Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Side-Fire Fiber Design
2.2. Side-Fire Fiber Fabrication
2.3. Fiber Emission Characterization
2.4. Coupling PA Laser into Fiber
2.5. Phantom and In Vivo PA Imaging Using the Side-Fire Fiber
3. Results
3.1. Side-Fire Fiber Fabrication
3.2. Side-Fire Fiber Characterization
3.3. Beam Profile Before and After PA Laser Transmission
3.4. Phantom and In Vivo PA Imaging Using the Side-Fire Fiber
4. Discussion and Conclusions
4.1. Observations and Insights
4.2. Challenges and Limitations
4.3. Optimization and Future Directions
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Needles, A.; Heinmiller, A.; Sun, J.; Theodoropoulos, C.; Bates, D.; Hirson, D.; Yin, M.; Foster, F. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, Y.; Wang, L. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. Photoacoustics 2020, 17, 100156. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yang, C.; Lv, Y.; Zhang, B.; Kan, J.; Li, H.; Tao, J.; Yang, C.; Li, X.; Liu, Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. J. Biophotonics 2024, 17, e202300457. [Google Scholar] [CrossRef]
- Emelianov, S.Y.; Li, P.C.; O’Donnell, M. Photoacoustics for molecular imaging and therapy. Phys. Today 2009, 62, 34–39. [Google Scholar]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef]
- Luke, G.P.; Yeager, D.; Emelianov, S.Y. Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents. Ann. Biomed. Eng. 2012, 40, 422–437. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef]
- Singh, M.K.A.; Parameshwarappa, V.; Hendriksen, E.; Steenbergen, W.; Manohar, S. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle. J. Biomed. Opt. 2016, 21, 120501. [Google Scholar] [CrossRef]
- Xia, W.; Nikitichev, D.I.; Mari, J.M.; West, S.J.; Pratt, R.; David, A.L.; Ourselin, S.; Beard, P.C.; Desjardins, A.E. Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures. J. Biomed. Opt. 2015, 20, 86005. [Google Scholar] [CrossRef]
- Benavides-Lara, J.; Manwar, R.; McGuire, L.S.; Islam, M.T.; Shoo, A.; Charbel, F.T.; Menchaca, M.G.; Siegel, A.P.; Pillers, D.A.M.; Gelovani, J.G.; et al. Transfontanelle photoacoustic imaging of intraventricular brain hemorrhages in live sheep. Photoacoustics 2023, 33, 100549. [Google Scholar] [CrossRef]
- Daoudi, K.; van den Berg, P.J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W. Handheld probe for portable high frame photoacoustic/ultrasound imaging system. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 3–5 February 2013; Oraevsky, A.A., Wang, L.V., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2013; Volume 8581, p. 85812I. [Google Scholar] [CrossRef]
- Jansen, K.; Wu, M.; van der Steen, A.F.; van Soest, G. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics 2013, 2, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; FW van der Steen, A.; Regar, E.; van Soest, G. Emerging Technology Update Intravascular Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. Interv. Cardiol. 2016, 11, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.K.; Wang, J.; Kare, A.; Adkar, S.S.; Salmi, D.; Bell, C.F.; Alsaigh, T.; Wagh, D.; Coller, J.; Mayer, A.; et al. Combined near infrared photoacoustic imaging and ultrasound detects vulnerable atherosclerotic plaque. Biomaterials 2023, 302, 122314. [Google Scholar] [CrossRef]
- He, H.; Englert, L.; Ntziachristos, V. Optoacoustic Endoscopy of the Gastrointestinal Tract. ACS Photonics 2023, 10, 559–570. [Google Scholar] [CrossRef]
- Zhang, K.; Qiu, J.; Yang, F.; Wang, J.; Zhao, X.; Wei, Z.; Ge, N.; Chen, Y.; Sun, S. Photoacoustic endoscopy and EUS: Shaking the future of multimodal endoscopy. Endosc. Ultrasound 2022, 11, 1–3. [Google Scholar] [CrossRef]
- Bungart, B.; Cao, Y.; Yang-Tran, T.; Gorsky, S.; Lan, L.U.; Roblyer, D.; Koch, M.O.; Cheng, L.; Masterson, T.; Cheng, J.X. Cylindrical illumination with angular coupling for whole-prostate photoacoustic tomography. Biomed. Opt. Express 2019, 10, 1405–1419. [Google Scholar] [CrossRef]
- Lin, L.; Xia, J.; Wong, T.T.W.; Li, L.; Wang, L.V. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J. Biomed. Opt. 2015, 20, 016019. [Google Scholar] [CrossRef]
- Lediju Bell, M.A.; Ostrowski, A.K.; Li, K.; Kazanzides, P.; Boctor, E.M. Localization of Transcranial Targets for Photoacoustic-Guided Endonasal Surgeries. Photoacoustics 2015, 3, 78–87. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Lin, L.; Hu, P.; Shi, J.; He, Y.; Zhu, L.; Zhou, Y.; Wang, L.V. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J. Biophotonics 2018, 11, e201700024. [Google Scholar] [CrossRef]
- Graham, M.T.; Sharma, A.; Padovano, W.M.; Suresh, V.; Chiu, A.; Thon, S.M.; Tuffaha, S.; Bell, M.A.L. Optical absorption spectra and corresponding in vivo photoacoustic visualization of exposed peripheral nerves. J. Biomed. Opt. 2023, 28, 097001. [Google Scholar] [CrossRef]
- Xia, W.; West, S.J.; Nikitichev, D.I.; Ourselin, S.; Beard, P.C.; Desjardins, A.E. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2016, San Francisco, CA, USA, 14–17 February 2016; p. 97080C. [Google Scholar] [CrossRef]
- Mari, J.M.; Xia, W.; West, S.J.; Desjardins, A.E. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: An ex vivo pilot study. JBO 2015, 20, 110503. [Google Scholar] [CrossRef] [PubMed]
- Maneas, E.; Xia, W.; Singh, M.K.A.; Sato, N.; Agano, T.; Ourselin, S.; West, S.J.; David, A.L.; Vercauteren, T.; Desjardins, A.E. Human placental vasculature imaging using an LED-based photoacoustic/ultrasound imaging system. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 28 January–1 February 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10494, pp. 69–73. [Google Scholar] [CrossRef]
- Shubert, J.; Bell, M.A.L. Photoacoustic imaging of a human vertebra: Implications for guiding spinal fusion surgeries. Phys. Med. Biol. 2018, 63, 144001. [Google Scholar] [CrossRef] [PubMed]
- Wiacek, A.; Wang, K.C.; Wu, H.; Bell, M.A.L. Dual-wavelength photoacoustic imaging for guidance of hysterectomy procedures. In Proceedings of the Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVIII, San Francisco, CA, USA, 2–4 February 2020; Volume 11229, pp. 73–79. [Google Scholar] [CrossRef]
- Li, M.; Lan, B.; Liu, W.; Xia, J.; Yao, J. Internal-illumination photoacoustic computed tomography. J. Biomed. Opt. 2018, 23, 030506. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Chérin, E.; Roa, C.F.; Soenjaya, Y.; Wodlinger, B.; Zheng, G.; Wilson, B.C.; Foster, F.S.; Demore, C.E. Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-clinical Demonstration. Ultrasound Med. Biol. 2024, 50, 457–466. [Google Scholar] [CrossRef]
- Lediju Bell, M.A.; Guo, X.; Song, D.Y.; Boctor, E.M. Transurethral light delivery for prostate photoacoustic imaging. J. Biomed. Opt. 2015, 20, 36002. [Google Scholar] [CrossRef]
- Lediju Bell, M.A.; Kuo, N.P.; Song, D.Y.; Kang, J.U.; Boctor, E.M. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging. J. Biomed. Opt. 2014, 19, 126011. [Google Scholar] [CrossRef]
- Ai, M.; Youn, J.i.; Salcudean, S.; Rohling, R.; Abolmaesumi, P.; Tang, S. Photoacoustic tomography for imaging the prostate: A transurethral illumination probe design and application. Biomed. Opt. Express 2019, 10, 2589. [Google Scholar] [CrossRef]
- Vesselov, L.; Whittington, W.; Lilge, L. Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers. Appl. Opt. 2005, 44, 2754–2758. [Google Scholar] [CrossRef]
- Kostanski, L.; Pope, M.; Hrymak, A.; Gallant, M.; Whittington, W.; Vesselov, L. Development of Novel Tunable Light Scattering Coating Materials for Fiber Optic Diffusers in Photodynamic Cancer Therapy. J. Appl. Polym. Sci. 2009, 112, 1516–1523. [Google Scholar] [CrossRef]
- Appeldorn, R.H.; Hulme-Lowe, A.G.; Lea, M.C. Illumination Devices and Optical Fibres for Use Therein. US Patent US5432876A, 11 July 1995. [Google Scholar]
- Mori, K. Apparatus for Uniform Illumination Employing Light Diffuser. US Patent US4460940A, 17 July 1984. [Google Scholar]
- Nguyen, H.; Parvez Arnob, M.M.; Becker, A.T.; Wolfe, J.C.; Hogan, M.K.; Horner, P.J.; Shih, W.C. Fabrication of multipoint side-firing optical fiber by laser micro-ablation. Opt. Lett. 2017, 42, 1808. [Google Scholar] [CrossRef]
- Volkov, V.V.; Loshchenov, V.B.; Konov, V.I.; Kononenko, V.V. Fibreoptic diffuse-light irradiators of biological tissues. Quantum Electron. 2010, 40, 746–750. [Google Scholar] [CrossRef]
- Ai, M.; Tang, S.; Salcudean, T.; Rohling, R.; Abolmaesumi, P. Transurethral illumination probe design for deep photoacoustic imaging of prostate. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 28 January–1 February 2018; p. 11. [Google Scholar] [CrossRef]
- Kosoglu, M.A.; Hood, R.L.; Rossmeisl, J.H.; Grant, D.C.; Xu, Y.; Robertson, J.L.; Rylander, M.N.; Rylander, C.G. Fiberoptic microneedles: Novel optical diffusers for interstitial delivery of therapeutic light. Lasers Surg. Med. 2011, 43, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Ströbl, S.; Wäger, F.; Domke, M.; Rühm, A.; Sroka, R. Homogeneously Emitting, Mechanically Stable, and Efficient fs-Laser-Machined Fiber Diffusers for Medical Applications. Lasers Surg. Med. 2022, 54, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hong, R.; Hou, H.; Fan, Z.; Shao, J. Optical properties and structures of silver thin films deposited by magnetron sputtering with different thicknesses. Chin. Opt. Lett. 2006, 4, 366–369. [Google Scholar]
- Liu, P.; Shi, Z.; Teng, D.; Liu, F.; Cao, Y.; Lin, Y.; Yang, Z.; Yang, A.; Zheng, Y.; Chen, L. Optical Characteristics of Silver Thin Films from Island to Percolation in the Ultra-Wide Infrared Spectral Range. Coatings 2023, 13, 1910. [Google Scholar] [CrossRef]
- Spirou, G.M.; Oraevsky, A.A.; Vitkin, I.A.; Whelan, W.M. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics. Phys. Med. Biol. 2005, 50, N141–N153. [Google Scholar] [CrossRef]
- Karpiouk, A.; Aglyamov, S.; Mallidi, S.; Scott, W.; Rubin, J.; Emelianov, S. Combined ultrasonic and photoacoustic imaging to age deep vein thrombosis: Preliminary studies. In Proceedings of the IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005; Volume 1, pp. 399–402. [Google Scholar] [CrossRef]
- Singh, N.; Roa, C.F.; Lilge, L.; Demore, C.E. Development of a Side-Fire Optical Fiber Diffuser for High-Energy Light Transport for Intraluminal Photoacoustic Imaging. In Proceedings of the 2024 Photonics North (PN), Vancouver, BC, Canada, 28–30 May 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic tomography: Fundamentals, advances and prospects. Contrast Media Mol. Imaging 2011, 6, 332–345. [Google Scholar] [CrossRef]
- Roa, C.F.; Chérin, E.; Singh, N.; Yin, J.; Boyes, A.; Foster, F.S.; Demore, C.E.M. Development of a Small-Footprint 50 MHz Linear Array: Fabrication and Micro-Ultrasound Imaging Demonstration. Sensors 2024, 24, 1847. [Google Scholar] [CrossRef]
- Haglund, R.F. 2. Mechanisms of Laser-Induced Desorption and Ablation. In Experimental Methods in the Physical Sciences; Miller, J.C., Haglund, R.F., Eds.; Laser Ablation and Desorption; Academic Press: Cambridge, MA, USA, 1997; Volume 30, pp. 15–138. [Google Scholar] [CrossRef]
- Marjoribanks, R.S.; Tang, J.; Dzelzainis, T.; Prickaerts, M.; Lilge, L.; Akens, M.; Veevers, C.; Gharabaghi, N.; King, A.; Hitzler, A.; et al. Plasma persistence, accumulated absorption, and scattering: What physics lets us control the heat left behind in ultrafast-pulse burst-mode laser surgery. In Proceedings of the Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXIV, San Francisco, CA, USA, 28–30 January 2024; Herman, P.R., Osellame, R., Ben-Yakar, A., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2024; Volume 12875, p. 1287504. [Google Scholar] [CrossRef]
- Marjoribanks, R.S.; Dille, C.; Schoenly, J.E.; McKinney, L.; Mordovanakis, A.; Kaifosh, P.; Forrester, P.; Qian, Z.; Covarrubias, A.; Feng, Y.; et al. Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts. Photonics Lasers Med. 2012, 1, 155–169. [Google Scholar] [CrossRef]
- Rethfeld, B.; Sokolowski-Tinten, K.; von der Linde, D.; Anisimov, S. Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A 2004, 79, 767–769. [Google Scholar] [CrossRef]
Prototype# | Est. Ablation Depth (m) | 2D Beam Size (mm) | Azimuth Angle (Degrees) | Side-Fire Ratio (Is/It) | Side-Fire Efficiency (Is/If) |
---|---|---|---|---|---|
A: 10 mm window | (i) 588 | (i) 12.29 × 6.89 | (i) 104 | (i) 0.62 | (i) 20% |
(ii) 500 | (ii) 11.3 × 7.38 | (ii) 112 | (ii) 0.59 | (ii) 18% | |
B: 20 mm window | (i) 780 | (i) 20.6 × 7.08 | (i) 109 | (i) 0.69 | (i) 40% |
(ii) 750 | (ii) 20.1 × 7.37 | (ii) 109 | (ii) 0.66 | (ii) 37% | |
C: 30 mm window | (i) 623 | (i) 30.07 × 6.0 | (i) 81 | (i) 0.38 | (i) 29% |
(ii) 631 | (ii) 30.79 × 5.5 | (ii) 81 | (ii) 0.44 | (ii) 31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, N.; Roa, C.-F.; Chérin, E.; Lilge, L.; Demore, C.E.M. Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging. Appl. Sci. 2025, 15, 3639. https://doi.org/10.3390/app15073639
Singh N, Roa C-F, Chérin E, Lilge L, Demore CEM. Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging. Applied Sciences. 2025; 15(7):3639. https://doi.org/10.3390/app15073639
Chicago/Turabian StyleSingh, Nidhi, Carlos-Felipe Roa, Emmanuel Chérin, Lothar Lilge, and Christine E. M. Demore. 2025. "Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging" Applied Sciences 15, no. 7: 3639. https://doi.org/10.3390/app15073639
APA StyleSingh, N., Roa, C.-F., Chérin, E., Lilge, L., & Demore, C. E. M. (2025). Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging. Applied Sciences, 15(7), 3639. https://doi.org/10.3390/app15073639