Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania
Abstract
:1. Introduction
2. Material and Methods
2.1. Water Sampling and Analysis of Physico-Chemical Parameters
2.2. Metal Analysis by ICP-MS and CVAAS
2.3. Analysis of CECs
2.3.1. Chemicals and Reagents
2.3.2. Extraction
2.3.3. Instrumentation
2.4. Analysis of Total Coliforms and Heterotrophic Bacteria
3. Results and Discussion
3.1. Physico-Chemical Parameters
3.2. Metals
3.3. CECs
3.4. Microbiological Contaminants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nike, S.; Bloesch, J.; Baumgartner, C.; Bittl, T.; Čerba, D.; Csányi, B.; Davideanu, G.; Dokulil, M.; Frank, G.; Grecu, I.; et al. Chapter 3—The Danube River Basin. In Rivers of Europe, 2nd ed.; Tockner, K., Zarfl, C., Robinson, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 81–180. ISBN 9780081026120. [Google Scholar] [CrossRef]
- Bănăduc, D.; Rey, S.; Trichkova, T.; Lenhardt, M.; Curtean-Bănăduc, A. The Lower Danube River—Danube Delta—North West Black Sea: A pivotal area of major interest for the past, present and future of its fish fauna—A short review. Sci. Total Environ. 2016, 545, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Chiţescu, C.L.; Ene, A.; Geana, E.-I.; Vasile, A.M.; Ciucure, C.T. Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. Appl. Sci. 2021, 11, 9721. [Google Scholar] [CrossRef]
- Syeed, M.M.; Hossain, M.S.; Karim, M.R.; Uddin, M.F.; Hasan, M.; Khan, R.H. Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environ. Sustain. Indic. 2023, 18, 100247. [Google Scholar] [CrossRef]
- Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. Water Pollutants: Sources and Impact on the Environment and Human Health. In Sensors in Water Pollutants Monitoring: Role of Material; Pooja, D., Kumar, P., Singh, P., Patil, S., Eds.; Springer: Singapore, 2020; pp. 43–62. [Google Scholar] [CrossRef]
- Podlasek, A.; Koda, E.; Kwas, A.; Vaverková, M.D.; Jakimiuk, A. Anthropogenic and Natural Impacts on Surface Water Quality: The Consequences and Challenges at the Nexus of Waste Management Facilities, Industrial Zones, and Protected Areas. Water Resour. Manag. 2024, 39, 1697–1718. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediation Biotechnol. 2020, 27, 1–26. [Google Scholar] [CrossRef]
- Halder, J.; Vystavn, Y.; Wassenaar, L.I. Nitrate sources and mixing in the Danube watershed: Implications for transboundary river basin monitoring and management. Sci. Rep. 2022, 12, 2150. [Google Scholar] [CrossRef]
- Ghani, S.A.; Hamdona, S.; Shakweer, L.; El Saharty, A. Spatial distribution and pollution assessment of heavy metals in surface and bottom water along the eastern part of the Egyptian Mediterranean coast. Mar. Pollut. Bull. 2023, 197, 115713. [Google Scholar] [CrossRef] [PubMed]
- Ene, A.; Moraru, D.I.; Pintilie, V.; Iticescu, C.; Georgescu, P.L. Metals and natural radioactivity investigation of Danube River water in the lower sector. Rom. J. Phys. 2024, 69, 702. [Google Scholar] [CrossRef]
- Seif, R.A.; Ene, A.; Zakaly, H.M.H.; Sallam, A.M.; Taalab, S.A.; Fnais, M.S.; Saadawi, D.A.; Amer, S.A.; Awad, H.A. Distribution of Heavy Metals along the Mediterranean Shoreline from Baltim to El-Burullus (Egypt): Consequences for Possible Contamination. Minerals 2024, 14, 931. [Google Scholar] [CrossRef]
- Teodorof, L.; Ene, A.; Burada, A.; Despina, C.; Seceleanu-Odor, D.; Trifanov, C.; Ibram, O.; Bratfanof, E.; Tudor, M.-I.; Tudor, M.; et al. Integrated Assessment of Surface Water Quality in Danube River Chilia Branch. Appl. Sci. 2021, 11, 9172. [Google Scholar] [CrossRef]
- Pall, E.; Niculae, M.; Kiss, T.; Șandru, C.D.; Spînu, M. Human impact on the microbiological water quality of the rivers. J. Med. Microbiol. 2013, 62, 1635–1640. [Google Scholar] [CrossRef]
- Allen, M.J.; Edberg, S.C.; Reasoner, D.J. Heterotrophic plate count bacteria—What is their significance in drinking water? Int. J. Food Microbiol. 2004, 92, 265–274. [Google Scholar] [CrossRef] [PubMed]
- EU. Directive 2013/39/EC of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17. [Google Scholar]
- European Commission. Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 2022, L197, 117–121. Available online: https://op.europa.eu/o/opportal-service/download-handler?identifier=3887fb7f-0c86-11ed-b11c-01aa75ed71a1&format=pdfa2a&language=en&productionSystem=cellar&part= (accessed on 14 May 2024).
- European Commission. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document C(2015) 1756). Off. J. Eur Union 2015, L78, 40–42. Available online: http://data.europa.eu/eli/dec_impl/2015/495/oj (accessed on 6 November 2024).
- European Commission. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362). Off. J. Eur. Union 2018, L141, 9–12. Available online: http://data.europa.eu/eli/dec_impl/2018/840/oj (accessed on 6 November 2024).
- European Commission. Commission Implementing Decision (EU) 2019/1942 of 22 November 2019 Not Approving Carbendazim as an Existing Active Substance for Use in Biocidal Products of Product-Type 9; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Commission Implementing Decision (EU) 2021/348 of 25 February 2021 Approving Carbendazim as an Existing Active Substance for Use in Biocidal Products of Product-Types 7 and 10; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Kern, K. New standards for the chemical quality of water in Europe under the new Directive 2013/39/EU. J. Eur. Environ. Plan. Law 2014, 11, 31–48. [Google Scholar] [CrossRef]
- Gomez Cortes, L.; Marinov, D.; Sanseverino, I.; Navarro Cuenca, A.; Niegowska, M.; Porcel Rodriguez, E.; Stefanelli, F.; Lettieri, T. Selection of Substances for the 4th Watch List Under the Water Framework Directive; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-55020-4. Available online: https://www.waternewseurope.com/wp-content/uploads/2022/08/JRC-Technical-Report.pdf (accessed on 17 January 2024).
- Chitescu, C.L.; Kaklamanos, G.; Nicolau, A.I.; Stolker, A.A.M.L. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Sci. Total Environ. 2015, 532, 501–511. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- József, T.; Kiss, S.R.; Muzslay, F.; Máté, O.; Stromájer, G.P.; Stromájer-Rácz, T. Detection and Quantification of Pharmaceutical Residues in the Pest County Section of the River Danube. Water 2023, 15, 1755. [Google Scholar] [CrossRef]
- Gurgenidze, D.; Romanovski, V. The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia). Water 2023, 15, 2574. [Google Scholar] [CrossRef]
- Jendrzejewska, N.; Karwowska, E. Ciprofloxacin and Imipenem Resistance in Bathing Waters—Preliminary Studies of Great Rudnickie Lake. Appl. Sci. 2024, 14, 6238. [Google Scholar] [CrossRef]
- International Commission for the Protection of Danube River (ICPDR), Joint Danube Survey 1 (JDS1) Report 2002. Available online: https://www.icpdr.org/tasks-topics/topics/water-quality/joint-danube-survey/joint-danube-survey-1 (accessed on 20 January 2024).
- International Commission for the Protection of Danube River (ICPDR), Joint Danube Survey 2 (JDS2) Report 2008. Available online: https://www.danubesurvey.org/jds2/files/ICPDR_Technical_Report_for_web_low_corrected.pdf (accessed on 20 January 2024).
- International Commission for the Protection of Danube River (ICPDR), Joint Danube Survey 3 (JDS3) Report 2015. Available online: https://www.danubesurvey.org/jds3/ (accessed on 20 January 2024).
- International Commission for the Protection of Danube River (ICPDR), Joint Danube Survey 4 (JDS4) Report. 2021. Available online: https://www.danubesurvey.org/jds4/files/nodes/documents/jds4_scientific_report_20mb.pdf (accessed on 20 January 2024).
- Kirschner, A.K.; Schachner-Groehs, I.; Kavka, G.; Hoedl, E.; Kovacs, A.; Farnleitner, A.H. Long-term impact of basin-wide wastewater management on faecal pollution levels along the entire Danube River. Environ. Sci. Pollut. Res. 2024, 31, 45697–45710. [Google Scholar] [CrossRef]
- Ng, K.; Alygizakis, N.; Nika, M.C.; Galani, A.; Oswald, P.; Oswaldova, M.; Čirka, L.; Kunkel, U.; Macherius, A.; Sengl, M.; et al. Wide-scope target screening characterization of legacy and emerging contaminants in the Danube River Basin by liquid and gas chromatography coupled with high-resolution mass spectrometry. Water Res. 2023, 230, 119539. [Google Scholar] [CrossRef] [PubMed]
- Kondor, A.C.; Jakab, G.; Vancsik, A.; Filep, T.; Szeberényi, J.; Szabó, L.; Maász, G.; Ferincz, A.; Dobosy, P.; Szalai, Z. Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of riverbank filtration. Environ. Pollut. 2020, 265, 114893. [Google Scholar] [CrossRef]
- Ene, A.; Zubcov, E.; Spanos, T.; Bogdevich, O.; Teodorof, L. MONITOX international network for monitoring of environmental toxicants and risk assessment in the Black Sea Basin: Research and interdisciplinary cooperation dimensions. In Proceedings of the 10th International Conference “Sustainable Use and Protection of Animal World in the Context of Climate Change”, Chisinau, Moldova, 16–17 September 2021; pp. 11–17. [Google Scholar] [CrossRef]
- Jitar, O.; Teodosiu, C.; Nicoara, M.; Plavan, G. Study of heavy metal pollution and bioaccumulation in the Black Sea living environment. Environ. Eng. Manag. J. 2013, 12, 271–276. [Google Scholar]
- Teodorof, L.; Despina, C.; Burada ASeceleanu-Odor, D.; Anuti, I. Metode de monitorizare a indicatorilor fizico~chimici în ecosistemele acvatice ale Deltei Dunării. In Ghid Metodologic de Monitorizare a Factorilor Hidromofologici, Chimici Si Biologici Pentru apele de Suprafata Din Rezervatia Biosferei Delta Dunarii; Tudor, I.M., Ed.; Centrul de Informare Tehnologică Delta Dunării: Tulcea, Romania, 2015; ISBN 978-606-93721-8-0. [Google Scholar]
- ISO 5667-6:2014; Water Quality—Sampling—Part 6: Guidance on Sampling of Rivers and Streams. ISO (The International Organization for Standardization): Geneva, Switzerland, 2014. Available online: https://cdn.standards.iteh.ai/samples/55451/99418f5d1adb4f4f8c6fdee01847ae3c/ISO-5667-6-2014.pdf (accessed on 20 May 2024).
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO (The International Organization for Standardization): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 20 May 2024).
- Teodorof, L.; Nastase, C.; Anuti, I.; Stroe, M. The application of flow injection technology to automating cold vapor mercury analyses in aquatic ecosystems. Adv. Electr. Comput. Eng. 2009, 9, 67–69. [Google Scholar] [CrossRef]
- Abebe, Y.; Alamirew, T.; Whitehead, P.; Charles, K.; Alemayehu, E. Spatio-temporal variability and potential health risks assessment of heavy metals in the surface water of Awash basin, Ethiopia. Heliyon 2023, 9, e15832. [Google Scholar] [CrossRef]
- XLSTAT Software, Version Basic+, 2023.3.0.1415; Lumivero: Denver, CO, USA, 2023. Available online: https://www.xlstat.com/en/solutions/basic-plus (accessed on 20 February 2024).
- Lipps, W.C.; Braun-Howland, E.B.; Baxter, T.E. (Eds.) Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), APHA Press: Washington, DC, USA, 2023; ISBN 0875532993/9780875532998. [Google Scholar]
- ISO 4831:2006 (E); Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Coliforms—Most Probable Number Technique. ISO (The International Organization for Standardization): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38280.html (accessed on 10 March 2024).
- Reyjol, Y.; Argillier, C.; Bonne, W.; Borja, A.; Buijse, A.D.; Cardoso, A.C.; van de Bund, W. Assessing the ecological status in the context of the European Water Framework Directive: Where do we go now? Sci. Total Environ. 2014, 497, 332–344. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Union 2000, L327. European Commission: Brussels, Belgium, 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0060-20140101 (accessed on 6 November 2024).
- Order 161/2006, Regarding the Classification of Surface Water Quality to Determine the Ecological Status of Water Bodies, Table No. 6, Elements and Biological Quality Standards, Chemical and Physico-Chemical for Setting Ecological Status of Surface Waters, Annex C, Elements and Chemical, Physico-Chemical Quality Standards in Water (Published in 13 June 2006), Bucharest [in romanian]. Available online: https://legislatie.just.ro/Public/DetaliiDocument/74255 (accessed on 7 March 2024).
- Iticescu, C.; Murariu, G.; Georgescu, L.P.; Burada, A.; Topa, C.M. Seasonal variation of the physico-chemical parameters and Water Quality Index (WQI) of Danube water in the transborder Lower Danube area. Rev. Chim. 2016, 67, 1843–1849. [Google Scholar]
- Wiesner, C.; Schotzko, N.; Černý, J.; Guti, G.; Davideanu, G.; Jepsen, N. Technical Report with Results from the Fish Sampling and Analyses from the Joint Danube Survey 2007; International Commission for the Protection of the Danube River: Vienna, Austria, 2008; p. 73. [Google Scholar]
- NORMAN. Europe-Wide Prioritisation of 966 NORMAN Substances as of 25 July 2016–Combined Freshwater/Marine Water with Data from 2009–2016. 2017. Available online: https://www.norman-network.com/nds/prioritisation/ (accessed on 10 March 2023).
- Ternes, T.A.; Joss, A.; Siegrist, H. Peer reviewed: Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004, 38, 392A–399A. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Loos, R.; Tavazzi, S.; Mariani, G.; Suurkuusk, G.; Paracchini, B.; Umlauf, G. Analysis of Emerging Organic Contaminants in Water, Fish and Suspended Particulate Matter (SPM) in the Joint Danube Survey Using Solid-Phase Extraction Followed by UHPLC-MS-MS and GC–MS Analysis. Sci. Total Environ. 2017, 607–608, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Ferencik, M.; Blahova, J.; Schovankova, J.; Siroka, Z.; Svobodova, Z.; Kodes, V.; Stepankova, K.; Lakdawala, P. Residues of selected anticonvulsive drugs in surface waters of the elbe river basin (czech republic). Water 2022, 14, 4122. [Google Scholar] [CrossRef]
- Cunningham, V.L.; Perino, C.; Vincent, J.D.; Hartmann, A.; Bechter, R. Human health risk assessment of carbamazepine in surface waters of North America and Europe. Regul. Toxicol. Pharmacol. 2010, 56, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Patrolecco, L.; Rauseo, J.; Ademollo, N.; Grenni, P.; Cardoni, M.; Levantesi, C.; Luprano, M.L.; Caracciolo, A.B. Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin. Sci. Total Environ. 2018, 640, 1438–1446. [Google Scholar] [CrossRef]
- Gil-Solsona, R.; Castaño-Ortiz, J.M.; Muñoz-Mas, R.; Insa, S.; Farré, M.; Ospina-Alvarez, N.; Santos, L.H.M.L.M.; García-Pimentel, M.; Barceló, D.; Rodríguez-Mozaz, S. A holistic assessment of the sources, prevalence, and distribution of bisphenol A and analogues in water, sediments, biota and plastic litter of the Ebro Delta (Spain). Environ. Pollut. 2022, 314, 120310. [Google Scholar] [CrossRef]
- Staples, C.; van der Hoeven, N.; Clark, K.; Mihaich, E.; Woelz, J.; Hentges, S. Distributions of concentrations of bisphenol A in North American and European surface waters and sediments determined from 19 years of monitoring data. Chemosphere 2018, 201, 448–458. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Z.H.; Wang, H.; Dang, Z.; Liu, Y. A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. J. Environ. Manag. 2021, 292, 112804. [Google Scholar] [CrossRef]
- ICPDR. The Joint Danube Survey 2001, Chapter 4.7 MICROBIOLOGY. pp. 139–150. Available online: https://www.icpdr.org/sites/default/files/JDS%2010%20Chapt%204e.pdf (accessed on 7 March 2024).
- Amanidaz, N.; Zafarzadeh, A.; Mahvi, A.H. The Interaction between Heterotrophic Bacteria and Coliform, Feacal Coliform, Feacal Streptococci Bacteria in the Water Supply Networks. Iran. J. Public Health 2015, 44, 1685–1692. [Google Scholar]
- LeChevallier, M.W.; Prosser, T.; Stevens, M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024, 12, 916. [Google Scholar] [CrossRef]
- Banciu, A.R.; Ionica, D.L.; Vaideanu, M.A.; Radulescu, D.M.; Nita-Lazar, M.; Covaliu, C.I. The Occurrence of Potentially Pathogenic and Antibiotic Resistant Gram-Negative Bacteria Isolated from the Danube Delta Ecosystem. Sustainability 2021, 13, 3955. [Google Scholar] [CrossRef]
- Kademane, C.; Rajesh, M.; Rajesh, K.M.; Vandana, K. Studies on heterotrophic bacteria and total coliforms in relation with environmental parameters of water in Gurupur estuary, off Mangaluru, Karnataka, India. Pollut. Res. 2018, 37, 989–995. [Google Scholar]
- Abu-Sini, M.K.; Maharmah, R.A.; Abulebdah, D.H.; Al-Sabi, M.N.S. Isolation and Identification of Coliform Bacteria and Multidrug-Resistant Escherichia coli from Water Intended for Drug Compounding in Community Pharmacies in Jordan. Healthcare 2023, 11, 299. [Google Scholar] [CrossRef]
- Mishra, M.; Arukha, A.P.; Patel, A.K.; Behera, N.; Mohanta, T.K.; Yadav, D. Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Front. Pharmacol. 2018, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.J.; Snaith, A.E.; Element, S.J.; Moran, R.A.; Smith, H.; Cummins, E.A.; Bottery, M.J.; Chowdhury, K.F.; Sareen, D.; Ahmad, I.; et al. Non-antibiotic pharmaceuticals are toxic against Escherichia coli with no evolution of cross-resistance to antibiotics. Npj Antimicrob. Resist. 2024, 2, 11. [Google Scholar] [CrossRef]
- Papaioannou, C.; Geladakis, G.; Kommata, V.; Batargias, C.; Lagoumintzis, G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. Toxics 2023, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Stipanicev, D.; Repec, S.; Vucic, M.; Lovric, M.; Klobucar, G. COVID-19 Lockdowns—Effect on Concentration of Pharmaceuticals and Illicit Drugs in Two Major Croatian Rivers. Toxics 2022, 10, 241. [Google Scholar] [CrossRef]
- Andreu, V.; Gimeno-García, E.; Pascual, J.A.; Vazquez-Roig, P.; Picó, Y. Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: Potential interactions and the influence of the environment. Sci. Total Environ. 2016, 540, 278–286. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Fernando, M.; Pereira, R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
Compound | Class | Formula | Exact Mass | [M + H]+ | [M − H]− | RT (min) | MS-MS Fragments | Recovery (%) | LOD ng/L | LOQ ng/L |
---|---|---|---|---|---|---|---|---|---|---|
Sulfamethoxazole | Sulfonamides | C10H11N3O3S | 253.0521 | 254.0593 | 252.0448 | 5.20 | 108.4450; 156.0115; 92.0496 | 90.5 | 1 | 3 |
Trimethoprim | Diaminopyrimidinen | C14H18N4O3 | 290.13789 | 291.1451 | 289.1306 | 4.85 | 230.1162; 123.0665; 245.1032 | 100.2 | 1.5 | 3.7 |
Ciprofloxacin | Quinolones | C17H18FN3O3 | 331.1332 | 332.1404 | 330.1259 | 4.26 | 245.1086; 288.1508; 207.0653 | 95 | 1.9 | 5.7 |
Norfloxacine | Quinolones | C16H18FN3O3 | 319.1332 | 320.1404 | 318.1259 | 4.12 | 302.1302; 276.1511; 233.1086 | 95.4 | 2.8 | 6.9 |
Flumequine | Fluoroquinolines | C14H12FNO3 | 261.0801 | 262.0873 | 260.0728 | 6.25 | 244.0768; 220.0407; 202.0287 | 91 | 3.2 | 9.7 |
Oxytetracycline | Tetracycline | C22H24N2O9 | 460.1481 | 461.1554 | 459.1409 | 4.66 | 184.0520; 128.0621; 115.0544 | 50.2 | 8 | 24.3 |
Doxycycline | Tetracyclines | C22H24N2O8 | 444.1532 | 445.1605 | 443.1460 | 6.35 | 168.0571; 152.0621; 139.0542 | 97 | 8.8 | 26.6 |
Amoxicillin | Antibiotic | C16H19N3O5S | 365.1045 | 366.1117 | 364.0972 | 3.39 | 160.0433; 114.0378 | 62.5 | 6.7 | 20.1 |
Cefuroxime | Penicillines | C16H16N4O8S | 424.0688 | 425.0761 | 423.0616 * | 8.12 | 318.1451; 284.2901; 207.0990 | 87 | 3.2 | 9 |
Dicloxacillin | Penicillines | C19H17Cl2N3O5S | 469.0265 | 470.0338 | 468.0193 | 6.48 | 156.9607; 108.9841 | 96 | 2.4 | 6.8 |
Clindamycin | Lincosamides | C18H33ClN2O5S | 424.1798 | 425.1871 | 423.1726 | 10.25 | 407.1762; 377.1842; 126.1278 | 95 | 5.2 | 15 |
Carbamazepine | Antiepileptic | C15H12N2O | 236.0949 | 237.1022 | 235.0877 | 7.45 | 194.0968; 192.0809; 179.0725 | 108 | 2 | 6.2 |
Clofibric acid | Lipid regulator | C10H11ClO3 | 214.0396 | 215.0469 | 213.0324 | 8.20 | 126.9957; 85.0295; 169.0661 | 67.5 | 1.9 | 5.7 |
Pravastatin | Lipid-lowering | C23H36O7 | 424.2461 | 425.2533 | 423.2388 | 5.86 | 321.1703; 303.1601; 101.0607 | 98 | 1.2 | 3.7 |
Erythromycin | Macrolide | C37H65NO12 | 715.4506 | 716.4579 | 714.4434 | 8.12 | 576.3721; 558.3648; 421.3601 | 37.2 | 8.5 | 25.1 |
Piroxicam | NSAIDs | C15H13N3O4S | 331.0626 | 332.0699 | 330.05543 | 7.45 | 95,0605;121.0398; 164.0820 | 92 | 3.9 | 12 |
Ketoprofen | NSAIDs | C16H14O3 | 254.0942 | 255.1015 | 253.0870 | 8.32 | 138,9949; 129.0102; 174.0915 | 99.5 | 4.4 | 12.5 |
Indomethacin | NSAIDs | C19H16ClNO4 | 357.0767 | 358.0840 | 356.0695 | 9.80 | 138.9949; 129,0102; 174.0915 | 78 | 6.4 | 19.4 |
Carprofen | NSAIDs | C15H12ClNO2 | 273.0556 | 274.0629 | 272.0484 | 9.65 | 230.0538; 228.0567; 193.0890 | 48.8 | 9.8 | 29.6 |
Diclofenac | NSAIDs | C14H11Cl2NO2 | 295.0166 | 296.0239 | 294.0094 | 9.70 | 215.0497; 250.0188; 180.0811 | 105.1 | 3.8 | 11.9 |
Meclofenamic acid | NSAIDs | C14H11Cl2NO2 | 295.0166 | 296.0239 | 294.0094 | 10.25 | 278.0133; 243.0445 | 68.8 | 11.7 | 35.5 |
Naproxen | NSAIDs | C14H14O3 | 230.0942 | 231.1015 | 229.0870 | 8.60 | 185.0963; 153.0704; 170.0726 | 60.9 | 3.7 | 11.5 |
Enilconazole | Azole antifungal | C14H14Cl2N2O | 296.0483 | 297.0555 | 295.0410 | 6.87 | 255.0099; 158.9765; 109.0762 | 100.5 | 1 | 3 |
Ketoconazole | Azole antifungal | C26H28Cl2N4O4 | 530.1487 | 531.1560 | 529.1415 | 8.45 | 489.1459; 255.0091; 82.0526 | 87 | 0.5 | 1 |
Fluconazole | Azole antifungal | C13H12F2N6O | 306.1040 | 307.1113 | 305.0968 | 5.65 | 238.0791; 220.0685; 169.0459 | 106.3 | 1.6 | 5 |
Clotrimazole | Azole antifungal | C22H17ClN2 | 344.1080 | 345.1152 | 343.1007 | 9.61 | 278.0835; 165.0689 | 100.2 | 4.4 | 12.3 |
Miconazole | Azole antifungal | C18H14Cl4N2O | 413.9860 | 414.9932 | 412.9787 | 10.45 | 281.9769; 156.9766; 69.0449 | 76.4 | 0.5 | 1.7 |
Drospirenone | Synthetic progestin | C24H30O3 | 366.2194 | 367.2267 | 365.2122 | 10.56 | 349.2163; 257.1532; 171.1154 | 87.0 | 0.7 | 2.0 |
17-α Ethinylestradiol | Synthetic estrogen | C20H24O2 | 296.1776 | 297.1848 | 295.1703 | 12.04 | 279.1744; 214.1308; 159.1169 | 69.0 | 0.5 | 1.0 |
Bisphenol A | Endocrine disruptor | C15H16O2 | 228.1150 | 229.1222 | 227.1077 | 4.02 | 219.0901; 147.1170; 95.0857 | 100.4 | 0.8 | 2.1 |
No. | Sampling Sites | N-NH4 mg N/L | N-NO2 mg N/L | N-NO3 mg N/L | N Total mg N/L | P-PO4 mg P/L | P Total mg P/L | Chloroph. a µg/L | pH pH Unit |
---|---|---|---|---|---|---|---|---|---|
1 | Ostrov ferry | 0.09 | 0.013 | 1.130 | 2.64 | 0.043 | 0.116 | 4.9 | 8.83 |
2 | Ostrov, Danube old branch | 0.05 | 0.012 | 1.333 | 1.94 | 0.053 | 0.091 | 2.9 | 7.81 |
3 | Fetesti | 0.20 | 0.016 | 0.944 | 1.57 | 0.038 | 0.103 | 5.9 | 7.77 |
4 | Cernavoda bridge | 0.07 | 0.011 | 1.370 | 2.79 | 0.034 | 0.102 | 9.9 | 8.87 |
5 | Cernavoda Seimeni | 0.13 | 0.015 | 1.148 | 1.50 | 0.038 | 0.095 | 5.7 | 8.78 |
6 | Braila harbor upstream | 0.10 | 0.019 | 0.870 | 2.94 | 0.027 | 0.096 | 6.7 | 8.73 |
7 | Braila harbor downstream | 0.07 | 0.016 | 1.000 | 2.40 | 0.038 | 0.079 | 5.7 | 8.81 |
8 | Siret R. upstream | 0.25 | 0.048 | 1.481 | 3.17 | 0.033 | 0.172 | 4.4 | 8.66 |
9 | Siret R. downstream | 0.19 | 0.047 | 1.611 | 1.58 | 0.022 | 0.107 | 7.3 | 8.6 |
10 | Galati downstream | 0.09 | 0.017 | 0.963 | 1.39 | 0.026 | 0.089 | 5.6 | 8.82 |
11 | Galati shipyard downstream | 0.07 | 0.016 | 1.278 | 2.19 | 0.033 | 0.266 | 4.4 | 8.71 |
12 | Prut R. upstream Giurgiulesti | 0.08 | 0.023 | 0.778 | 2.15 | 0.012 | 0.061 | 7.7 | 8.66 |
13 | Prut R. downstream | 0.08 | 0.019 | 1.019 | 2.43 | 0.033 | 0.140 | 6.3 | 8.78 |
14 | Reni downstream | 0.08 | 0.019 | 1.056 | 2.56 | 0.031 | 0.117 | 2.8 | 8.68 |
15 | Isaccea downstream | 0.11 | 0.021 | 1.037 | 2.66 | 0.033 | 0.205 | 5.7 | 8.59 |
16 | Ceatal Chilia | 0.09 | 0.027 | 1.111 | 1.96 | 0.029 | 0.128 | 2.4 | 8.63 |
17 | Izmail downstream | 0.08 | 0.035 | 0.998 | 1.56 | 0.021 | 0.118 | 3.2 | 8.44 |
18 | Ceatal Sf.Gheorghe | 0.05 | 0.044 | 1.052 | 1.42 | 0.032 | 0.098 | 3.4 | 8.52 |
19 | Chilia veche upstream | 0.07 | 0.050 | 1.031 | 1.23 | 0.035 | 0.121 | 3.7 | 8.48 |
20 | Chilia veche downstream | 0.09 | 0.050 | 1.058 | 1.33 | 0.034 | 0.088 | 3.7 | 8.48 |
21 | Sf.Gheorghe upstream | 0.07 | 0.047 | 1.020 | 1.26 | 0.038 | 0.184 | 3.0 | 8.63 |
22 | Musura bay mouth | 0.04 | 0.039 | 0.881 | 1.46 | 0.024 | 0.064 | 2.0 | 8.9 |
23 | Sulina mouth | 0.05 | 0.048 | 0.996 | 1.17 | 0.035 | 0.164 | 3.4 | 8.42 |
24 | Sf.Gheorghe mouth | 0.05 | 0.042 | 0.963 | 1.04 | 0.030 | 0.139 | 3.0 | 8.56 |
25 | Sacalin | 0.07 | 0.041 | 0.999 | 1.30 | 0.029 | 0.113 | 4.1 | 8.48 |
26 | Gura Portitei | 0.28 | 0.035 | 1.870 | 2.19 | 0.006 | 0.024 | 1.4 | 8.99 |
27 | Corbu | 0.21 | 0.029 | 1.871 | 2.11 | 0.006 | 0.022 | 2.3 | 9.01 |
28 | Mamaia | 0.20 | 0.029 | 0.950 | 1.18 | 0.005 | 0.019 | 4.4 | 9.24 |
29 | Constanta | 0.34 | 0.024 | 0.873 | 1.23 | 0.006 | 0.023 | 0.8 | 9.05 |
30 | Costinesti | 0.26 | 0.060 | 1.250 | 1.57 | 0.005 | 0.020 | 6.6 | 8.98 |
31 | Mangalia | 0.45 | 0.044 | 0.716 | 1.21 | 0.005 | 0.018 | 17.3 | 9.23 |
32 | Vama veche | 0.29 | 0.022 | 0.787 | 1.10 | 0.011 | 0.045 | 2.1 | 9.09 |
Ecological status according to Romanian Order no. 161/2006 [47] | |||||||||
Highest ecological status | 0.4 | 0.01 | 1 | 1.5 | 0.1 | 0.15 | 25 | 6.5–8.5 | |
Good ecological status | 0.8 | 0.03 | 3 | 7 | 0.2 | 0.4 | 50 | ||
Moderate ecological status | 1.2 | 0.06 | 5.6 | 12 | 0.4 | 0.75 | 100 | ||
Poor ecological status | 3.2 | 0.3 | 11.2 | 16 | 0.9 | 1.2 | 250 | ||
Bad ecological status | >3.2 | >0.3 | >11.2 | >16 | >0.9 | >1.2 | >250 |
No. | Sampling Sites | As µg/L | Cd µg/L | Cr µg/L | Cu µg/L | Mn µg/L | Ni µg/L | Pb µg/L | Zn µg/L | Hg µg/L |
---|---|---|---|---|---|---|---|---|---|---|
1 | Ostrov ferry | 5.8 | 0.96 | 31.1 | 14.9 | 320 | 31.2 | 15.5 | 44 | 0.02 |
2 | Ostrov, Danube old branch | 5.0 | 0.51 | 26.0 | 19.8 | 284 | 37.7 | 10.0 | 59 | 0.02 |
3 | Fetesti | 4.6 | 0.89 | 34.5 | 12.7 | 270 | 40.1 | 12.4 | 66 | 0.03 |
4 | Cernavoda bridge | 5.2 | 0.78 | 39.6 | 15.2 | 296 | 44.2 | 11.8 | 45 | 0.02 |
5 | Cernavoda Seimeni | 4.0 | 1.32 | 49.5 | 23.0 | 244 | 28.4 | 9.4 | 66 | 0.04 |
6 | Braila harbor upstream | 5.0 | 1.12 | 55.6 | 21.7 | 287 | 30.2 | 10.3 | 59 | 0.05 |
7 | Braila harbor downstream | 5.5 | 1.00 | 48.6 | 28.6 | 308 | 31.2 | 8.7 | 45 | 0.04 |
8 | Siret R. upstream | 5.2 | 1.20 | 43.1 | 27.4 | 295 | 29.3 | 9.3 | 57 | 0.03 |
9 | Siret R. downstream | 5.0 | 1.07 | 61.2 | 17.9 | 284 | 30.4 | 10.1 | 50 | 0.03 |
10 | Galati downstream | 5.4 | 0.89 | 55.6 | 19.7 | 306 | 27.2 | 9.2 | 47 | 0.03 |
11 | Galati shipyard downstream | 4.9 | 1.20 | 51.6 | 19.6 | 280 | 31.3 | 11.1 | 46 | 0.03 |
12 | Prut R. upstream Giurgiulesti | 4.3 | 0.82 | 46.9 | 27.4 | 256 | 38.0 | 8.3 | 73 | 0.02 |
13 | Prut R. downstream | 4.7 | 1.32 | 54.3 | 17.9 | 272 | 27.8 | 9.4 | 45 | 0.05 |
14 | Reni downstream | 5.7 | 1.12 | 52.4 | 19.7 | 318 | 47.7 | 10.3 | 55 | 0.03 |
15 | Isaccea downstream | 5.9 | 1.00 | 48.2 | 17.9 | 325 | 32.6 | 8.7 | 64 | 0.05 |
16 | Ceatal Chilia | 5.0 | 0.65 | 51.6 | 19.7 | 288 | 27.2 | 11.3 | 47 | 0.05 |
17 | Izmail downstream | 4.9 | 0.72 | 39.3 | 23.8 | 283 | 29.6 | 9.5 | 58 | 0.04 |
18 | Ceatal Sf.Gheorghe | 3.0 | 0.75 | 41.9 | 22.4 | 196 | 19.7 | 10.1 | 62 | 0.05 |
19 | Chilia veche upstream | 5.0 | 0.68 | 31.2 | 24.6 | 284 | 24.9 | 9.9 | 47 | 0.06 |
20 | Chilia veche downstream | 5.2 | 0.66 | 40.1 | 24.2 | 294 | 26.9 | 9.7 | 44 | 0.05 |
21 | Sf.Gheorghe upstream | 4.8 | 0.80 | 29.0 | 13.1 | 276 | 29.6 | 7.1 | 53 | 0.04 |
22 | Musura bay mouth | 4.6 | 0.74 | 38.7 | 10.2 | 268 | 26.7 | 9.5 | 46 | 0.04 |
23 | Sulina mouth | 4.5 | 0.66 | 27.0 | 18.2 | 266 | 30.0 | 8.1 | 56 | 0.06 |
24 | Sf.Gheorghe mouth | 4.7 | 0.80 | 32.1 | 12.6 | 274 | 27.2 | 6.0 | 49 | 0.06 |
25 | Sacalin | 5.6 | 0.59 | 21.6 | 19.8 | 312 | 23.4 | 8.5 | 47 | 0.08 |
26 | Gura Portitei | 5.8 | 0.87 | 31.1 | 25.9 | 323 | 12.3 | 8.7 | 74 | 0.05 |
27 | Corbu | 3.5 | 0.71 | 32.2 | 14.2 | 221 | 15.1 | 10.0 | 65 | 0.01 |
28 | Mamaia | 4.6 | 0.69 | 32.6 | 17.3 | 270 | 23.1 | 6.0 | 47 | 0.01 |
29 | Constanta | 6.5 | 0.70 | 45.0 | 21.4 | 351 | 16.6 | 5.2 | 71 | 0.01 |
30 | Costinesti | 6.3 | 0.83 | 28.4 | 16.5 | 344 | 19.9 | 6.3 | 53 | 0.01 |
31 | Mangalia | 6.0 | 0.72 | 35.9 | 19.8 | 282 | 17.6 | 5.8 | 47 | 0.01 |
32 | Vama veche | 6.1 | 0.86 | 40.9 | 21.3 | 284 | 12.6 | 6.1 | 55 | 0.01 |
Ecological status according to Romanian Order no. 161/2006 [47] | ||||||||||
Highest ecological status | 10 | 0.5 | 25 | 20 | 50 | 10 | 5 | 100 | 0.1 | |
Good ecological status | 20 | 1 | 50 | 30 | 100 | 25 | 10 | 200 | 0.3 | |
Moderate ecological status | 50 | 2 | 100 | 50 | 300 | 50 | 25 | 500 | 0.5 | |
Poor ecological status | 100 | 5 | 250 | 100 | 1000 | 100 | 50 | 1000 | 1 | |
Bad ecological status | >100 | >5 | >250 | >100 | >1000 | >100 | >50 | >1000 | >1 |
Site No. | SMX | TMP | CIP | FLU | AMX | CFX | DCX | CBZ | PRV | ERY | PIR | KET | DCF | NAP | IMZ | CLO | DRO | EE2 | BPA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 28.9 | 6.4 | ND | ND | 3.8 | 1.6 | 3.5 | 15.4 | 6.4 | 4.3 | ND | ND | 28 | 6.2 | 8.3 | ND | ND | 1.6 | 238 |
2 | 18.6 | ND | ND | ND | ND | ND | ND | 11 | ND | ND | ND | ND | 18.7 | ND | 6.2 | ND | ND | ND | 186 |
3 | 24 | 8 | ND | ND | ND | ND | ND | 14.9 | 7 | ND | ND | ND | 41.3 | ND | ND | ND | ND | ND | 182 |
4 | 15.4 | 2.4 | ND | ND | ND | ND | ND | 8.4 | ND | ND | ND | ND | 16 | ND | ND | ND | ND | ND | 164 |
5 | 21 | 6.2 | ND | ND | ND | ND | ND | 10 | ND | ND | ND | ND | 13.2 | ND | ND | ND | ND | ND | 157 |
6 | 26 | 8.6 | ND | ND | ND | ND | ND | 16.6 | 18 | ND | 14.6 | ND | 69 | ND | ND | ND | 1.8 | 1.8 | 186 |
7 | 18.4 | 4.1 | ND | ND | ND | ND | ND | 35 | 6.4 | ND | ND | ND | 87 | ND | ND | ND | 2.3 | ND | 173 |
8 | 32 | 6.7 | ND | ND | ND | ND | ND | 30.4 | 21.4 | ND | 32 | 26 | 112 | 6.1 | 27.6 | ND | 1.8 | 2.15 | 297 |
9 | 28 | 10.1 | ND | ND | ND | ND | ND | 37 | 20.7 | ND | 28.6 | 20.8 | 80 | 4.9 | 24.6 | 6.4 | 2.05 | 2.1 | 310 |
10 | 35 | 11 | 5.2 | 6.4 | ND | 4.9 | 7 | 26 | 6.8 | ND | 8.9 | 7.5 | 87 | 5.2 | 6.8 | ND | 1.04 | 2.4 | 138 |
11 | 21 | 6.4 | ND | ND | ND | ND | ND | 12.2 | 4.3 | ND | 16 | ND | 46 | ND | 10.5 | ND | 1.75 | 1.3 | 142 |
12 | 24 | 12 | 4.1 | ND | ND | ND | ND | 38 | 24.8 | ND | ND | 12.6 | 132 | 8.6 | 31.4 | 8.2 | 3.4 | 3.05 | 342 |
13 | 25 | 7.5 | 3.4 | 4.6 | ND | ND | 9.4 | 27.8 | 24 | ND | ND | 8.2 | 114 | 6.2 | 24.6 | 5 | 2.6 | 1.62 | 317 |
14 | 36 | 6.2 | 5 | ND | ND | ND | 3.6 | 18.9 | 16.2 | ND | 5.6 | 5.6 | 95 | ND | 10.2 | ND | ND | 1.15 | 156 |
15 | 22 | 5.9 | ND | ND | ND | ND | 4 | 20 | 9 | ND | ND | ND | 32 | ND | ND | ND | ND | ND | 141 |
16 | 14 | 6.3 | ND | ND | ND | ND | ND | 16.3 | 4.2 | ND | ND | ND | 12.9 | ND | ND | ND | ND | ND | 92 |
17 | 18 | 6.1 | ND | ND | ND | ND | ND | 12 | ND | ND | ND | ND | 9.4 | ND | ND | ND | ND | ND | 85 |
18 | 11.8 | 2.9 | 3.4 | ND | ND | ND | ND | 17 | 3.1 | ND | ND | ND | 24.8 | ND | ND | ND | ND | ND | 63 |
19 | 7.4 | 4.2 | ND | ND | ND | ND | ND | 6.2 | ND | ND | ND | ND | 4.6 | ND | ND | ND | ND | ND | 49 |
20 | 12.5 | 3.5 | ND | ND | ND | ND | ND | 8 | ND | ND | ND | ND | 5.5 | ND | ND | ND | ND | ND | 54 |
21 | 14 | 3.9 | 3.1 | ND | ND | ND | ND | 18 | ND | ND | ND | ND | 25.3 | ND | ND | ND | ND | ND | 48 |
22 | 24 | 9.7 | ND | ND | ND | ND | ND | 10.2 | ND | ND | ND | ND | 12.8 | ND | 4.8 | ND | ND | ND | 183 |
23 | 21 | 6.3 | 1.8 | ND | ND | ND | ND | 26.7 | ND | ND | ND | ND | 18.4 | ND | 6.2 | ND | ND | ND | 51 |
24 | 15.7 | 5.3 | 2.6 | ND | ND | ND | ND | 19.5 | ND | ND | ND | ND | 21.7 | ND | ND | ND | ND | ND | 34.5 |
25 | 3.2 | ND | ND | ND | ND | ND | ND | 5.6 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 87 |
26 | 4 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 114 |
27 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 124 |
28 | 6.5 | ND | ND | ND | ND | ND | ND | 8.6 | ND | ND | ND | ND | 5.7 | ND | ND | ND | ND | ND | 218 |
29 | 7.9 | ND | ND | ND | ND | ND | ND | 26.7 | ND | ND | ND | ND | 14.8 | ND | ND | ND | ND | ND | 237 |
30 | 5.2 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 6.2 | ND | ND | ND | ND | ND | 107 |
31 | 11.4 | ND | ND | ND | ND | ND | ND | 8.9 | ND | ND | ND | ND | 8.4 | ND | ND | ND | ND | ND | 164 |
32 | 10 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 127 |
Compound | Abbreviation | Min. (ng/L) | Max. (ng/L) | Average (ng/L) | Lower PNEC * ng/L Fresh/Marine Water | No. of Positive Results |
---|---|---|---|---|---|---|
Sulfamethoxazole | SMX | 3.2 | 36 | 18.13 | 100/60 | 31 |
Trimethoprim | TMP | 2.4 | 12 | 6.35 | 100 | 25 |
Ciprofloxacin | CIP | 1.8 | 5.2 | 3.58 | 89/8.9 | 8 |
Flumequine | FLU | 4.6 | 6.4 | 5.5 | 1500/150 | 2 |
Amoxicillin | AMX | 3.8 | - | - | 78/7.8 | 1 |
Cefuroxime | CFX | 1.6 | 4.9 | 3.25 | 1290/130 | 2 |
Dicloxacillin | DCX | 3.5 | 9.6 | 5.5 | 5.1/0.51 | 5 |
Carbamazepine | CBZ | 5.6 | 38 | 18.05 | 50 | 28 |
Pravastatin | PRV | 3.1 | 24.8 | 12.31 | 4570/460 | 15 |
Erythromycin | ERY | 4.3 | - | - | 300/30 | 1 |
Piroxicam | PIR | 5.6 | 28.6 | 17.62 | 490/49 | 6 |
Ketoprofen | KET | 5.6 | 26 | 13.45 | 2100/210 | 6 |
Diclofenac | DCF | 4.6 | 132 | 40.75 | 50/5 | 28 |
Naproxen | NAP | 4.9 | 8.6 | 6.2 | 1700/170 | 6 |
Enilconazole (Imazalil) | IMZ | 4.8 | 31.4 | 14.64 | 870/87 | 11 |
Clotrimazole | CLO | 5 | 8.2 | 6.53 | 30/3 | 3 |
Drospirenone | DRO | 1.04 | 3.4 | 2.09 | 120/12 | 8 |
17α-Ethinylestradiol | EE2 | 1.15 | 3.05 | 1.91 | 0.035/0.0035 | 9 |
Bisphenol A | BPA | 34.5 | 342 | 155.2 | 240/1600 | 32 |
No. | Sampling Sites | Heterotrophic Bacteria, CFU/mL | Total Coliforms, MPN/100 mL |
---|---|---|---|
1 | Ostrov ferry | 1760 | 70,000 |
2 | Ostrov, Danube old branch | 12,000 | 5000 |
3 | Fetesti | 2700 | 7000 |
4 | Cernavoda bridge | 2240 | 6000 |
5 | Cernavoda Seimeni | 2300 | 25,000 |
6 | Braila harbor upstream | 390 | 1300 |
7 | Braila harbor downstream | 110 | 7000 |
8 | Siret R. upstream | 2150 | 60,000 |
9 | Siret R. downstream | 5700 | 70,000 |
10 | Galati downstream | 1900 | 2500 |
11 | Galati shipyard downstream | 250 | 11,000 |
12 | Prut R. upstream Giurgiulesti | 1210 | 250 |
13 | Prut R. downstream | 270 | 2500 |
14 | Reni downstream | 575 | 7000 |
15 | Isaccea downstream | 2050 | 2500 |
16 | Ceatal Chilia | 435 | 2000 |
17 | Izmail downstream | 525 | 10 |
18 | Ceatal Sf. Gheorghe | 531 | 1300 |
19 | Chilia veche upstream | 2750 | 7000 |
20 | Chilia veche downstream | 340 | 600 |
21 | Sf.Gheorghe upstream | 715 | 2000 |
22 | Musura bay mouth | 1700 | 250 |
23 | Sulina mouth | 125 | 250 |
24 | Sf.Gheorghe mouth | 950 | 2500 |
25 | Sacalin | 2400 | 6000 |
26 | Gura Portitei | 400 | 600 |
27 | Corbu | 65 | 130 |
28 | Mamaia | 72 | 120 |
29 | Constanta | 70 | 200 |
30 | Costinesti | 53 | 300 |
31 | Mangalia | 42 | 120 |
32 | Vama veche | 35 | 250 |
Microbiological pollution quality classes for bathing waters [60] | Indicator of organic pollution | Indicator of fecal pollution | |
Class I—Low | <500 | <500 | |
Class II—Moderate | 500–10,000 | 500–10,000 | |
Class III—Critical | 10,000–100,000 | 10,000–100,000 | |
Class IV—Strong | 100,000–750,000 | 100,000–1,000,000 | |
Class V—Excessive | >750,000 | >1,000,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, A.; Teodorof, L.; Chiţescu, C.L.; Burada, A.; Despina, C.; Bahrim, G.E.; Vasile, A.M.; Seceleanu-Odor, D.; Enachi, E. Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania. Appl. Sci. 2025, 15, 5009. https://doi.org/10.3390/app15095009
Ene A, Teodorof L, Chiţescu CL, Burada A, Despina C, Bahrim GE, Vasile AM, Seceleanu-Odor D, Enachi E. Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania. Applied Sciences. 2025; 15(9):5009. https://doi.org/10.3390/app15095009
Chicago/Turabian StyleEne, Antoaneta, Liliana Teodorof, Carmen Lidia Chiţescu, Adrian Burada, Cristina Despina, Gabriela Elena Bahrim, Aida Mihaela Vasile, Daniela Seceleanu-Odor, and Elena Enachi. 2025. "Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania" Applied Sciences 15, no. 9: 5009. https://doi.org/10.3390/app15095009
APA StyleEne, A., Teodorof, L., Chiţescu, C. L., Burada, A., Despina, C., Bahrim, G. E., Vasile, A. M., Seceleanu-Odor, D., & Enachi, E. (2025). Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania. Applied Sciences, 15(9), 5009. https://doi.org/10.3390/app15095009