Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications
Abstract
:1. Introduction
2. IPT System Design
3. Materials and Methods
3.1. Magnetic Concrete Mix Design and Permeability Test
3.2. Transmitter Coupler Design with Magnetic Concrete
3.3. Electromagnetic–Thermal Simulation in IPT Systems
3.4. Shielding Potential Analysis in Magnetic Concrete-Based IPT Systems
4. Results and Discussion
4.1. Optimization of Magnetic Concrete Mix for IPT Systems
4.2. Comparative Analysis of Transmitter Coupler Designs in IPT Systems
4.3. Thermal Analysis in IPT Systems
4.4. Shielding Analysis of IPT Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhao, T.; Chen, S.; Cook, D. An Inductive Power Transfer System Design for Rail Applications. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 84–89. [Google Scholar]
- Xu, X.; Wang, L.; Lin, K.; Zhao, T.; Chen, S.; Cook, D.; Ward, D. Design Considerations of an Inductive Power Transfer System for Rail Application. In Proceedings of the 2021 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 457–461. [Google Scholar]
- Kim, J.H.; Lee, J.; Park, H.S.; Choi, J.H.; Lee, S.Y. Development of 1-MW Inductive Power Transfer System for a High-Speed Train. IEEE Trans. Ind. Electron. 2015, 62, 6242–6250. [Google Scholar] [CrossRef]
- Sun, X.; Xu, X.; Lin, K.; Chen, S.-E.; Zhao, T. Static and Dynamic Analysis of Wireless Power Transfer for Battery-Electric Locomotives. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 19–21 June 2024; pp. 1–6. [Google Scholar]
- Li, Y.; Zhang, X.; Zhao, T.; Wang, L.; Cook, D. Design and Implementation of a Novel WPT System for Railway Applications. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 20–22 May 2017; pp. 213–216. [Google Scholar]
- Brecher, A.; Arthur, D. Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications. Hum. Factors 2014, 49, 832–841. [Google Scholar]
- Lee, G.; Kim, M.Y.; Lee, S.-G.; Kim, J.H. Operational Verification of Semidynamic Wireless Power Transfer in Light-Rail Transit Systems. IEEE Trans. Transp. Electr. 2025, 11, 348–358. [Google Scholar] [CrossRef]
- Shi, L.; Yin, Z.; Jiang, L.; Li, Y. Advances in Inductively Coupled Power Transfer Technology for Rail Transit. CES Trans. Electr. Mach. Syst. 2017, 1, 383–396. [Google Scholar] [CrossRef]
- Thai, V.X.; Choi, S.Y.; Choi, B.H.; Kim, J.H.; Rim, C.T. Coreless Power Supply Rails Compatible with Both Stationary and Dynamic Charging of Electric Vehicles. In Proceedings of the 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 1–4 November 2015; pp. 1–5. [Google Scholar]
- Inoue, R.; Nagasaki, Y.; Tsuda, M.; Miyagi, D. Basic Coil Structure for Rapid Charge in a Low-Frequency and High-Efficiency Wireless Power Transmission System Using High-Temperature Superconducting Coil for Railway Vehicle. IEEE Trans. Appl. Supercond. 2023, 33, 5500109. [Google Scholar] [CrossRef]
- Inoue, R.; Igarashi, K.; Nagasaki, Y.; Miyagi, D.; Tsuda, M.; Matsuki, H. Electric Power Transmission Characteristics of a Wireless Power Transmission System Using High-Temperature Superconducting Coils for Railway Vehicle. IEEE Trans. Appl. Supercond. 2019, 29, 5402305. [Google Scholar] [CrossRef]
- Inoue, R.; Ueda, H.; Kim, S. Study on Low-Loss and High-Energy Density Coil Structure of a Wireless Power Transmission System Using High-Temperature Superconducting Coils for Railway Vehicle. IEEE Trans. Appl. Supercond. 2022, 32, 4604704. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, F.; Yang, S.; Cai, P.; Igarashi, S. Efficiency Optimization of Wireless Power Transfer System with Traction Motor Load for Modern Tram. In Proceedings of the 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), London, UK, 2–5 July 2018; pp. 1–5. [Google Scholar]
- Jin, R.; Yang, Z.; Lin, F. Mutual Inductance Identification and Maximum Efficiency Control of Wireless Power Transfer System for the Modern Tram. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), London, UK, 3–6 July 2017; pp. 70–74. [Google Scholar]
- Hua, C.; Bin, C.; Zhihua, Z.; Yanqing, Z. Characteristics Analyses of Wireless Power Transfer for Ultra-High Speed Maglev Train. In Proceedings of the 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 16–19 August 2021; pp. 1–5. [Google Scholar]
- Chung, Y.D.; Park, E.Y.; Lee, C.Y. Effect Analysis of Improving Transfer Efficiency for Inserted Resonance Patterns in Wireless Power Charging System of High-Speed Magnetic Levitation Train. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; pp. 903–907. [Google Scholar]
- Yuyu, G.; Zhongping, Y.; Xuejun, Z.; Zhiyong, Z. Analysis of the Effect of the Shielding on Coils in the Wireless Power Transfer System Applied in Trams. In Proceedings of the 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), London, UK, 2–5 July 2018; pp. 1–6. [Google Scholar]
- Lee, G.; Kim, M.Y.; Lee, S.G.; Kim, J.H. Effect of Wireless Power Transfer on Track Circuit. J. Korean Soc. Railw. 2022, 25, 725–732. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, M.-Y.; Lee, B.-S.; Lee, J. Impact of Rebar and Concrete on Power Dissipation of Wireless Power Transfer Systems. IEEE Trans. Ind. Electron. 2020, 67, 276–287. [Google Scholar] [CrossRef]
- Song, B.; Dong, S.; Gao, X.; Li, Y.; Cui, S. A Tripolar Wireless Power Transfer System with Low Leakage Magnetic Field for Railway Vehicles. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), Genova, Italy, 2–6 September 2019; pp. P.1–P.7. [Google Scholar]
- Lee, S.-H.; Kim, J.-H.; Lee, J.-H. Development of a 60 kHz, 180 kW, Over 85% Efficiency Inductive Power Transfer System for a Tram. Energies 2016, 9, 1075. [Google Scholar] [CrossRef]
- Ukita, K.; Nakamura, T.; Yamada, Y.; Hayashi, T.; Yoshino, H. Evaluation of a Non-Contact Power Supply System with a Figure-of-Eight Coil for Railway Vehicles. In Proceedings of the 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW), Daejeon, Republic of Korea, 5–8 June 2015; pp. 1–5. [Google Scholar]
- Zhou, Q.; Shi, H. New-Type Tramcars and Their Power Supply Mode. Urban Rapid Rail Transit 2008, 21, 95–97. [Google Scholar]
- Covic, G.A.; Boys, J.T. Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Hu, P.; Wang, H.; Zhang, C.; Hua, L.; Tian, G. Wheel–Rail Contact-Induced Impact Vibration Analysis for Switch Rails Based on the VMD-SS Method. Sensors 2022, 22, 6872. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Cui, S.; Bie, Z.; Song, K.; Zhu, C.; Matveevich, M.I. Modern Advances in Magnetic Materials of Wireless Power Transfer Systems: A Review and New Perspectives. Nanomaterials 2022, 12, 3662. [Google Scholar] [CrossRef]
- Katagiri, Y.; Bu, Y.; Mizuno, T.; Sato, M. Efficiency Improvement in Dynamic Wireless Power Transfer by Placing a Magnetic Sheet Under the Power Transmitting Coil. IEEE Access 2025, 13, 22956–22963. [Google Scholar] [CrossRef]
- Liang, C.; Wang, L.; Zhou, J.; Xu, Z.; Chen, Y. Modeling and Analysis of Thermal Characteristics of Magnetic Coupler for Wireless Electric Vehicle Charging System. IEEE Access 2020, 8, 173177–173185. [Google Scholar] [CrossRef]
- Rasekh, N.; Dabiri, S.; Rasekh, N.; Mirsalim, M.; Bahiraei, M. Thermal Analysis and Electromagnetic Characteristics of Three Single-Sided Flux Pads for Wireless Power Transfer. J. Clean. Prod. 2020, 243, 118561. [Google Scholar] [CrossRef]
- Lin, K.; Xu, X.; Zhao, T.; Chen, S.; Braxtan, N.; Cook, D.; Ward, D. Passive Shielding Design of an Inductive Power Transfer System for Railway Applications. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022; pp. 606–610. [Google Scholar]
- Lee, G.; Kim, M.Y.; Lee, C.; Jang, D.; Lee, B.S.; Kim, J.H. Electromagnetic Field Tests of a 1-MW Wireless Power Transfer System for Light Rail Transit. Energies 2021, 14, 1171. [Google Scholar] [CrossRef]
- Lee, S.B.; Ahn, S.; Jang, I.G. Simulation-Based Feasibility Study on the Wireless Charging Railway System with a Ferriteless Primary Module. IEEE Trans. Veh. Technol. 2017, 66, 1004–1010. [Google Scholar] [CrossRef]
- Sun, T.; Xie, X.; Wang, Z. Design Challenges of the Wireless Power Transfer for Medical Microsystems. In Proceedings of the 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 14–18 April 2013; pp. 1–4. [Google Scholar]
- Alsayegh, M.; Saifo, M.; Clemens, M.; Schmuelling, B. Magnetic and Thermal Coupled Field Analysis of Wireless Charging Systems for Electric Vehicles. IEEE Trans. Magn. 2019, 55, 7400704. [Google Scholar]
- Niu, S.; Yu, H.; Niu, S.; Jian, L. Power Loss Analysis and Thermal Assessment on Wireless Electric Vehicle Charging Technology: The Over-Temperature Risk of Ground Assembly Needs Attention. Appl. Energy 2020, 275, 115344. [Google Scholar] [CrossRef]
- Lee, C.; Woo, S.; Shin, Y.; Rhee, J.; Moon, J.; Ahn, S. EMI Reduction Method for Wireless Power Transfer Systems with High Power Transfer Efficiency Using Frequency Split Phenomena. IEEE Trans. Electromagn. Compat. 2022, 64, 1683–1693. [Google Scholar] [CrossRef]
- Edwards, K.A.T.; Al-Abed, S.H.; Hosseini, S.; Brake, N.A. Properties of a Magnetic Concrete Core Transformer for Application in Wireless Power Transfer Systems. Constr. Build. Mater. 2019, 227, 117041. [Google Scholar] [CrossRef]
- Tavakoli, R.; Zhang, X.; Xu, X.; Zhao, T.; Wang, L.; Cook, D. Magnetizable Concrete Composite Materials for Road-Embedded Wireless Power Transfer Pads. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 4041–4048. [Google Scholar]
- Carretero, C.; Lope, I.; Acero, J. Magnetizable Concrete Flux Concentrators for Wireless Inductive Power Transfer Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2696–2706. [Google Scholar] [CrossRef]
- Sun, X.; Lin, K.; Zhou, J.; Chen, S.-E.; Braxtan, N.; Zhao, T. Optimizing Magnetic Block Structure for Enhanced Coupling Coefficients in Wireless Power Transfer: A Finite Element Analysis Approach. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 19–21 June 2024; pp. 1–6. [Google Scholar]
- Mohammad, M.; Onar, O.C.; Pries, J.L.; Galigekere, V.P.; Su, G.-J.; Wilkins, J. Thermal Analysis of a 50 kW Three-Phase Wireless Charging System. In Proceedings of the 2021 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 1–6. [Google Scholar]
- Zhang, B.; Deng, J.; Li, L.; Wang, Z.; Wang, S.; Guidi, G. Thermal Analysis and Design of a 30 kW EV Wireless Charger with Liquid-Cooled Shell for Magnetic Coupler and Integrated Power Converter. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–18 June 2021; pp. 426–431. [Google Scholar]
- Kindl, V.; Pechanek, R.; Zavrel, M.; Kavalir, T.; Turjanica, P. Inductive Coupling System for Electric Scooter Wireless Charging: Electromagnetic Design and Thermal Analysis. Electr. Eng. 2020, 102, 3–12. [Google Scholar] [CrossRef]
- Mohammad, M.; Onar, O.C.; Galigekere, V.P.; Su, G.-J.; Wilkins, J. Thermal Design and Optimization of High-Power Wireless Charging System. In Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 20–24 March 2022; pp. 480–485. [Google Scholar]
- Kim, J.; Kim, H.; Song, C.; Kim, I.-M.; Kim, Y.-I.; Kim, J. Electromagnetic Interference and Radiation from Wireless Power Transfer Systems. In Proceedings of the 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC, USA, 4–8 August 2014; pp. 171–176. [Google Scholar]
- Kadem, K.; Le Bihan, Y.; Bensetti, M.; Laboure, É.; Diet, A.; Debbou, M. Reduction of the Shielding Effect on the Coupling Factor of an EV WPT System. In Proceedings of the 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), London, UK, 5–8 June 2019; pp. 21–24. [Google Scholar]
- Kim, H.; Cho, J.; Ahn, S.; Kim, J.; Kim, J. Suppression of Leakage Magnetic Field from a Wireless Power Transfer System Using Ferrimagnetic Material and Metallic Shielding. In Proceedings of the 2012 IEEE International Symposium on Electromagnetic Compatibility, Pittsburgh, PA, USA, 5–10 August 2012; pp. 640–645. [Google Scholar]
- Besnoff, J.; Chabalko, M.; Ricketts, D.S. A Frequency-Selective Zero-Permeability Metamaterial Shield for Reduction of Near-Field Electromagnetic Energy. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 654–657. [Google Scholar] [CrossRef]
- Park, H.H.; Kwon, J.H.; Kwak, S.I.; Ahn, S. Effect of Air-Gap between a Ferrite Plate and Metal Strips on Magnetic Shielding. IEEE Trans. Magn. 2015, 51, 9401504. [Google Scholar]
- Jeong, S.; Kim, K.; Lee, S.; Park, M.; Cho, J.; Kang, Y. Smartwatch Strap Wireless Power Transfer System with Flexible PCB Coil and Shielding Material. IEEE Trans. Ind. Electron. 2019, 66, 4054–4064. [Google Scholar] [CrossRef]
- Boyvat, M.; Hafner, C.V. Molding the Flow of Magnetic Field with Metamaterials: Magnetic Field Shielding. Prog. Electromagn. Res. 2012, 126, 303–316. [Google Scholar] [CrossRef]
- Lipworth, G.; Ensworth, J.; Seetharam, K.; Lee, J.S.; Schmalenberg, P.; Nomura, T.; Reynolds, M.S.; Smith, D.R.; Urzhumov, Y. Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials. Sci. Rep. 2015, 5, 12764. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J.; Chen, Y.; Liu, Y.; Wang, X.; Zhu, X. Investigation of Negative and Near-Zero Permeability Metamaterials for Increased Efficiency and Reduced Electromagnetic Field Leakage in a Wireless Power Transfer System. IEEE Trans. Electromagn. Compat. 2019, 61, 1438–1446. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.; Kim, D.; Jeong, Y.; Park, H.-H.; Ahn, S. A Three-Phase Wireless-Power-Transfer System for Online Electric Vehicles with Reduction of Leakage Magnetic Fields. IEEE Trans. Microw. Theory Tech. 2015, 63, 3806–3813. [Google Scholar] [CrossRef]
- Song, C.; Kim, J.; Ahn, S.; Lee, C.; Park, M. Three-Phase Magnetic Field Design for Low EMI and EMF Automated Resonant Wireless Power Transfer Charger for UAV. In Proceedings of the IEEE Wireless Power Transfer Conference, Boulder, CO, USA, 4–7 May 2015; pp. 1–4. [Google Scholar]
- Choi, S.Y.; Gu, B.W.; Lee, S.W.; Lee, W.Y.; Huh, J.; Rim, C.T. Generalized Active EMF Cancel Methods for Wireless Electric Vehicles. IEEE Trans. Power Electron. 2014, 29, 5770–5783. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Choi, S.Y.; Rim, C.T. A Resonant Reactive Shielding for Planar Wireless Power Transfer System in Smartphone Applications. IEEE Trans. Electromagn. Compat. 2017, 59, 695–703. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.Y.; Lee, S.W.; Rim, C.T. Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Moon, H.; Kim, S.; Park, H.H.; Ahn, S. Design of a Resonant Reactive Shield with Double Coils and a Phase Shifter for Wireless Charging of Electric Vehicles. IEEE Trans. Magn. 2015, 51, 8700104. [Google Scholar]
- Kim, J.; Lee, C.; Woo, S.; Ahn, S. Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System. Proc. IEEE 2013, 101, 1332–1342. [Google Scholar] [CrossRef]
- Rong, C.; Zhang, Y.; Liu, H.; Wang, X.; Chen, Y.; Zhou, J. A Critical Review of Metamaterial in Wireless Power Transfer System. IET Power Electron. 2021, 14, 1541–1559. [Google Scholar] [CrossRef]
- YAGEO Group. Ferroxcube. Available online: https://www.ferroxcube.com/en-global/ak_material/index/power_conversion (accessed on 28 February 2025).
- Asadi, I.; Shafigh, P.; Abu Hassan, Z.F.B.; Mahyuddin, N.B. Thermal Conductivity of Concrete—A Review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Williams, K.J.; Wiseman, K.; Deilami, S.; Town, G.; Taghizadeh, F. A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer. Energies 2023, 16, 5750. [Google Scholar] [CrossRef]
Specimen | Carbon Steel Fiber | Ferrite Powder | Ferrite Chips | Relative Permeability, µr |
---|---|---|---|---|
S1 | 25% | 0% | 0% | 1.6 |
S2 | 12% | 0% | 12% | 4.75 |
S3 | 4% | 8% | 0% | 2.5 |
S4 | 0% | 8% | 0% | 2.2 |
S5 | 0% | 0% | 8% | 2.3 |
S6 | 0% | 0% | 40% | 9.7 |
S7 | 0% | 33% | 0% | 18 |
Component | Material | Thermal Conductivity, W/m°C |
---|---|---|
Coil | Copper [28] | 385 |
Receiver Cores | Ferrite [42] | 4 |
Transmitter Coil Base (CD1) | Ferrite | 4 |
Transmitter Coil Base (CD2) | Magnetic Concrete | 3.6 |
Transmitter Coil Base (CD3) | Normal Concrete [63] | 2.6 |
Specimen No. | Compressive Strength, kPa |
---|---|
MC.1 | 42,945.44 |
MC.2 | 44,715.52 |
MC.3 | 44,864.80 |
Average | 44,180.79 |
Specimen No. | Compressive Strength, kPa |
---|---|
NC.1 | 47,275.26 |
NC.2 | 43,954.78 |
NC.3 | 45,124.59 |
Average | 45,461.84 |
Parameter | W-I Ferrite Cores | Magnetic Concrete |
---|---|---|
Pout, kW | 3 | 3 |
Vin, V | 511.1 | 562 |
Iin, A | 6.6 | 6.1 |
VL, V | 150.3 | 150.4 |
IL, A | 20 | 20 |
Resonant frequency, kHz | 85 | 85 |
Air gap, cm | 12.7 | 12.7 |
Lab temperature, °C | 23 | 23 |
Parameter | W-I Ferrite Cores | Magnetic Concrete | Normal Concrete |
---|---|---|---|
Coupling Coefficient, k | 0.236 | 0.232 | 0.193 |
Power Efficiency, % | 90.85 | 89.71 | 84.3 |
Parameter | W-I Ferrite Cores | Magnetic Concrete |
---|---|---|
Power Efficiency, % | 89.17 | 88.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.; Chen, S.-E.; Zhao, T.; Braxtan, N.L.; Sun, X.; Harris, L. Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications. Appl. Sci. 2025, 15, 4987. https://doi.org/10.3390/app15094987
Lin K, Chen S-E, Zhao T, Braxtan NL, Sun X, Harris L. Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications. Applied Sciences. 2025; 15(9):4987. https://doi.org/10.3390/app15094987
Chicago/Turabian StyleLin, Karl, Shen-En Chen, Tiefu Zhao, Nicole L. Braxtan, Xiuhu Sun, and Lynn Harris. 2025. "Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications" Applied Sciences 15, no. 9: 4987. https://doi.org/10.3390/app15094987
APA StyleLin, K., Chen, S.-E., Zhao, T., Braxtan, N. L., Sun, X., & Harris, L. (2025). Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications. Applied Sciences, 15(9), 4987. https://doi.org/10.3390/app15094987