Sustainable Valorization of Wine Lees: From Waste to Value-Added Products
Abstract
:1. Introduction
2. Wine Lees: Source and Physicochemical Composition
2.1. Wine Lees Characterization
- first and second fermentation lees formed during alcoholic and malolactic fermentations;
- aged wine lees formed during aging in wooden barrels;
- heavy lees (100 μm–2 μm, settling within 24 h) and light lees (<100 μm, 1–24 μm, in suspension at least 24 h after agitation).
2.2. Bioactive Compounds
3. Wine Lees Application in Food
3.1. Muffins
3.2. Biscuits
3.3. Cereal Bars
3.4. Yogurt
3.5. Ice Cream
3.6. Food Aditives
4. Applications of Wine Lees in Various Industries
4.1. Bioactive Peptides
4.2. Short-Chain Fatty Acids
4.3. Essential Amino Acids
4.4. Vitamin D2
4.5. Vitamin B12 Extraction
4.6. Nutritional Supplement
4.7. Food Packaging
4.8. Natural Colorant
4.9. Other Application of Wine Lees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Borges, M.S.; Biz, A.P.; Bertolo, A.P.; Bagatini, L.; Rigo, E.; Cavalheiro, D. Enriched Cereal Bars with Wine Fermentation Biomass. J. Sci. Food Agric. 2021, 101, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, P.E.; Patila, M.; Fotiadou, R.; Chatzikonstantinou, A.V.; Stamatis, H. Valorization of Wine Lees: Assessment of Antioxidant, Antimicrobial and Enzyme Inhibitory Activity of Wine Lees Extract and Incorporation in Chitosan Films. Waste Biomass Valorization 2024, 15, 5657–5672. [Google Scholar] [CrossRef]
- Gómez, M.E.; Igartuburu, J.M.; Pando, E.; Rodríguez Luis, F.; Mourente, G. Lipid Composition of Lees from Sherry Wine. J. Agric. Food Chem. 2004, 52, 4791–4794. [Google Scholar] [CrossRef]
- Chioru, A.; Chirsanova, A.; Dabija, A.; Avrămia, I.; Boiştean, A.; Chetrariu, A. Extraction Methods and Characterization of β-Glucans from Yeast Lees of Wines Produced Using Different Technologies. Foods 2024, 13, 3982. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Wang, B.; Chen, J.; Wang, X. Parameter Calibration of Discrete Element Model of Wine Lees Particles. Appl. Sci. 2024, 14, 5281. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kumar, R.; Azad, Z.R.A.A.; Adsule, P.G. Use of Fine Wine Lees for Value Addition in Ice Cream. J. Food Sci. Technol. 2015, 52, 592–596. [Google Scholar] [CrossRef]
- Sharma, A.K.; Aglawe, M.K. Addition of Processed Fine Wine Lees of Cabernet Sauvignon to Improve Nutraceutical Properties of Yoghurt. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 141–147. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J. Wine Lees as a Source of Antioxidant Compounds. Antioxidants 2019, 8, 45. [Google Scholar] [CrossRef]
- Cortés, A.; Moreira, M.T.; Feijoo, G. Integrated Evaluation of Wine Lees Valorization to Produce Value-Added Products. Waste Manag. 2019, 95, 70–77. [Google Scholar] [CrossRef]
- Balmaseda, A.; Miot-Sertier, C.; Lytra, G.; Poulain, B.; Reguant, C.; Lucas, P.; Nioi, C. Application of White Wine Lees for Promoting Lactic Acid Bacteria Growth and Malolactic Fermentation in Wine. Int. J. Food Microbiol. 2024, 413, 110583. [Google Scholar] [CrossRef]
- Rozmierska, J.; Stecka, K.M.; Kotyrba, D.; Piasecka-Jóźwiak, K. Preparation of Sedimented Wine Yeast Derived Products for Potential Application in Food and Feed Industry. Waste Biomass Valorization 2019, 10, 455–463. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Sifri, M.; Selvaraj, R. Yeasts and Yeast-Based Products in Poultry Nutrition. J. Appl. Poult. Res. 2023, 32, 100345. [Google Scholar] [CrossRef]
- Kiros, T.G.; Gaydos, T.; Corley, J.; Raspoet, R.; Berghaus, R.; Hofacre, C. Effect of Saccharomyces Cerevisiae Yeast Products in Reducing Direct Colonization and Horizontal Transmission of Salmonella Heidelberg in Broilers. J. Appl. Poult. Res. 2019, 28, 23–30. [Google Scholar] [CrossRef]
- Schlabitz, C.; Neutzling Lehn, D.; Volken de Souza, C.F. A Review of Saccharomyces Cerevisiae and the Applications of Its Byproducts in Dairy Cattle Feed: Trends in the Use of Residual Brewer’s Yeast. J. Clean. Prod. 2022, 332, 130059. [Google Scholar] [CrossRef]
- Hlasny, J.; Hlásný, J. Série A/Series A-Review A Cause of Bovine Spongiform Encephalopathy (BSE) Related to the Feeding of Meat and Bone Meal (MBM) to British Cows Can Be Ruled out Based on Known Circumstances; Natioal Institutes of Health: Bethesda, MD, USA, 2024. [Google Scholar]
- García, Á.A.; Ruiz Palomar, C.; Hermosilla, D.; Gascó, A.; Muñoz, R.; de Godos, I. Improving the Anaerobic Digestion Process of Wine Lees by the Addition of Microparticles. Water 2024, 16, 101. [Google Scholar] [CrossRef]
- Chetrariu, A.; Avrămia, I.; Dabija, D.; Caisîn, L.; Malenchi, D.; Agapii, V.; Pavlicenco, N.; Oroian, M.-A.; Dabija, A. Wine Lees—Characteristics and Potential of Valorisation. Lucr. Științifice Ser. Agron. 2024, 67, 165–170. [Google Scholar]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy 2020, 10, 996. [Google Scholar] [CrossRef]
- Portilla Rivera, O.M.; Saavedra Leos, M.D.; Solis, V.E.; Domínguez, J.M. Recent Trends on the Valorization of Winemaking Industry Wastes. Curr. Opin. Green Sustain. Chem. 2021, 27, 100415. [Google Scholar] [CrossRef]
- Athanasiou, P.E.; Gkountela, C.I.; Patila, M.; Fotiadou, R.; Chatzikonstantinou, A.V.; Vouyiouka, S.N.; Stamatis, H. Laccase-Mediated Oxidation of Phenolic Compounds from Wine Lees Extract towards the Synthesis of Polymers with Potential Applications in Food Packaging. Biomolecules 2024, 14, 323. [Google Scholar] [CrossRef]
- Poulain, B.; Hsein, H.; Tchoreloff, P.; Nioi, C. Effects of Different Drying Methods on the Antioxidant Properties of White Wine Lees. J. Bioprocess. Biotech. 2024, 14, 1–14. [Google Scholar]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef] [PubMed]
- De Iseppi, A.; Marangon, M.; Vincenzi, S.; Lomolino, G.; Curioni, A.; Divol, B. A Novel Approach for the Valorization of Wine Lees as a Source of Compounds Able to Modify Wine Properties. LWT 2021, 136, 110274. [Google Scholar] [CrossRef]
- Moreira, L.d.P.D.; Corich, V.; Jørgensen, E.G.; Devold, T.G.; Nadai, C.; Giacomini, A.; Porcellato, D. Potential Bioactive Peptides Obtained after in Vitro Gastrointestinal Digestion of Wine Lees from Sequential Fermentations. Food Res. Int. 2023, 176, 113833. [Google Scholar] [CrossRef]
- Felix, M.; Martínez, I.; Sayago, A.; Recamales, M.Á.F. Wine Lees: From Waste to O/W Emulsion Stabilizer. Innov. Food Sci. Emerg. Technol. 2021, 74, 102810. [Google Scholar] [CrossRef]
- Dimou, C.; Vlysidis, A.; Kopsahelis, N.; Papanikolaou, S.; Koutinas, A.A.; Kookos, I.K. Techno-Economic Evaluation of Wine Lees Refining for the Production of Value-Added Products. Biochem. Eng. J. 2016, 116, 157–165. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Palacios, V.; Barbero, G.F. Ultrasound-Assisted Extraction of Anthocyanins and Total Phenolic Compounds in Vitis vinifera L. “Tempranillo” Winemaking Lees. Vitis J. Grapevine Res. 2019, 58, 39–47. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Conidi, C.; Cassano, A. A Membrane-Assisted Green Strategy for Purifying Bioactive Compounds from Extracted White Wine Lees. Sep. Purif. Technol. 2024, 336, 126183. [Google Scholar] [CrossRef]
- Reig-Valor, M.J.; Rozas-Martínez, J.; López-Borrell, A.; Lora-García, J.; López-Pérez, M.F. Experimental Study of a Sequential Membrane Process of Ultrafiltration and Nanofiltration for Efficient Polyphenol Extraction from Wine Lees. Membranes 2024, 14, 82. [Google Scholar] [CrossRef]
- de Andrade Bulos, R.B.; da Gama Paz, F.; Machado, C.G.; Tavares, P.P.L.G.; de Souza, C.O.; Umsza-Guez, M.A. Scientific and Technological Research on the Use of Wine Lees. Food Prod. Process. Nutr. 2023, 5, 25. [Google Scholar] [CrossRef]
- De Iseppi, A.; Marangon, M.; Lomolino, G.; Crapisi, A.; Curioni, A. Red and White Wine Lees as a Novel Source of Emulsifiers and Foaming Agents. LWT 2021, 152, 112273. [Google Scholar] [CrossRef]
- Pérez-Serradilla, J.A.; de Castro, M.D.L. Role of Lees in Wine Production: A Review. Food Chem. 2008, 111, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Gümüş, T.; Altan Kamer, D.D.; Kaynarca, G.B. Investigating the Potential of Wine Lees as a Natural Colorant and Functional Ingredient in Jelly Production. J. Sci. Food Agric. 2024, 104, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Winstel, D.; Marchal, A.; Nioi, C. Optimization of Extraction and Development of an LC-HRMS Method to Quantify Glutathione and Glutathione Disulfide in White Wine Lees and Yeast Derivatives. Food Chem. 2024, 439, 138121. [Google Scholar] [CrossRef]
- Ye, Z.; Qin, Y.; Harrison, R.; Hider, R.; Bekhit, A.E.D.A. Characterization of Bioactive Compounds in Lees from New Zealand Wines with Different Vinification Backgrounds. Antioxidants 2022, 11, 2335. [Google Scholar] [CrossRef]
- Bianchi, F.; Cervini, M.; Giuberti, G.; Simonato, B. The Potential of Wine Lees as a Fat Substitute for Muffin Formulations. Foods 2023, 12, 2584. [Google Scholar] [CrossRef]
- Kaynarca, G.B. Characterization and Molecular Docking of Sustainable Wine Lees and Gelatin-Based Emulsions: Innovative Fat Substitution. J. Sci. Food Agric. 2024, 104, 7429–7440. [Google Scholar] [CrossRef]
- Alarcón, M.; López-Viñas, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of Wine Lees as Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored during Chilled Storage. Antioxidants 2020, 9, 687. [Google Scholar] [CrossRef]
- Delteil, D. Working with Lees: Key Elements to Wine Maturing in Grapegrower & Winemaker, 30th Technical Issue. Aust. N. Z. Grapegrow. Winemak. 2002, 30, 104–108. [Google Scholar]
- Siller-Sánchez, A.; Luna-Sánchez, K.A.; Bautista-Hernández, I.; Chávez-González, M.L. Use of Grape Pomace from the Wine Industry for the Extraction of Valuable Compounds with Potential Use in the Food Industry. Curr. Food Sci. Technol. Rep. 2024, 2, 7–16. [Google Scholar] [CrossRef]
- Caponio, G.R.; Miolla, R.; Vacca, M.; Difonzo, G.; De Angelis, M. Wine Lees as Functional Ingredient to Produce Biscuits Fortified with Polyphenols and Dietary Fibre. LWT 2024, 198, 115943. [Google Scholar] [CrossRef]
- Skračić, Ž.; Ljubenkov, I.; Mimica, N.; Generalić Mekinić, I. Valorizacija Nusproizvoda Proizvodnje Vina. Kem. Ind. 2023, 72, 247–255. [Google Scholar] [CrossRef]
- Jurcevic, I.L.; Dora, M.; Guberovic, I.; Petras, M.; Brncic, S.R.; Dikic, D. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection against Oxidative Stress and Hyperlipidaemia. Food Technol. Biotechnol. 2017, 55, 109–116. [Google Scholar] [CrossRef]
- Chiselița, N.; Chiselița, O.; Efremova, N.; Beșliu, A. Valorization of the Red Wine Yeast Waste. Pol. J. Environ. Stud. 2024, 33, 1623–1630. [Google Scholar] [CrossRef]
- Melo, F.D.O.; Ferreira, V.C.; Barbero, G.F.; Correa, C.; Ferreira, D.S.E.; Umsza-Guez, M.A. Extraction of Bioactive Compounds from Wine Lees: A Systematic and Bibliometric Review. Molecules 2024, 29, 2060. [Google Scholar]
- Bosiljkov, T.; Dujmić, F.; Cvjetko Bubalo, M.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Radojčić Redovniković, I.; Jokić, S. Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction: Green Approaches for Extraction of Wine Lees Anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Sentellas, S. Recovery of Phenolic Compounds from Wine Lees Using Green Processing: Identifying Target Molecules and Assessing Membrane Ultrafiltration Performance. Sci. Total Environ. 2023, 857, 159623. [Google Scholar] [CrossRef]
- Ye, Z.; Shi, J.; Harrison, R.; Hider, R.; Bekhit, A.E.D.A. Studies on the Effect of Oxidation on Bioactivity of Phenolics and Wine Lees Extracts. Antioxidants 2023, 12, 931. [Google Scholar] [CrossRef]
- Zhijing, Y.; Shavandi, A.; Harrison, R.; Bekhit, A.E.D.A. Characterization of Phenolic Compounds in Wine Lees. Antioxidants 2018, 7, 48. [Google Scholar] [CrossRef]
- Moldes, A.B.; Vázquez, M.; Domínguez, J.M.; Díaz-Fierros, F.; Barral, M.T. Negative Effect of Discharging Vinification Lees on Soils. Bioresour. Technol. 2008, 99, 5991–5996. [Google Scholar] [CrossRef]
- Miolla, R.; Ottomano Palmisano, G.; Roma, R.; Caponio, F.; Difonzo, G.; De Boni, A. Functional Foods Acceptability: A Consumers’ Survey on Bread Enriched with Oenological By-Products. Foods 2023, 12, 2014. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.; Pereira, J.; Pinheiro, H.; Pacheco, M. Formulation and Consumer Acceptance of Cereal Bars with Functional Properties by the Incorporation of Peptides and β-Glucans from Spent Brewer’s Yeast; University Católica Portuguesa: Porto, Portugal, 2014. [Google Scholar]
- Khalil, J.K.; Sawaya, W.N.; Khatchadourian, H.A.; Safi, W.J. Fortification of Date Bars with Yeast Proteins and Dry Skim Milk. Can. Inst. Food Sci. Technol. J. 1984, 17, 131–136. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Shyu, Y.S.; Hsu, C.K. Grape Wine Lees Improves the Rheological and Adds Antioxidant Properties to Ice Cream. LWT 2009, 42, 312–318. [Google Scholar] [CrossRef]
- Prieto-Santiago, V.; Aguiló-Aguayo, I.; Bravo, F.I.; Mulero, M.; Abadias, M. Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice. Foods 2024, 13, 1095. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Summo, C.; Caponio, F. Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Rekha, K.; Venkidasamy, B.; Samynathan, R.; Nagella, P.; Rebezov, M.; Khayrullin, M.; Ponomarev, E.; Bouyahya, A.; Sarkar, T.; Shariati, M.A. Short-Chain Fatty Acid: An Updated Review on Signaling, Metabolism, and Therapeutic Effects. Crit. Rev. Food Sci. Nutr. 2024, 64, 2461–2489. [Google Scholar]
- Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, E.; Grininger, M. Engineering Fungal de Novo Fatty Acid Synthesis for Short Chain Fatty Acid Production. Nat. Commun. 2017, 8, 14650. [Google Scholar] [CrossRef]
- Donnelly, D.; Blanchard, L.; Dabros, M.; O’Hara, S.; Brabazon, D.; Foley, G.; Freeland, B. Fed-Batch System for Propagation of Brewer’s Yeast. J. Am. Soc. Brew. Chem. 2022, 80, 190–200. [Google Scholar]
- Francois, J.M.; Formosa, C.; Schiavone, M.; Pillet, F.; Martin-Yken, H.; Dague, E. Use of Atomic Force Microscopy (AFM) to Explore Cell Wall Properties and Response to Stress in the Yeast Saccharomyces Cerevisiae. Curr. Genet. 2013, 59, 187–196. [Google Scholar] [CrossRef]
- Rakebrandt, M. Fermentation Performance of Brewers ‘yeast Compared to Live Yeast. Gas 2024, 4. [Google Scholar]
- Ma, C.; Xia, S.; Song, J.; Hou, Y.; Hao, T.; Shen, S.; Li, K.; Xue, C.; Jiang, X. Yeast Protein as a Novel Protein Source: Processing, Functional Properties, and Potential Applications in Foods. Innov. Food Sci. Emerg. Technol. 2024, 93, 103606. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Sirisena, S.; Chan, S.; Roberts, N.; Dal Maso, S.; Gras, S.L.; Martin, G.J.O. Influence of Yeast Growth Conditions and Proteolytic Enzymes on the Amino Acid Profiles of Yeast Hydrolysates: Implications for Taste and Nutrition. Food Chem. 2024, 437, 137906. [Google Scholar] [CrossRef] [PubMed]
- Podpora, B.; Świderski, F.; Sadowska, A.; Rakowska, R.; Wasiak-Zys, G. Spent Brewer’s Yeast Extracts as a New Component of Functional Food. Czech J. Food Sci. 2016, 34, 554–563. [Google Scholar] [CrossRef]
- Who, J. Protein and Amino Acid Requirements in Human Nutrition. World Health Organ. Tech. Rep. Ser. 2007, 935, 1–265. [Google Scholar]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol. 2023, 33, 151–166. [Google Scholar] [CrossRef]
- Kushnirov, V.V. Rapid and Reliable Protein Extraction from Yeast. Yeast 2000, 16, 857–860. [Google Scholar] [CrossRef]
- Ge, L.; Wang, X.-T.; Tan, S.N.; Tsai, H.H.; Yong, J.W.H.; Hua, L. A Novel Method of Protein Extraction from Yeast Using Ionic Liquid Solution. Talanta 2010, 81, 1861–1864. [Google Scholar] [CrossRef]
- Ganeva, V.; Angelova, B.; Galutzov, B.; Goltsev, V.; Zhiponova, M. Extraction of Proteins and Other Intracellular Bioactive Compounds from Baker’s Yeasts by Pulsed Electric Field Treatment. Front. Bioeng. Biotechnol. 2020, 8, 552335. [Google Scholar] [CrossRef]
- Lee, S.; Kim, E.; Jo, M.; Choi, Y.J. Characterization of Yeast Protein Isolates Extracted via High-pressure Homogenization and PH Shift: A Promising Protein Source Enriched with Essential Amino Acids and Branched-chain Amino Acids. J. Food Sci. 2024, 89, 900–912. [Google Scholar] [CrossRef]
- Kessi-Pérez, E.I.; González, A.; Palacios, J.L.; Martínez, C. Yeast as a Biological Platform for Vitamin D Production: A Promising Alternative to Help Reduce Vitamin D Deficiency in Humans. Yeast 2022, 39, 482–492. [Google Scholar] [CrossRef]
- Dereje, S.; Muradov, I.; Nazzal, S.; Nguyen, T. Cholecalciferol (D3) versus Ergocalciferol (D2) in Older Adults. Consult. Pharm. 2017, 32, 337–339. [Google Scholar] [PubMed]
- Benedik, E. Sources of Vitamin D for Humans. Int. J. Vitam. Nutr. Res. 2021, 92, 118–125. [Google Scholar] [PubMed]
- Avrămia, I.; Oroian, M.-A.; Oiţă, R.-C. A Review of Current Trends of Vitamin Identification and Quantification by Chromatography from Food Samples. J. Food Compos. Anal. 2024, 131, 106244. [Google Scholar] [CrossRef]
- Thomas, B.H.; MacLeod, F.L. Increasing the Vitamin D Potency of Cow’s Milk by the Daily Feeding of Irradiated Yeast or Irradiated Ergosterol. Science 1931, 73, 618–620. [Google Scholar]
- Bethke, R.M.; Burroughs, W.; Wilder, O.H.M.; Edgington, B.H.; Robison, W.L. The Comparative Efficacy of Vitamin D from Irradiated Yeast and Cod-Liver Oil for Growing Pigs, with Observations on Their Vitamin D Requirements; The Online Books Page: Philadelphia, PA, USA, 1946. [Google Scholar]
- Itkonen, S.T.; Pajula, E.T.; Dowling, K.G.; Hull, G.L.J.; Cashman, K.D.; Lamberg-Allardt, C.J.E. Poor Bioavailability of Vitamin D2 from Ultraviolet-Irradiated D2-Rich Yeast in Rats. Nutr. Res. 2018, 59, 36–43. [Google Scholar] [CrossRef]
- Jach, M.E.; Serefko, A. Nutritional Yeast Biomass: Characterization and Application. In Handbook of Food Bioengineering; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Chapter 9; pp. 237–270. ISBN 978-0-12-811440-7. [Google Scholar]
- Parlog, R.M.; Nicula, A.; Nicula, T.A.; Socaciu, C. The Optimization of Extraction and HPLC Analysis of Vitamins B from Yeast Products. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2008, 65, 323–328. [Google Scholar]
- Zhou, Y.; He, A.; Xu, B. Natural Resources, Quantification, Microbial Bioconversion, and Bioactivities of Vitamin B12 for Vegetarian Diet. Food Chem. 2024, 463, 140849. [Google Scholar] [CrossRef]
- Lehner, S.; Boles, E. Development of Vitamin B12 Dependency in Saccharomyces Cerevisiae. FEMS Yeast Res. 2023, 23, foad020. [Google Scholar] [CrossRef]
- Niklewicz, A.; Smith, A.D.; Smith, A.; Holzer, A.; Klein, A.; McCaddon, A.; Molloy, A.M.; Wolffenbuttel, B.H.R.; Nexo, E.; McNulty, H. The Importance of Vitamin B12 for Individuals Choosing Plant-Based Diets. Eur. J. Nutr. 2023, 62, 1551–1559. [Google Scholar]
- Marson, G.V.; de Castro, R.J.S.; Belleville, M.P.; Hubinger, M.D. Spent Brewer’s Yeast as a Source of High Added Value Molecules: A Systematic Review on Its Characteristics, Processing and Potential Applications. World J. Microbiol. Biotechnol. 2020, 36, 95. [Google Scholar] [CrossRef]
- Halczuk, K.; Kaźmierczak-Barańska, J.; Karwowski, B.T.; Karmańska, A.; Cieślak, M. Vitamin B12—Multifaceted In Vivo Functions and In Vitro Applications. Nutrients 2023, 15, 2734. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; García, J.F.; Sun, D.W. Advances in Wine Aging Technologies for Enhancing Wine Quality and Accelerating Wine Aging Process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Fia, G.; Zanoni, B.; Gori, C. A New Technique for Exploitation of Wine Lees. Agric. Agric. Sci. Procedia 2016, 8, 748–754. [Google Scholar] [CrossRef]
- Onetto, C.; McCarthy, J.; Solomon, M.; Borneman, A.R.; Schmidt, S.A. Enhancing Fermentation Performance through the Reutilisation of Wine Yeast Lees. Oeno One 2024, 58, 7749. [Google Scholar] [CrossRef]
- Kulhankova, M.; Prusova, B.; Baron, M. Study of Oxygen in Wines with Different Proportions of Yeast Lees. Ital. J. Food Sci. 2024, 36, 44–52. [Google Scholar] [CrossRef]
- Maxe, C.; Romanet, R.; Parisot, M.; Gougeon, R.D.; Nikolantonaki, M. The Oxidative Stability of Champagne Base Wines Aged on Lees in Barrels: A 2-Year Study. Antioxidants 2024, 13, 364. [Google Scholar] [CrossRef]
- Nanni, A.; Messori, M. Effect of the Wine Lees Wastes as Cost-Advantage and Natural Fillers on the Thermal and Mechanical Properties of Poly(3-Hydroxybutyrate-Co-Hydroxyhexanoate) (PHBH) and Poly(3-Hydroxybutyrate-Co-Hydroxyvalerate) (PHBV). J. Appl. Polym. Sci. 2020, 137, 48869. [Google Scholar] [CrossRef]
- De Souza, A.L.A.S.; Gomes, A.K.C.; Morgado, C.S.; Junior, E.R.; Simas, N.K.; Dos Santos, E.P.; Azevedo, A.D.; Gomes, A.C.C.; de Souza Bustamante Monteiro, M.S. Nanoemulsion with Wine Lees: A Green Approach. An. Acad. Bras. Cienc. 2024, 96, e20230373. [Google Scholar] [CrossRef]
- Ling-Niao, K.; Song-Tao, G.; Yang, Y.; Feng, F. Pyrolysis Mechanism and Pyrolysis Kinetics of Yellow Wine Lees. RSC Adv. 2024, 14, 16951–16959. [Google Scholar] [CrossRef]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C. Sustainable Options for the Utilization of Solid Residues from Wine Production. Waste Manag. 2017, 60, 173–183. [Google Scholar] [CrossRef]
Component | Value |
---|---|
Moisture (% DM) | 87.0 ± 1 [37]/4.21 [18] |
Carbohydrates (% DM) | 4.92 ± 0.11 [37]/4.13 ± 0.63 [31]/62.05 [38] |
Proteins (% DM) | 21.2 ± 3.4 [37]/15.11 ± 0.57 [31]/9.83 [38]/0.885 ± 0.025 [18] |
Lipids (% DM) | 0.07 [37]/5.4 ± 0.46 [31]/1.3 [38]/0.132 ± 0.047 [18] |
Dietary fibers (% DM) | 20.1 ± 3.0 [37]/21.5 ± 0.35 [31] |
Ash (% DM) | 10.27 ± 0.5 [37]/10.55 ± 0.58 [31]/22.6 [38]/33.28 ± 0.171 [18] |
Tartaric acid | 24.6 ± 0.12 [31] |
Hydroxycinnamic acid derivatives (mg HCA/100 g DM) | 1.53 ± 0.11 [39]/2.59 ± 0.12 [39] |
Flavonols (mg quercetin/100 g DM) | 1.45 ± 0.12 [39]/2.54 ± 0.12 [39] |
Catechins (mg catechin/100 g DM) | 15.09 ± 1.36 [39]/30.24 ± 1.71 [39] |
Minerals | Calcium, Potassium, Magnesium, Phosphorus, Zinc, Iron [38] |
Amino Acid | mg/g of Protein [66] | mg/kg/Day [67] | % per Gram mg/g * |
---|---|---|---|
Histidine | nd | 10 | - |
Isoleucine | 44 | 20 | 0.293 |
Leucine | 62 | 39 | 0.212 |
Lysine | 66 | 30 | 0.293 |
Methionine + Cysteine | 21 | 15 | 0.187 |
Phenylalanine + Tyrosine | 66 | 25 | 0.352 |
Threonine | 41 | 15 | 0.364 |
Tryptophan | 11 | 4 | 0.367 |
Valine | 54 | 26 | 0.277 |
Total | 365 | 184 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetrariu, A.; Dabija, A.; Caisin, L.; Agapii, V.; Avrămia, I. Sustainable Valorization of Wine Lees: From Waste to Value-Added Products. Appl. Sci. 2025, 15, 3648. https://doi.org/10.3390/app15073648
Chetrariu A, Dabija A, Caisin L, Agapii V, Avrămia I. Sustainable Valorization of Wine Lees: From Waste to Value-Added Products. Applied Sciences. 2025; 15(7):3648. https://doi.org/10.3390/app15073648
Chicago/Turabian StyleChetrariu, Ancuța, Adriana Dabija, Larisa Caisin, Vitalii Agapii, and Ionuț Avrămia. 2025. "Sustainable Valorization of Wine Lees: From Waste to Value-Added Products" Applied Sciences 15, no. 7: 3648. https://doi.org/10.3390/app15073648
APA StyleChetrariu, A., Dabija, A., Caisin, L., Agapii, V., & Avrămia, I. (2025). Sustainable Valorization of Wine Lees: From Waste to Value-Added Products. Applied Sciences, 15(7), 3648. https://doi.org/10.3390/app15073648