Physicochemical and Sensory Evaluation of Yanggaeng Treated with Roasted Guatemalan Coffee Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Roasting, and Coffee Extracts
2.2. Formulation and Preparation of Yanggaeng
2.3. Proximate Analysis of Yanggaeng
2.4. Hunter’s Color Metrics and Physicochemical Characterization of Yanggaeng
2.5. Assessment of Antioxidative Properties of Yanggaeng
2.6. Texture Profile Analysis of Yanggaeng
2.7. Consumer Preference Evaluation of Yanggaeng
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Compositions of Yanggaeng
3.2. Hunter’s Color Properties of Yanggaeng
3.3. pH and Brix Values of Yanggaeng
3.4. Antioxidative Properties of Yanggaeng
3.5. Textural Properties of Yanggaeng
3.6. Consumer Preferences of Yanggaeng
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grand View Research. Coffee Market Size, Share & Trends Analysis Report By Distribution Channel (B2B, B2C), By Product (Roasted, Instant, RTD), By Nature (Conventional, Organic), By Region (Europe, Asia Pacific), And Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/coffee-market (accessed on 8 January 2025).
- Everything to Know and Love About Guatemalan Coffee. Available online: https://phillyfairtrade.com/blogs/learn/guatemalan-coffee (accessed on 8 January 2025).
- Akiyama, M.; Murakami, K.; Hirano, Y.; Ikeda, M.; Iwatsuki, K.; Wada, A.; Tokuno, K.; Onishi, M.; Iwabuchi, H. Characterization of Headspace Aroma Compounds of Freshly Brewed Arabica Coffees and Studies on a Characteristic Aroma Compound of Ethiopian Coffee. J. Food Sci. 2008, 73, C335–C346. [Google Scholar] [CrossRef]
- Lyman, D.J.; Benck, R.; Dell, S.; Merle, S.; Murray-Wijelath, J. FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. J. Agric. Food Chem. 2003, 51, 3268–3272. [Google Scholar] [CrossRef] [PubMed]
- Nakilcioğlu-Taş, E.; Ötleş, S. Physical Characterization of Arabica Ground Coffee with Different Roasting Degrees. An. Acad. Bras. Cienc. 2019, 91, e20180191. [Google Scholar] [CrossRef] [PubMed]
- Kocadağlı, T.; Göncüoğlu, N.; Hamzalıoğlu, A.; Gökmen, V. In Depth Study of Acrylamide Formation in Coffee during Roasting: Role of Sucrose Decomposition and Lipid Oxidation. Food Funct. 2012, 3, 970–975. [Google Scholar] [CrossRef]
- Oliviero, T.; Capuano, E.; Cämmerer, B.; Fogliano, V. Influence of Roasting on the Antioxidant Activity and HMF Formation of a Cocoa Bean Model Systems. J. Agric. Food Chem. 2009, 57, 147–152. [Google Scholar] [CrossRef]
- Arlorio, M.; Locatelli, M.; Travaglia, F.; Coisson, J.; Grosso, E.D.; Minassi, A.; Appendino, G.; Martelli, A. Roasting Impact on the Contents of Clovamide (N-caffeoyl-L-DOPA) and the Antioxidant Activity of Cocoa Beans (Theobroma cacao L.). Food Chem. 2008, 106, 967–975. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; Van de Walle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors Influencing Quality Variation in Cocoa (Theobroma cacao) Bean Flavour Profile—A Review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Yeager, S.E.; Batali, M.E.; Lim, L.X.; Liang, J.; Han, J.; Thompson, A.N.; Guinard, J.; Ristenpart, W.D. Roast Level and Brew Temperature Significantly Affect the Color of Brewed Coffee. J. Food Sci. 2022, 87, 1837–1850. [Google Scholar] [CrossRef] [PubMed]
- Fadri, R.A.; Sayuti, K.; Nazir, N.; Suliansyah, I. Sensory Quality Profile of Ranah Minang Arabica Coffee Specialty. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 281–290. [Google Scholar] [CrossRef]
- Alstrup, J.; Petersen, M.A.; Larsen, F.H.; Münchow, M. The Effect of Roast Development Time Modulations on the Sensory Profile and Chemical Composition of the Coffee Brew as Measured by NMR and DHS-GC-MS. Beverages 2020, 6, 70. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lim, J.M.; Kim, Y.J.; Kim, W. Alterations in pH of Coffee Bean Extract and Properties of Chlorogenic Acid Based on the Roasting Degree. Foods 2024, 13, 1757. [Google Scholar] [CrossRef] [PubMed]
- Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef]
- Viencz, T.; Acre, L.B.; Rocha, R.B.; Alves, E.A.; Ramalho, A.R.; Benassi, M.T. Caffeine, Trigonelline, Chlorogenic Acids, Melanoidins, and Diterpenes Contents of Coffea canephora Coffees Produced in the Amazon. J. Food Compos. Anal. 2023, 117, 105140. [Google Scholar] [CrossRef]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee Using High-Performance Liquid Chromatography and Solid-Phase Microextraction—Gas Chromatography-Mass Spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Ryu, S.I.; Lee, M.; Lee, H.J.; Paik, J.K. Quality and Sensory Characteristics of Yanggaeng, a Healthy Snack Added with Pinus Koraiensis Needle Extract Powder for the Elderly. JFNR 2022, 10, 228–234. [Google Scholar] [CrossRef]
- Gomes, W.P.C.; Pires, J.A.; Teixeira, N.N.; Bortoleto, G.G.; Gutierrez, E.M.R.; Melchert, W.R. Effects of Green Coffee Bean Flour Fortification on the Chemical and Nutritional Properties of Gluten-Free Cake. J. Food Meas. Charact. 2022, 16, 3451–3458. [Google Scholar] [CrossRef]
- Kurniawan, A.W.; Tawali, A.B.; Fitri, F. The Effect of Gelatin and Xanthan Gum Concentration on Diversification of Dark Chocolate Praline Jelly Coffee Products. BIO Web Conf. 2024, 96, 01029. [Google Scholar] [CrossRef]
- Meerasri, J.; Sothornvit, R. Novel Development of Coffee Oil Extracted from Spent Coffee Grounds as a Butter Substitute in Bakery Products. JFPP 2022, 46, e16687. [Google Scholar] [CrossRef]
- Shazly, A.B.; Fouad, M.; Elaaser, M.; Sayed, R.; Abd El-Aziz, M. Probiotic Coffee Ice Cream as an Innovative Functional Dairy Food. JFPP 2022, 46, e17253. [Google Scholar] [CrossRef]
- Han, I.; Lee, C.S. Quality Properties and Bioactivities of American Cookies with Coffee Extract Residues. LWT 2021, 151, 112173. [Google Scholar] [CrossRef]
- The Ultimate Guide to Understanding Coffee Roast Levels. Available online: https://coffeebros.com/blogs/coffee/the-ultimate-guide-to-understanding-coffee-roast-levels (accessed on 9 January 2025).
- Lee, J.; Jang, H.; Kang, D.; No, C.; Doo, M.; Shin, E.-C.; Ha, J.-H. Physicochemical Properties and Sensory Attributes of Yanggaeng Treated with Citrus Peel Powder. Appl. Sci. 2023, 13, 11377. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J.; Won, S.; Kim, Y.; Doo, M.; Kim, I.; Ha, J.-H. Physicochemical Properties, Antioxidant Capacities, and Sensory Evaluation of Yanggaeng Treated with Cissus quadrangularis. Appl. Sci. 2023, 13, 11092. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- da Costa, D.S.; Albuquerque, T.G.; Costa, H.S.; Bragotto, A.P.A. Thermal Contaminants in Coffee Induced by Roasting: A Review. Int. J. Environ. Res. Public Health 2023, 20, 5586. [Google Scholar] [CrossRef]
- Bekedam, E.K.; Loots, M.J.; Schols, H.A.; Van Boekel, M.A.; Smit, G. Roasting Effects on Formation Mechanisms of Coffee Brew Melanoidins. J. Agric. Food Chem. 2008, 56, 7138–7145. [Google Scholar] [CrossRef]
- Orfanou, F.; Dermesonlouoglou, E.K.; Taoukis, P.S. Greek Coffee Quality Loss During Home Storage: Modeling the Effect of Temperature and Water Activity. J. Food Sci. 2019, 84, 2983–2994. [Google Scholar] [CrossRef]
- Syukri, D.; Sari, F.I.P. Roasting Conditions on Metabolic Profile of Black Honey Arabica Coffee (Coffea arabica). IOP Cont. Ser. Earth Environ. Sci. 2023, 1182, 012048. [Google Scholar] [CrossRef]
- Pittia, P.; Dalla Rosa, M.; Lerici, C.R. Textural changes of coffee beans as affected by roasting conditions. LWT-Food Sci. Technol. 2001, 34, 168–175. [Google Scholar] [CrossRef]
- Shan, J.; Suzuki, T.; Suhandy, D.; Ogawa, Y.; Kondo, N. Chlorogenic Acid (CGA) Determination in Roasted Coffee Beans by Near Infrared (NIR) Spectroscopy. EAEF 2014, 7, 139–142. [Google Scholar] [CrossRef]
- Pérez-Martínez, M.; Sopelana, P.; De Pena, M.P.; Cid, C. Changes in Volatile Compounds and Overall Aroma Profile during Storage of Coffee Brews at 4 and 25 Degrees. J. Agric. Food Chem. 2008, 56, 3145–3154. [Google Scholar] [CrossRef]
- Pérez-Martínez, M.; Sopelana, P.; de Peña, M.P.; Cid, C. Application of Multivariate Analysis to the Effects of Additives on Chemical and Sensory Quality of Stored Coffee Brew. J. Agric. Food Chem. 2008, 56, 11845–11853. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Jeong, Y.; Gu, S.; Song, K.Y.; Kim, I.; Kim, K.Y. Physicochemical Characteristics of Brazilian Coffea arabica cv. Catuai Coffee Extracts with Different Roasting Conditions. JKFN 2019, 48, 748–756. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef]
- Moreira, A.S.; Nunes, F.M.; Domingues, M.R.; Coimbra, M.A. Coffee Melanoidins: Structures, Mechanisms of Formation and Potential Health Impacts. Food Funct. 2012, 3, 903–915. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, S.K. Changes in Major Chemical Constituents of Green Coffee Beans during the Roasting. Korean J. Food Sci. Technol. 2006, 38, 153–158. [Google Scholar]
- Casal, S.; Oliveira, M.B.; Ferreira, M.A. HPLC/Diode-Array Applied to the Thermal Degradation of Trigonelline, Nicotinic Acid, and Caffeine in Coffee. Food Chem. 2000, 68, 481–485. [Google Scholar] [CrossRef]
- Schouten, M.A.; Tappi, S.; Angeloni, S.; Cortese, M.; Caprioli, G.; Vittori, S.; Romani, S. Acrylamide Formation and Antioxidant Activity in Coffee during Roasting—A Systematic Study. Food Chem. 2021, 343, 128514. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Fiurasek, P.; Kakkar, A.; Budryn, G. Evaluation of the Thermal Stability of Bioactive Compounds in Coffee Beans and Their Fractions Modified in the Roasting Process. Food Chem. 2022, 387, 132888. [Google Scholar] [CrossRef]
- Górecki, M.; Hallmann, E. The Antioxidant Content of Coffee and Its In Vitro Activity as an Effect of Its Production Method and Roasting and Brewing Time. Antioxidants 2020, 9, 308. [Google Scholar] [CrossRef]
- Kim, E.; Song, K.Y.; Kim, I.; Yun, H.Y.; Zhang, S.; Ha, J.-H.; Jeong, Y. Antioxidant Activities of Colombian Coffea arabica cv. Typica Caturra Coffee Extracts with Different Roasting Conditions. JKFN 2020, 49, 212–217. [Google Scholar] [CrossRef]
- Jung, S.; Kim, M.H.; Park, J.H.; Jeong, Y.; Ko, K.S. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels. J. Med. Food 2017, 20, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Ghebremedhin, M.; Seiffert, S.; Vilgis, T.A. Effects of Sugar Molecules on the Rheological and Tribological Properties and on the Microstructure of Agarose-Based Fluid Gels. Front. Soft Matter 2024, 4, 1363898. [Google Scholar] [CrossRef]
- Hassan, C.Z.; Ahmad, S.S.; Agbaje Rafiu, S. Effect of Sugar Concentration on Gelling Properties of Pectin from Malaysian Banana Peels (Musa Acuminata× Balbisiana). Int. J. Innov. Res. Sci. Eng. Technol. 2018, 3, 170–177. [Google Scholar]
- Huang, P.H.; Cheng, Y.T.; Lu, W.C.; Li, P.H. Optimization of Concentration-Time, Agar, and Sugar Concentration for Sweet Gelatinized Adzuki-Bean Jelly Cake (Yokan) by Response Surface Methodology. Gels 2022, 8, 540. [Google Scholar] [CrossRef]
- Chung, H.W.; Yoon, H.H. Quality Characteristics of Ethiopia Coffee according to Different Decaffeination Processes and Roasting Conditions. J. East Asian Soc. Diet. Life 2022, 32, 125–135. [Google Scholar] [CrossRef]
- Kang, G.W.; Piao, Z.Z.; Ko, J.Y. Effects of Water Types and Roasting Points on Consumer Liking and Emotional Responses toward Coffee. Food Qual. Prefer. 2022, 101, 104631. [Google Scholar] [CrossRef]
- Houessou, J.K.; Maloug, S.; Leveque, A.S.; Delteil, C.; Heyd, B.; Camel, V. Effect of Roasting Conditions on the Polycyclic Aromatic Hydrocarbon Content in Ground Arabica Coffee and Coffee Brew. J. Agric. Food Chem. 2007, 55, 9179–9726. [Google Scholar] [CrossRef]
- Yanagimoto, K.; Lee, K.G.; Ochi, H.; Shibamoto, T. Antioxidative Activity of Heterocyclic Compounds Found in Coffee Volatiles Produced by Maillard Reaction. J. Agric. Food Chem. 2002, 50, 5480–5484. [Google Scholar] [CrossRef]
Sample | Starting Temperature (°C) | Final Temperature (°C) | Total Roasting Time (Min) | Agtron Number |
---|---|---|---|---|
Light | 160 | 198 | 8:15 | 70.0 |
Medium | 160 | 207 | 9:05 | 63.8 |
Dark | 160 | 220 | 10:18 | 59.0 |
Guatemalan Coffee Extract | ||||
---|---|---|---|---|
Ingredients (g) | CON | 2% | 4% | 6% |
White bean paste | 490 | 490 | 490 | 490 |
Water | 400 | 392 | 384 | 376 |
White sucrose | 100 | 100 | 100 | 100 |
Agar powder | 10 | 10 | 10 | 10 |
Guatemalan coffee extracts | 0 | 8 | 16 | 24 |
Guatemala Coffee Extracts | |||||
---|---|---|---|---|---|
Roasting | CON | 2% | 4% | 6% | |
Moisture (%) | Light | 47.61 ± 0.87 nN | 50.48 ± 1.18 nA | 48.17 ± 3.82 nA | 48.17 ± 0.94 nA |
Medium | 47.92 ± 0.44 aN | 43.67 ± 0.92 bB | 44.28 ± 0.70 bAB | 41.61 ± 0.82 cA | |
Dark | 46.47 ± 0.97 aN | 44.95 ± 1.95 aB | 40.89 ± 2.94 bB | 47.57 ± 0.74 aB | |
Crude ash (%) | Light | 0.32 ± 0.06 nB | 0.43 ± 0.09 nN | 0.38 ± 0.070 nN | 0.32 ± 0.03 nB |
Medium | 0.47 ± 0.04 nA | 0.43 ± 0.07 nN | 0.46 ± 0.08 nN | 0.50 ± 0.02 nA | |
Dark | 0.51 ± 0.06 abA | 0.47 ± 0.02 abN | 0.12 ± 0.07 bN | 0.53 ± 0.02 aA | |
Crude fat (%) | Light | 1.72 ± 0.40 aA | 0.36 ± 0.06 bN | 0.71 ± 0.04 bA | 2.09 ± 0.57 aA |
Medium | 0.38 ± 0.23 nB | 0.62 ± 0.26 nN | 0.35 ± 0.11 nB | 0.41 ± 0.06 nB | |
Dark | 0.39 ± 0.18 abB | 0.47 ± 0.21 aN | 0.18 ± 0.10 abB | 0.13 ± 0.06 bB | |
Crude protein (%) | Light | 1.33 ± 0.00 bN | 2.76 ± 0.40 aN | 0.96 ± 0.42 bN | 1.25 ± 0.12 bN |
Medium | 2.30 ± 1.73 nN | 2.21 ± 0.74 nN | 1.65 ± 1.20 nN | 2.82 ± 1.60 nN | |
Dark | 1.93 ± 0.89 nN | 2.50 ± 0.93 nN | 1.09 ± 0.93 nN | 2.57 ± 0.55 nN | |
Carbohydrate 1 (%) | Light | 49.52 ± 1.68 nN | 45.97 ± 1.50 nB | 50.01 ± 4.38 nB | 48.18 ± 1.19 nB |
Medium | 48.94 ± 1.81 bN | 53.08 ± 1.08 aA | 53.26 ± 0.59 aAB | 54.79 ± 1.83 aA | |
Dark | 50.81 ± 1.70 bN | 51.75 ± 2.21 bA | 57.42 ± 2.17 aA | 49.21 ± 0.25 bB |
Guatemalan Coffee Extract | |||||
---|---|---|---|---|---|
Roasting | CON | 2% | 4% | 6% | |
L* | Light | 41.97 ± 0.40 aN | 38.37 ± 0.15 bA | 32.67 ± 1.27 cB | 33.43 ± 0.46 cA |
Medium | 42.20 ± 0.00 aN | 36.93 ± 0.06 bB | 34.97 ± 0.35 cA | 32.43 ± 0.38 dB | |
Dark | 42.30 ± 1.45 aN | 35.53 ± 0.06 bC | 30.53 ± 0.32 cC | 29.43 ± 0.23 cC | |
a* | Light | −2.23 ± 0.40 cN | 0.83 ± 0.12 bA | 0.97 ± 0.23 bB | 1.77 ± 0.23 aB |
Medium | −2.20 ± 0.40 cN | 0.73 ± 0.12 bAB | 0.80 ± 0.17 bB | 2.90 ± 0.10 aA | |
Dark | −1.47 ± 0.75 cN | 0.60 ± 0.10 bB | 3.13 ± 0.47 aA | 0.87 ± 0.21 bC | |
b* | Light | 2.47 ± 0.46 dN | 8.53 ± 0.86 bA | 6.53 ± 0.29 cC | 9.93 ± 0.23 aB |
Medium | 2.33 ± 0.61 dN | 7.13 ± 0.23 cB | 7.83 ± 0.06 bB | 10.30 ± 0.10 aA | |
Dark | 1.23 ± 1.53 cN | 6.77 ± 0.21 bB | 8.67 ± 0.47 aA | 8.37 ± 0.06 aC | |
Light | - | 7.71 ± 0.64 bB | 7.71 ± 0.19 aB | 8.98 ± 0.11 aC | |
ΔE 1 | Medium | - | 10.66 ± 1.14 bB | 9.57 ± 0.29 cB | 14.67 ± 0.34 aB |
Dark | - | 12.03 ± 0.40 bA | 13.60 ± 0.32 aA | 14.90 ± 0.24 aA |
Guatemalan Coffee Extract | |||||
---|---|---|---|---|---|
Roasting | CON | 2% | 4% | 6% | |
pH | Light | 6.29 ± 0.05 dN | 6.61 ± 0.01 cB | 6.67 ± 0.02 bB | 6.75 ± 0.01 aA |
Medium | 6.26 ± 0.07 abN | 6.29 ± 0.04 aC | 6.19 ± 0.06 bC | 5.99 ± 0.01 cC | |
Dark | 6.28 ± 0.07 cN | 6.80 ± 0.02 aA | 6.79 ± 0.01 aA | 6.71 ± 0.02 bB | |
Brix | Light | 3.03 ± 0.06 dN | 3.30 ± 0.00 cC | 3.70 ± 0.00 aA | 3.50 ± 0.00 bC |
Medium | 3.07 ± 0.06 dN | 3.40 ± 0.00 bB | 3.20 ± 0.00 cB | 3.57 ± 0.06 aB | |
Dark | 3.07 ± 0.06 dN | 3.50 ± 0.00 cA | 3.70 ± 0.10 bA | 3.90 ± 0.00 aA |
Guatemalan Coffee Extract | |||||
---|---|---|---|---|---|
Roasting | CON | 2% | 4% | 6% | |
TPC (μg GAE/g) | Light | 15.28 ± 0.25 bN | 22.29 ± 2.47 aN | 18.66 ± 3.28 abN | 18.64 ± 0.91 abN |
Medium | 15.60 ± 0.51 bN | 20.18 ± 3.23 bN | 21.99 ± 1.28 aN | 22.79 ± 0.01 aN | |
Dark | 15.67 ± 0.58 bN | 19.64 ± 3.14 abN | 25.81 ± 2.36 aN | 25.31 ± 5.77 abN | |
DPPH radical scavenging activities (Inhibition %) | Light | 63.73 ± 0.17 nN | 63.98 ± 1.72 nA | 66.31 ± 0.12 nA | 65.08 ± 3.57 nN |
Medium | 66.41 ± 2.79 bN | 66.74 ± 0.49 bB | 66.14 ± 0.00 bA | 71.09 ± 0.88 aN | |
Dark | 58.852 ± 3.07 bN | 57.99 ± 0.16 bB | 59.10 ± 0.74 bB | 66.47 ± 1.86 aN |
Guatemalan Coffee Extract | |||||
---|---|---|---|---|---|
Roasting | CON | 2% | 4% | 6% | |
Hardness (g) | Light | 194.03 ± 6.77 bN | 540.92 ± 15.04 aB | 559.18 ± 43.66 aA | 238.27 ± 20.88 bB |
Medium | 171.24 ± 9.94 cN | 619.04 ± 6.92 aA | 272.52 ± 55.79 bB | 230.04 ± 18.07 bB | |
Dark | 182.08 ± 16.70 dN | 409.87 ± 4.40 bC | 537.04 ± 9.26 aA | 379.70 ± 16.73 cA | |
Adhesiveness (g·.s) | Light | −35.42 ± 11.13 nN | −38.01 ± 12.58 nN | −26.49 ± 2.18 nA | −34.37 ± 4.77 nB |
Medium | −43.54 ± 5.55 aN | −44.52 ± 5.36 aN | −67.75 ± 20.08 bB | −22.81 ± 7.06 aA | |
Dark | −28.74 ± 4.02 nN | −36.14 ± 5.18 nN | −36.96 ± 3.60 nA | −33.33 ± 3.97 nAB | |
Resilience (%) | Light | 0.98 ± 0.06 bN | 2.20 ± 0.73 aA | 1.65 ± 0.26 abB | 1.66 ± 0.30 abN |
Medium | 1.27 ± 0.22 bN | 2.50 ± 0.20 aA | 2.49 ± 0.39 aA | 1.68 ± 0.41 bN | |
Dark | 1.05 ± 0.14 cN | 0.90 ± 0.04 cB | 1.71 ± 0.32 bB | 2.25 ± 0.28 aN | |
Cohesion | Light | 0.12 ± 0.02 nAB | 0.14 ± 0.02 nA | 0.11 ± 0.01 nB | 0.13 ± 0.02 nN |
Medium | 0.14 ± 0.01 bA | 0.14 ± 0.01 bA | 0.17 ± 0.02 aA | 0.12 ± 0.00 cN | |
Dark | 0.11 ± 0.01 bB | 0.10 ± 0.00 cB | 0.11 ± 0.01 bB | 0.13 ± 0.01 aN | |
Springiness (%) | Light | 33.61 ± 3.94 bN | 46.77 ± 5.37 aB | 27.51 ± 3.33 bC | 46.88 ± 7.20 aAB |
Medium | 39.94 ± 4.81 cN | 56.45 ± 4.97 bA | 73.19 ± 8.95 aA | 35.47 ± 5.93 cB | |
Dark | 34.30 ± 3.64 bcN | 25.78 ± 3.22 cC | 43.82 ± 6.71 bB | 56.26 ± 6.21 aA | |
Gumminess | Light | 23.30 ± 4.75 cN | 76.30 ± 13.14 aA | 59.72 ± 4.56 bN | 31.15 ± 1.39 cB |
Medium | 24.54 ± 0.41 cN | 88.03 ± 5.43 aA | 47.25 ± 16.35 bN | 26.42 ± 1.69 cC | |
Dark | 20.35 ± 1.78 dN | 39.09 ± 2.07 cB | 58.95 ± 2.75 aN | 47.69 ± 3.02 bA | |
Chewiness | Light | 7.74 ± 1.14 cB | 35.34 ± 4.04 aB | 16.53 ± 3.25 bB | 14.61 ± 2.50 bB |
Medium | 9.79 ± 1.07 cA | 49.73 ± 5.68 aA | 34.75 ± 13.07 bA | 9.31 ± 1.06 cC | |
Dark | 6.94 ± 0.32 bB | 10.04 ± 0.78 bC | 25.80 ± 3.84 aAB | 26.83 ± 3.32 aA |
Guatemalan Coffee Extract | |||||
---|---|---|---|---|---|
Roasting | CON | 2% | 4% | 6% | |
Color | Light | 2.81 ± 1.55 cA | 3.81 ± 1.33 bN | 5.19 ± 1.50 aN | 5.58 ± 1.96 aB |
Medium | 1.79 ± 1.59 cB | 3.88 ± 1.58 bN | 4.90 ± 1.91 aN | 5.10 ± 1.79 aB | |
Dark | 2.67 ± 1.37 dA | 4.08 ± 1.61 cN | 5.42 ± 1.67 bN | 6.54 ± 2.11 aA | |
Scent | Light | 2.96 ± 1.56 bAB | 4.08 ± 2.02 aN | 4.54 ± 1.58 aN | 4.88 ± 1.82 aAB |
Medium | 2.43 ± 1.68 bB | 4.33 ± 1.96 aN | 4.83 ± 2.25 aN | 4.38 ± 2.20 aB | |
Dark | 3.50 ± 1.72 bA | 3.71 ± 1.57 aN | 4.83 ± 1.90 aN | 5.46 ± 2.08 aA | |
Sweetness | Light | 4.58 ± 2.02 nN | 5.04 ± 1.71 nA | 4.65 ± 1.79 nN | 4.50 ± 1.61 nB |
Medium | 3.88 ± 2.33 bN | 3.93 ± 1.84 bB | 4.71 ± 1.84 abN | 5.26 ± 2.10 aA | |
Dark | 4.25 ± 1.85 nN | 4.00 ± 1.67 nB | 4.92 ± 1.72 nN | 4.67 ± 2.04 nAB | |
Bitterness | Light | 1.65 ± 1.06 bB | 2.73 ± 1.78 aN | 3.08 ± 1.52 aN | 3.54 ± 1.77 aAB |
Medium | 1.62 ± 0.99 bB | 2.90 ± 2.07 aN | 3.36 ± 2.35 aN | 3.29 ± 2.34 aB | |
Dark | 2.42 ± 1.47 bA | 3.00 ± 1.50 bN | 3.33 ± 1.90 abN | 4.33 ± 2.55 aA | |
Chewiness | Light | 5.19 ± 1.83 nA | 5.31 ± 1.83 nN | 5.27 ± 1.85 nA | 5.27 ± 1.85 nA |
Medium | 2.17 ± 1.31 cC | 4.98 ± 2.21 aN | 2.79 ± 1.55 bcB | 3.02 ± 1.73 bB | |
Dark | 4.17 ± 2.08 nB | 5.04 ± 1.65 nN | 4.83 ± 1.90 nA | 4.67 ± 1.63 nA | |
Overall taste | Light | 4.54 ± 1.70 nA | 4.77 ± 1.73 nN | 5.08 ± 1.52 nN | 5.35 ± 1.87 nN |
Medium | 3.57 ± 2.09 bB | 4.33 ± 1.84 abN | 4.71 ± 2.19 aN | 5.05 ± 2.16 aN | |
Dark | 4.25 ± 2.07 bAB | 4.71 ± 1.60 abN | 5.33 ± 1.79 abN | 5.54 ± 1.72 aN | |
Overall acceptance | Light | 5.19 ± 1.90 nA | 5.08 ± 1.72 nN | 5.31 ± 1.62 nA | 5.42 ± 1.50 nN |
Medium | 3.48 ± 2.10 bB | 4.48 ± 1.99 aN | 4.50 ± 2.18 aB | 5.02 ± 2.16 aN | |
Dark | 4.71 ± 2.07 nA | 4.83 ± 1.83 nN | 5.46 ± 2.04 nA | 5.42 ± 1.79 nN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, I.; Jang, H.; Kim, Y.-W.; Cho, M.; Lee, J.; Do, J.; Doguer, C.; Doo, M.; Ha, J.-H. Physicochemical and Sensory Evaluation of Yanggaeng Treated with Roasted Guatemalan Coffee Extracts. Appl. Sci. 2025, 15, 4374. https://doi.org/10.3390/app15084374
Lee J, Kim I, Jang H, Kim Y-W, Cho M, Lee J, Do J, Doguer C, Doo M, Ha J-H. Physicochemical and Sensory Evaluation of Yanggaeng Treated with Roasted Guatemalan Coffee Extracts. Applied Sciences. 2025; 15(8):4374. https://doi.org/10.3390/app15084374
Chicago/Turabian StyleLee, Jisu, Inyong Kim, Hyunsoo Jang, Yeon-Woo Kim, Minseo Cho, Jiwoo Lee, Jaewook Do, Caglar Doguer, Miae Doo, and Jung-Heun Ha. 2025. "Physicochemical and Sensory Evaluation of Yanggaeng Treated with Roasted Guatemalan Coffee Extracts" Applied Sciences 15, no. 8: 4374. https://doi.org/10.3390/app15084374
APA StyleLee, J., Kim, I., Jang, H., Kim, Y.-W., Cho, M., Lee, J., Do, J., Doguer, C., Doo, M., & Ha, J.-H. (2025). Physicochemical and Sensory Evaluation of Yanggaeng Treated with Roasted Guatemalan Coffee Extracts. Applied Sciences, 15(8), 4374. https://doi.org/10.3390/app15084374