Usefulness of Rowanberry for Improving the Nutritional Value of Buckwheat Flour Extrudates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Extruded Flat Cereal Crips
2.3. Colour Analysis
2.4. Determining of Expansion Ratio
2.5. Determination of Nutritional Value
2.6. Extraction of Samples for Total Phenolic, Total Flavonoid, and Antioxidant Activity Analyses
2.7. Total Phenolic Compound Analysis
2.8. Flavonoid Analysis
2.9. Antioxidant Capacity Analysis
2.10. Texture Profile Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Colour
3.2. Expansion Ratio
3.3. Texture Profile
3.4. Nutritional Value
3.5. Total Phenolic Contents
3.6. Total Flavonoid Content
3.7. DPPH, CUPRAC, and FRAP Antioxidant Activities
3.8. Pearson Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [PubMed]
- Martin, C. Twin screw extruders as continuous mixers for thermal processing: A technical and historical perspective. AAPS Pharm. Sci. Tech. 2016, 17, 3–19. [Google Scholar]
- Hou, G.G. Asian Noodles: Science, Technology, and Processing; Wheat Marketing Center, Inc.: Portland, OR, USA, 2010; Preface pp. ix–xii. [Google Scholar]
- Victorio, V.C.M.; Alves, T.O.; Souza, G.H.M.F.; Gutkoski, L.C.; Cameron, L.C.; Ferreira, M.S.L. Nano UPLC-MSE reveals differential abundance of gluten proteins in wheat flours of different technological qualities. J. Proteom. 2021, 239, 104181. [Google Scholar]
- Schnedl, W.J.; Mangge, H.; Schenk, M.; Enko, D. Non-responsive celiac disease may coincide with additional food intolerance/malabsorption, including histamine intolerance. Med. Hypotheses 2021, 146, 110404. [Google Scholar]
- Matos, M.E.; Rosell, C.M. Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. J. Sci. Food Agric. 2015, 95, 653–661. [Google Scholar]
- Wangtueai, S.; Phimolsiripol, Y.; Vichasilp, C.; Regenstein, J.M.; Schöenlechner, R. Optimisation of gluten-free functional noodles formulation enriched with fish gelatin hydrolysates. LWT-Food Sci. Technol. 2020, 133, 109977. [Google Scholar]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar]
- Coronel, E.B.; Guiotto, E.N.; Aspiroz, M.C.; Tomas, M.C.; Nolasco, S.M.; Capitani, M.I. Development of gluten-free premixes with buckwheat and chia flours: Application in a bread product. LWT-Food Sci. Technol. 2021, 141, 110916. [Google Scholar]
- Zhang, Z.L.; Zhou, M.L.; Tang, Y.; Li, F.L.; Tang, Y.X.; Shao, J.R.; Xue, W.T.; Wu, Y.M. Bioactive compounds in functional buckwheat food. Food Res. Int. 2012, 49, 389–395. [Google Scholar]
- Zhou, X.; Wen, L.; Li, Z.; Zhou, Y.; Chen, Y.; Lu, Y. Advance on the benefits of bioactive peptides from buckwheat. Phytochem. Rev. 2015, 14, 381–388. [Google Scholar]
- Li, Q.; Liu, S.; Obadi, M.; Jiang, Y.; Zhao, F.; Jiang, S.; Xu, B. The impact of starch degradation induced by pre-gelatinisation treatment on the quality of noodles. Food Chem. 2020, 302, 125267. [Google Scholar] [PubMed]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar]
- Obradović, V.; Babić, J.; Dragović-Uzelac, V.; Jozinović, A.; Ačkar, Đ.; Šubarić, D. Properties of extruded snacks prepared from corn and carrot powder with ascorbic acid addition. Processes 2021, 9, 1367. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A.G. Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Compr. Rev. Food Sci. Food Saf. 2014, 13, 871–890. [Google Scholar]
- Bisharat, G.I.; Lazou, A.E.; Panagiotou, N.M.; Krokida, M.K.; Maroulis, Z.B. Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks. J. Food Sci. Technol. 2015, 52, 3986–4000. [Google Scholar]
- Nayak, B.; Berrios, J.D.J.; Powers, J.R.; Tang, J. Effect of extrusion on the antioxidant capacity and color attributes of expanded extrudates prepared from purple potato and yellow pea flour mixes. J. Food Sci. 2011, 76, C874–C883. [Google Scholar]
- Leyva-Corral, J.; Quintero-Ramos, A.; Camacho-Dávila, A.; de Jesús Zazueta-Morales, J.; Aguilar-Palazuelos, E.; Ruiz-Gutiérrez, M.G.; Meléndez-Pizarro, O.C.; de Jesús Ruiz-Anchondo, T. Polyphenolic compound stability and antioxidant capacity of apple pomace in an extruded cereal. LWT-Food Sci. Technol. 2016, 65, 228–236. [Google Scholar]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. Foods 2019, 9, 381. [Google Scholar]
- Potter, R.; Stojceska, V.; Plunkett, A. The use of fruit powders in extruded snacks suitable for Children’s diets. LWT-Food Sci. Technol. 2013, 51, 537–544. [Google Scholar]
- Drożdż, W.; Tomaszewska-Ciosk, E.; Zdybel, E.; Boruczkowska, H.; Boruczkowski, T.; Regiec, P. Effect of apple and rosehip pomaces on colour, total phenolics and antioxidant activity of corn extruded snacks. Pol. J. Chem. Technol. 2014, 16, 7–11. [Google Scholar]
- Oniszczuk, T.; Widelska, G.; Oniszczuk, A.; Kasprzak, K.; Wójtowicz, A.; Olech, M.; Jóźwiak, G.; Hajnos, M.W. Influence of production parameters on the content of polyphenolic compounds in extruded porridge enriched with chokeberry fruit (Aronia melanocarpa (Michx.) Elliott). Open Chem. 2019, 17, 166–176. [Google Scholar] [CrossRef]
- Muzykiewicz, A.; Zielonka-Brzezicka, J.; Klimowicz, A.; Florkowska, K. Jarząb pospolity (Sorbus aucuparia L.) jako źródło składników o potencjalnym działaniu antyoksydacyjnym. Probl. Hig. I Epidemiol. 2017, 98, 125–132. [Google Scholar]
- Nurzyńska-Wierdak, R. Właściwości lecznicze i wykorzystanie w fitoterapii niektórych gatunków roślin drzewiastych. Drzewa liściaste półkuli północnej. Ann. UMCS Sec. EEE Hortic. 2016, 26, 23–40. [Google Scholar]
- Arvinte, O.M.; Senila, L.; Becze, A.; Amariei, S. Rowanberry—A source of bioactive compounds and their biopharmaceutical properties. Plants 2023, 12, 3225. [Google Scholar] [CrossRef]
- Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; McDougall, G.; Stewart, D.; Heinonen, M. Rowanberry phenolics: Compositional analysis and bioactivities. J. Agric. Food Chem. 2010, 58, 11985–11992. [Google Scholar] [CrossRef]
- Yu, T.; Lee, Y.J.; Jang, H.J.; Kim, A.R.; Hong, S.; Kim, T.W.; Kim, M.Y.; Lee, J.; Lee, Y.G.; Cho, J.Y. Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism. J. Ethnopharmacol. 2011, 134, 493–500. [Google Scholar] [CrossRef]
- Özer, E.A.; Herken, E.N.; Güzel, S.; Ainsworth, P.; İbanoğlu, Ş. Effect of extrusion process on the antioxidant activity and total phenolics in a nutritious snack food. Int. J. Food Sci. Technol. 2006, 41, 289–293. [Google Scholar] [CrossRef]
- Ruiz-Armenta, X.A.; Zazueta-Morales, J.D.J.; Aguilar-Palazuelos, E.; Delgado-Nieblas, C.I.; López-Diaz, A.; Camacho-Hernández, I.L.; Gutiérrez-Dorado, R.; Martínez-Bustos, F. Effect of extrusion on the carotenoid content, physical and sensory properties of snacks added with bagasse of naranjita fruit: Optimisation process. CYTA-J. Food. 2017, 16, 172–180. [Google Scholar] [CrossRef]
- Schakel, S.F.; Buzzard, I.M.; Gebhard, S.E. Procedures for estimating nutrient values for food composition databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef]
- Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogeniser-assisted extraction. J. Food Meas. Charact. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Zhuang, X.P.; Lu, Y.Y.; Yang, G.S. Extraction and determination of flavonoid in ginkgo. Chinese Herb. Med. 1992, 23, 122–124. [Google Scholar]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [PubMed]
- Eyiz, V.; Tontul, I.; Türker, S. Effect of variety, drying methods and drying temperature on physical and chemical properties of hawthorn leather. J. Food Meas. Charact. 2020, 14, 3263–3269. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, X.; Zou, L.; Xing, B.; Zhu, M.; Yang, X.; Zhang, L.; Qin, P.; Zhang, L.; Qin, P. Phytochemical properties and health benefits of pregelatinised Tartary buckwheat flour under different extrusion conditions. Front. Nutr. 2022, 9, 1052730. [Google Scholar]
- Singh, J.P.; Kaur, A.; Singh, B.; Singh, N.; Singh, B. Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. J. Food Sci. Technol. 2019, 56, 2205–2212. [Google Scholar]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Klarić, I.; Kopjar, M.; Valek Lendić, K. Influence of buckwheat and chestnut flour addition on properties of corn extrudates. Croat. J. Food Sci. Technol. 2012, 4, 26–33. [Google Scholar]
- Wójtowicz, A.; Kolasa, A.; Moscicki, L. Influence of buckwheat addition on physical properties, texture and sensory characteristics of extruded corn snacks. Pol. J. Food Nutr. Sci. 2013, 63, 239–244. [Google Scholar]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. Plant Foods Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef]
- Camire, M.E.; Dougherty, M.P.; Briggs, J.L. Functionality of fruit powders in extruded corn breakfast cereals. Food Chem. 2007, 101, 765–770. [Google Scholar]
- Yagci, S.; Calıskan, R.; Gunes, Z.S.; Capanoglu, E.; Tomas, M. Impact of tomato pomace powder added to extruded snacks on the in vitro gastrointestinal behaviour and stability of bioactive compounds. Food Chem. 2022, 368, 130847. [Google Scholar] [PubMed]
- Igual, M.; Păucean, A.; Vodnar, D.C.; García-Segovia, P.; Martínez-Monzó, J.; Chiş, M.S. In vitro bioaccessibility of bioactive compounds from rosehip-enriched corn extrudates. Molecules 2022, 27, 1972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ryu, G. Physical properties of extruded corn grits with corn fibre by CO2 injection extrusion. J. Food Eng. 2013, 116, 14–20. [Google Scholar]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Orkić, V.; Guberac, S.; Miličević, B. Food industry byproducts as raw materials in the production of value-added corn snack products. Foods 2021, 10, 946. [Google Scholar] [CrossRef]
- Beery, K.E.; Ladisch, M.R. Chemistry and properties of starch-based desiccants. Enzyme Microb. Technol. 2001, 28, 573–581. [Google Scholar]
- Dziadek, K.; Kopeć, A.; Pastucha, E.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Francik, R. Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. J. Cereal Sci. 2016, 69, 1–8. [Google Scholar]
- Wefers, D.; Bunzel, M. Characterization of dietary fiber polysaccharides from dehulled common buckwheat (Fagopyrum esculentum) seeds. Cereal Chem. 2015, 92, 598–603. [Google Scholar]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing by-products: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Gupta, M.; Bawa, A.S.; Semwal, A.D. Effect of barley flour on development of rice-based extruded snacks. Cereal Chem. 2008, 85, 115–122. [Google Scholar]
- Lee, E.Y.; Lim, K.I.; Li, J.K.; Lim, S.T. Effects of gelatinisation and moisture content of extruded starch pellets on morphology and physical properties of microwave-expanded products. Cereal Chem. 2000, 77, 769–773. [Google Scholar]
- Hagenimana, A.; Ding, X.; Fang, T. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 2006, 43, 38–46. [Google Scholar] [CrossRef]
- Fontes-Zepeda, A.; Domínguez-Avila, J.A.; Lopez-Martinez, L.X.; Cruz-Valenzuela, M.R.; Robles-Sánchez, R.M.; Salazar-López, N.J.; Villegas-Ochoa, M.; González-Aguilar, G.A.; Pareek, S.; Villegas-Ochoa, M.A.; et al. The addition of mango and papaya peels to corn extrudates enriches their phenolic compound profile and maintains their sensory characteristics. Waste Biomass Valori. 2022, 14, 751–764. [Google Scholar] [CrossRef]
- Shi, N.; Narciso, J.O.; Gou, X.; Brennan, M.A.; Zeng, X.A.; Brennan, C.S. Manipulation of antioxidant and glycemic properties of extruded rice-based breakfast cereal products using pomelo fruit byproduct material. Qual. Assur. Saf. Crops Foods. 2017, 9, 489–495. [Google Scholar] [CrossRef]
- Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing byproducts. J. Food Technol. 2016, 53, 561–570. [Google Scholar] [CrossRef]
- Thymi, S.; Krokida, M.K.; Pappa, A.; Maroulis, Z.B. Structural properties of extruded corn starch. J. Food Eng. 2005, 68, 519–526. [Google Scholar] [CrossRef]
- Kaur, M.; Sandhu, K.S.; Arora, A.; Sharma, A. Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. LWT-Food Sci. Technol. 2015, 62, 628–632. [Google Scholar] [CrossRef]
- Moraru, C.I.; Kokini, J.L. Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr. Rev. Food Sci. Food Saf. 2003, 2, 147–165. [Google Scholar] [CrossRef]
- Bhat, N.A.; Wani, I.A.; Hamdani, A.M.; Gani, A. Effect of extrusion on the physicochemical and antioxidant properties of value-added snacks from whole wheat (Triticum aestivum L.). Food Chem. 2018, 276, 22–32. [Google Scholar] [CrossRef]
- Şensoy, Í.; Rosen, R.T.; Ho, C.T.; Karwe, M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006, 99, 388–393. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Grootaert, C.; Van Camp, J.; Šarkinas, A.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Venskutonis, P.R. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.). Food Res. Int. 2020, 136, 109310. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Q.H. Advances in the development of functional foods from buckwheat. Crit. Rev. Food Sci. Nutr. 2001, 41, 451–464. [Google Scholar] [PubMed]
- Qin, P.; Wang, Q.; Shan, F.; Hou, Z.; Ren, G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. 2010, 45, 951–958. [Google Scholar]
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of breadmaking on antioxidant capacity of gluten-free breads based on rice and buckwheat flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar]
- Reißner, A.M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar]
Sample Code | Content |
---|---|
30W | 30% Buckwheat flour + 70% Corn grits + Water |
40W | 40% Buckwheat flour + 60% Corn grits + Water |
50W | 50% Buckwheat flour + 50% Corn grits + Water |
30M | 30% Buckwheat flour + 70% Corn grits + Milk powder |
40M | 40% Buckwheat flour + 60% Corn grits + Milk powder |
50M | 50% Buckwheat flour + 50% Corn grits + Milk powder |
30WR | 30% Buckwheat flour + 70% Corn grits + Water + Rowanberry |
40WR | 40% Buckwheat flour + 60% Corn grits + Water + Rowanberry |
50WR | 50% Buckwheat flour + 50% Corn grits + Water + Rowanberry |
30MR | 30% Buckwheat flour + 70% Corn grits + Milk powder + Rowanberry |
40MR | 40% Buckwheat flour + 60% Corn grits + Milk powder + Rowanberry |
50MR | 50% Buckwheat flour + 50% Corn grits + Milk powder + Rowanberry |
Components (g/100 g Sample) | |||||||
---|---|---|---|---|---|---|---|
Sample | Dry Matter | Total Protein | Crude Fibre | Crude Fat | Total Ash | Total Carbohydrates | |
Unexpanded | 50W * | 92.26 | 6.83 | 0.00 | 0.61 | 0.98 | 83.83 |
50M | 92.49 | 9.76 | 0.00 | 0.73 | 1.07 | 80.91 | |
50WR | 92.58 | 8.87 | 0.00 | 0.72 | 1.04 | 81.93 | |
50MR | 92.85 | 9.36 | 0.00 | 1.01 | 1.16 | 81.30 | |
Expanded (E) | 50WE | 94.34 | 9.21 | 0.00 | 0.77 | 1.03 | 83.31 |
50ME | 95.60 | 10.02 | 0.00 | 0.84 | 1.14 | 83.59 | |
50WRE | 95.64 | 9.15 | 0.00 | 0.91 | 1.05 | 84.52 | |
50MRE | 95.86 | 9.88 | 0.00 | 1.24 | 1.18 | 83.54 |
Sample | DPPH (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) |
---|---|---|---|
30W * | 1.57 ± 0.10 | 6.53 ± 0.12 | 0.76 ± 0.03 |
40W | 1.93 ± 0.14 | 6.95 ± 0.07 | 0.82 ± 0.01 |
50W | 2.43 ± 0.11 | 7.28 ± 0.27 | 1.14 ± 0.15 |
30M | 1.18 ± 0.03 | 6.70 ± 0.16 | 0.83 ± 0.04 |
40M | 2.24 ± 0.11 | 7.98 ± 0.09 | 0.84 ± 0.03 |
50M | 2.58 ± 0.05 | 8.61 ± 0.17 | 1.13 ± 0.03 |
30WR | 1.88 ± 0.05 | 7.23 ± 0.16 | 0.88 ± 0.06 |
40WR | 3.03 ± 0.20 | 9.06 ± 0.02 | 1.43 ± 0.03 |
50WR | 2.78 ± 0.11 | 9.45 ± 0.24 | 1.18 ± 0.02 |
30MR | 2.41 ± 0.17 | 7.60 ± 0.29 | 1.20 ± 0.03 |
40MR | 2.12 ± 0.09 | 9.20 ± 0.14 | 1.26 ± 0.00 |
50MR | 2.97 ± 0.06 | 9.60 ± 0.24 | 1.28 ± 0.02 |
Total Phenolic | Flavonoid | DPPH | FRAP | CUPRAC | |
Total phenolic | 1 | 0.941 ** | 0.833 ** | 0.895 ** | 0.822 ** |
Flavonoid | 0.941 ** | 1 | 0.859 ** | 0.857 ** | 0.889 ** |
DPPH | 0.833 ** | 0.859 ** | 1 | 0.810 ** | 0.792 ** |
FRAP | 0.895 ** | 0.857 ** | 0.810 ** | 1 | 0.777 ** |
CUPRAC | 0.822 ** | 0.889 ** | 0.792 ** | 0.777 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwański, R.; Aydin, M.; Tontul, I. Usefulness of Rowanberry for Improving the Nutritional Value of Buckwheat Flour Extrudates. Appl. Sci. 2025, 15, 3656. https://doi.org/10.3390/app15073656
Iwański R, Aydin M, Tontul I. Usefulness of Rowanberry for Improving the Nutritional Value of Buckwheat Flour Extrudates. Applied Sciences. 2025; 15(7):3656. https://doi.org/10.3390/app15073656
Chicago/Turabian StyleIwański, Robert, Merve Aydin, and Ismail Tontul. 2025. "Usefulness of Rowanberry for Improving the Nutritional Value of Buckwheat Flour Extrudates" Applied Sciences 15, no. 7: 3656. https://doi.org/10.3390/app15073656
APA StyleIwański, R., Aydin, M., & Tontul, I. (2025). Usefulness of Rowanberry for Improving the Nutritional Value of Buckwheat Flour Extrudates. Applied Sciences, 15(7), 3656. https://doi.org/10.3390/app15073656