Ambiguity-Resolved Model Tests for Carrier-Phase GNSS
Abstract
:1. Introduction
2. The Mixed-Integer GNSS Model
2.1. The Null and Alternative Hypotheses
2.2. The AF and AK Residual Vectors
2.3. The Mixed-Integer Model Test
3. The AF and AK Tests
3.1. The Ambiguity-Float Test
3.2. The Ambiguity-Known Test
4. The Ambiguity-Resolved Tests
4.1. AR Detection
4.2. AR Identification
4.3. AR Integer Testing
5. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Teunissen, P.J.G.; Montenbruck, O. (Eds.) Springer Handbook of Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Morton, Y.; van Diggelen, F.; Spilker, J., Jr.; Parkinson, B.; Lo, S.; Gao, G. (Eds.) Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; Wiley: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Yu, Y.; Yang, L.; Shen, Y.; Sun, N. A DIA Method based on Maximum a Posteriori Estimate for Multiple Outliers. GPS Solut. 2023, 27, 199. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Z.; He, X.; Yuan, Y.; Li, Y.; Song, M. Real-time GNSS multiple cycle slip detection and repair based on a controllable geometry-based method in relative positioning. Measurement 2023, 216, 112940. [Google Scholar] [CrossRef]
- Khanafseh, S.; Pullen, S.; Warburton, J. Carrier phase ionospheric gradient ground monitor for GBAS with experimental validation. J. Inst. Navig. 2012, 59, 51–60. [Google Scholar] [CrossRef]
- Perfetti, N. Detection of station coordinate discontinuities within the Italian GPS fiducial network. J. Geod. 2006, 80, 381–396. [Google Scholar] [CrossRef]
- Biagi, L.; Grec, F.C.; Negretti, M. Low-cost GNSS receivers for local monitoring: Experimental simulation, and analysis of displacements. Sensors 2016, 16, 2140. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Kuang, C.; Yu, W. Evaluation of Real-Time Kinematic Positioning and Deformation Monitoring Using Xiaomi Mi 8 Smartphone. Appl. Sci. 2022, 12, 435. [Google Scholar] [CrossRef]
- Huang, G.; Du, S.; Wang, D. GNSS techniques for real-time monitoring of landslides: A review. Satell. Navig. 2023, 4, 10. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. (Eds.) GNSS: Global Navigation Satellite Systems. GPS, GLONASS, Galileo and More; Springer: New York, NY, USA, 2008; ISBN 978-3-211-73012-6. [Google Scholar]
- Khodabandeh, A.; Zaminpardaz, S.; Nadarajah, N. A study on multi-GNSS phase-only positioning. Meas. Sci. Technol. 2021, 32, 095005. [Google Scholar] [CrossRef]
- Song, W.; Zheng, F.; Wang, H.; Shi, C. 100 Picosecond/Sub-10−17 Level GPS Differential Precise Time and Frequency Transfer. Appl. Sci. 2023, 13, 10694. [Google Scholar] [CrossRef]
- Paziewski, J.; Fortunato, M.; Mazzoni, A.; Odolinski, R. An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results. Measurement 2021, 175, 109162. [Google Scholar] [CrossRef]
- Paziewski, J.; Wielgosz, P. Accounting for Galileo–GPS inter-system biases in precise satellite positioning. J. Geod. 2015, 89, 81–93. [Google Scholar] [CrossRef]
- Strang, G.; Borre, K. Linear Algebra, Geodesy, and GPS; Wellesley-Cambridge Press: Wellesley, MA, USA, 1997. [Google Scholar]
- Teunissen, P.J.G. Probabilistic Properties of GNSS Integer Ambiguity Estimation. Earth Planets Space 2000, 52, 801–805. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Mixed Integer Estimation and Validation for Next Generation GNSS. In Handbook of Geomathematics; Freeden, W., Nashed, M.Z., Sonar, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Chapter 37; pp. 1102–1127. [Google Scholar]
- Yin, C.; Teunissen, P.J.G.; Tiberius, C.C.J.M. Implementation of Ambiguity-Resolved Detector for High-Precision GNSS Fault Detection. In Proceedings of the ION GNSS+ 2024, Baltimore, MD, USA, 16–20 September 2024; pp. 2163–2174. [Google Scholar]
- Teunissen, P.J.G. The probability distribution of the GPS baseline for a class of integer ambiguity estimators. J. Geod. 1999, 73, 275–284. [Google Scholar] [CrossRef]
- Hegarty, C.; Powers, E.; Foville, B. Accounting for timing biases between GPS, modernized GPS, and Galileo signals. In Proceedings of the 36th Annual Precise Time and Time Interval Meeting, Washington, DC, USA, 7–9 December 2004; pp. 307–317. [Google Scholar]
- Montenbruck, O.; Hauschild, A.; Hessels, U. Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut. 2011, 15, 193–205. [Google Scholar] [CrossRef]
- Khalife, J.; Kassas, Z.Z.M. Performance-driven design of carrier phase differential navigation frameworks with megaconstellation LEO satellites. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2947–2966. [Google Scholar] [CrossRef]
- Stock, W.; Schwarz, R.T.; Hofmann, C.A.; Knopp, A. Survey On Opportunistic PNT With Signals From LEO Communication Satellites. IEEE Commun. Surv. Tutor. 2024, 27, 77–107. [Google Scholar] [CrossRef]
Ambiguity-Float (AF) | Ambiguity-Known (AK) | Ambiguity-Resolved (AR) | |
---|---|---|---|
Detection | |||
Identification | |||
Integer Testing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teunissen, P.J.G. Ambiguity-Resolved Model Tests for Carrier-Phase GNSS. Appl. Sci. 2025, 15, 3531. https://doi.org/10.3390/app15073531
Teunissen PJG. Ambiguity-Resolved Model Tests for Carrier-Phase GNSS. Applied Sciences. 2025; 15(7):3531. https://doi.org/10.3390/app15073531
Chicago/Turabian StyleTeunissen, Peter J. G. 2025. "Ambiguity-Resolved Model Tests for Carrier-Phase GNSS" Applied Sciences 15, no. 7: 3531. https://doi.org/10.3390/app15073531
APA StyleTeunissen, P. J. G. (2025). Ambiguity-Resolved Model Tests for Carrier-Phase GNSS. Applied Sciences, 15(7), 3531. https://doi.org/10.3390/app15073531