J.; Kmita, G.; Kozupa, M.; Piela, S.; Sitarz, M.; Rybak, A. Evaluation of Mechanical Stability, and Magnetic and Acoustic Properties of a Transformer Core Made of Amorphous Steel Consolidated with a Silane-Based Hybrid Binder. Appl. Sci. 2025, 15, 5141. https://doi.org/10.3390/app15095141
Nieroda J, Kmita G, Kozupa M, Piela S, Sitarz M, Rybak A. Evaluation of Mechanical Stability, and Magnetic and Acoustic Properties of a Transformer Core Made of Amorphous Steel Consolidated with a Silane-Based Hybrid Binder. Applied Sciences. 2025; 15(9):5141. https://doi.org/10.3390/app15095141
Chicago/Turabian StyleNieroda, Jolanta, Grzegorz Kmita, Michal Kozupa, Szymon Piela, Maciej Sitarz, and Andrzej Rybak. 2025. "Evaluation of Mechanical Stability, and Magnetic and Acoustic Properties of a Transformer Core Made of Amorphous Steel Consolidated with a Silane-Based Hybrid Binder" Applied Sciences 15, no. 9: 5141. https://doi.org/10.3390/app15095141
APA StyleNieroda, J., Kmita, G., Kozupa, M., Piela, S., Sitarz, M., & Rybak, A. (2025). Evaluation of Mechanical Stability, and Magnetic and Acoustic Properties of a Transformer Core Made of Amorphous Steel Consolidated with a Silane-Based Hybrid Binder. Applied Sciences, 15(9), 5141. https://doi.org/10.3390/app15095141