A Comprehensive Review: Molecular and Genealogical Methods for Preserving the Genetic Diversity of Pigs
Abstract
:1. Genetic Diversity in Pigs
1.1. Insights from Evolution, Selection, and Conservation
1.2. Current Challenges in Maintaining Genetic Diversity
2. Pedigree Methods
2.1. Applications in Conservation of Pig Breeds
2.2. Applications in Selection
2.3. Strengths of Pedigree Analysis
2.4. Limitations of Pedigree Analysis
3. Molecular Methods
3.1. Genetic Markers for Assessing Genetic Variation
3.2. Genomic Approaches in Genetic Diversity Analysis
4. Combined Approaches in Assessing Genetic Diversity in Pig Breeds
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Q.; Liu, H.; Qadri, Q.R.; Wang, Q.; Pan, Y.; Su, G. Long-Term Impact of Conventional and Optimal Contribution Conservation Methods on Genetic Diversity and Genetic Gain in Local Pig Breeds. Heredity 2021, 127, 546–553. [Google Scholar] [CrossRef]
- Knap, P. Pig Breeding for Increased Sustainability. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Publisher: New York, NY, USA, 2012; pp. 7972–8012. [Google Scholar]
- Teletchea, F. Animal Domestication: A Brief Review. In Animal Domestication; Teletchea, F., Ed.; IntechOpen: London, UK, 2019; p. 170. [Google Scholar]
- Groenen, M.A.M. A Decade of Pig Genome Sequencing: A Window on Pig Domestication and Evolution. Genet. Sel. Evol. 2016, 48, 23. [Google Scholar] [CrossRef] [PubMed]
- Ghildiyal, K.; Nayak, S.S.; Rajawat, D.; Sharma, A.; Chhotaray, S.; Bhushan, B.; Dutt, T.; Panigrahi, M. Genomic Insights into the Conservation of Wild and Domestic Animal Diversity: A Review. Gene 2023, 886, 147719. [Google Scholar] [CrossRef]
- Bovo, S.; Ribani, A.; Muñoz, M.; Alves, E.; Araujo, J.P.; Bozzi, R.; Charneca, R.; Di Palma, F.; Etherington, G.; Fernandez, A.I.; et al. Genome-Wide Detection of Copy Number Variants in European Autochthonous and Commercial Pig Breeds by Whole-Genome Sequencing of DNA Pools Identified Breed-Characterising Copy Number States. Anim. Genet. 2020, 51, 541–556. [Google Scholar] [CrossRef]
- Pius, L.; Huang, S.; Wanjala, G.; Bagi, Z.; Kusza, S. African Local Pig Genetic Resources in the Context of Climate Change Adaptation. Animals 2024, 14, 2407. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Bozzi, R.; García, F.; Núñez, Y.; Geraci, C.; Crovetti, A.; García-Casco, J.; Alves, E.; Škrlep, M.; Charneca, R.; et al. Diversity across Major and Candidate Genes in European Local Pig Breeds. PLoS ONE 2018, 13, e0207475. [Google Scholar] [CrossRef]
- Diao, S.; Huang, S.; Xu, Z.; Ye, S.; Yuan, X.; Chen, Z.; Zhang, H.; Zhang, Z.; Li, J. Genetic Diversity of Indigenous Pigs from South China Area Revealed by SNP Array. Animals 2019, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Pedigrees or Markers: Which Are Better in Estimating Relatedness and Inbreeding Coefficient? Theor. Popul. Biol. 2016, 107, 4–13. [Google Scholar] [CrossRef]
- Yuan, J.; Zhou, X.; Xu, G.; Xu, S.; Liu, B. Genetic Diversity and Population Structure of Tongcheng Pigs in China Using Whole-Genome SNP Chip. Front. Genet. 2022, 13, 910521. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Huang, M.; Tang, J.; Yang, L.; Yu, Z.; Li, D.; Li, G.; Jiang, Y.; Sun, Y.; et al. Whole-Genome SNP Markers Reveal Conservation Status, Signatures of Selection, and Introgression in Chinese Laiwu Pigs. Evol. Appl. 2021, 14, 383–398. [Google Scholar] [CrossRef]
- Lenstra, J.A.; Ajmone-Marsan, P.; Beja-Pereira, A.; Bollongino, R.; Bradley, D.G.; Colli, L.; De Gaetano, A.; Edwards, C.J.; Felius, M.; Ferretti, L.; et al. Meta-Analysis of Mitochondrial DNA Reveals Several Population Bottlenecks during Worldwide Migrations of Cattle. Diversity 2014, 6, 178–187. [Google Scholar] [CrossRef]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- Zorc, M.; Škorput, D.; Gvozdanović, K.; Margeta, P.; Karolyi, D.; Luković, Z.; Salajpal, K.; Savić, R.; Muñoz, M.; Bovo, S.; et al. Genetic Diversity and Population Structure of Six Autochthonous Pig Breeds from Croatia, Serbia, and Slovenia. Genet. Sel. Evol. 2022, 54, 30. [Google Scholar] [CrossRef] [PubMed]
- Zumbo, A.; Sutera, A.M.; Tardiolo, G.; D’Alessandro, E. Sicilian Black Pig: An Overview. Animals 2020, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- Nevrkla, P.; Václavková, E.; Rozkot, M. The Indigenous Prestice Black-Pied Pig Breed Differs from a Commercial Hybrid in Growth Intensity, Carcass Value and Meat Quality. Agriculture 2021, 11, 331. [Google Scholar] [CrossRef]
- Kušec, G.; Komlenić, M.; Gvozdanović, K.; Sili, V.; Krvavica, M.; Radišić, Ž.; Kušec, I.D. Carcass Composition and Physicochemical Characteristics of Meat from Pork Chains Based on Native and Hybrid Pigs. Processes 2022, 10, 370. [Google Scholar] [CrossRef]
- Poklukar, K.; Mestre, C.; Škrlep, M.; Čandek-Potokar, M.; Ovilo, C.; Fontanesi, L.; Riquet, J.; Bovo, S.; Schiavo, G.; Ribani, A.; et al. A Meta-Analysis of Genetic and Phenotypic Diversity of European Local Pig Breeds Reveals Genomic Regions Associated with Breed Differentiation for Production Traits. Genet. Sel. Evol. 2023, 55, 88. [Google Scholar] [CrossRef]
- Arias, K.D.; Fernández, I.; Gutiérrez, J.P.; Bozzi, R.; Álvarez, I.; Goyache, F. Characterizing Local Pig Breeds as Reservoirs for the Domestic Pig Genetic Variability Worldwide via Contributions to Gene Diversity and Allelic Richness. J. Anim. Sci. 2024, 102, skae329. [Google Scholar] [CrossRef]
- Eusebi, P.G.; Martinez, A.; Cortes, O. Genomic Tools for Effective Conservation of Livestock Breed Diversity. Diversity 2020, 12, 8. [Google Scholar] [CrossRef]
- Kasprzyk, A.; Walenia, A. Native Pig Breeds as a Source of Biodiversity—Breeding and Economic Aspects. Agriculture 2023, 13, 1528. [Google Scholar] [CrossRef]
- Lush, J.L. Family Merit and Individual Merit as Bases for Selection. Am. Nat. 1947, 81, 241–261. [Google Scholar] [CrossRef]
- Bosse, M.; Megens, H.J.; Madsen, O.; Crooijmans, R.P.M.A.; Ryder, O.A.; Austerlitz, F.; Groenen, M.A.M.; De Cara, M.A.R. Using Genome-Wide Measures of Coancestry to Maintain Diversity and Fitness in Endangered and Domestic Pig Populations. Genome Res. 2015, 25, 970–981. [Google Scholar] [CrossRef]
- Yang, R.; Jin, S.; Fang, S.; Yan, D.; Zhang, H.; Nie, J.; Liu, J.; Lv, M.; Zhang, B.; Dong, X. Genetic Introgression from Commercial European Pigs to the Indigenous Chinese Lijiang Breed and Associated Changes in Phenotypes. Genet. Sel. Evol. 2024, 56, 24. [Google Scholar] [CrossRef]
- Bertolini, F.; Schiavo, G.; Galimberti, G.; Bovo, S.; D’Andrea, M.; Gallo, M.; Buttazzoni, L.; Rothschild, M.F.; Fontanesi, L. Genome-Wide Association Studies for Seven Production Traits Highlight Genomic Regions Useful to Dissect Dry-Cured Ham Quality and Production Traits in Duroc Heavy Pigs. Animal 2018, 12, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Gvozdanović, K.; Margeta, V.; Kušec, I.D.; Margeta, P.; Kušec, G. Effect of Rearing System on Meat Quality of Black Slavonian Pig Breed. In Proceedings of the 54th Croatian and 14th International Symposium on Agriculture, Vodice, Croatia, 17–22 February 2019; Mioč, B., Širić, I., Eds.; University of Zagreb, Faculty of Agriculture: Zagreb, Croatia, 2019; Volume 48, p. 23. [Google Scholar]
- Liu, X.; Cai, Z.; Yuan, Z. Environmental Burdens of Small-Scale Intensive Pig Production in China. Sci. Total Environ. 2021, 770, 144720. [Google Scholar] [CrossRef]
- Chernukha, I.; Kotenkova, E.; Pchelkina, V.; Ilyin, N.; Utyanov, D.; Kasimova, T.; Surzhik, A.; Fedulova, L. Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds. Foods 2023, 12, 690. [Google Scholar] [CrossRef]
- van Bussel, L.M.; Kuijsten, A.; Mars, M.; van ‘t Veer, P. Consumers’ Perceptions on Food-Related Sustainability: A Systematic Review. J. Clean. Prod. 2022, 341, 130904. [Google Scholar] [CrossRef]
- De Meester, L.; Stoks, R.; Brans, K.I. Genetic Adaptation as a Biological Buffer against Climate Change: Potential and Limitations. Integr. Zool. 2018, 13, 372–391. [Google Scholar] [CrossRef]
- Moore, J.W.; Schindler, D.E. Getting Ahead of Climate Change for Ecological Adaptation and Resilience. Science 2022, 376, 1421–1426. [Google Scholar]
- López-Pedrouso, M.; Lorenzo, J.M.; Gagaoua, M.; Franco, D. Application of Proteomic Technologies to Assess the Quality of Raw Pork and Pork Products: An Overview from Farm-to-Fork. Biology 2020, 9, 393. [Google Scholar] [CrossRef]
- Jelić Milković, S.; Lončarić, R.; Kralik, I.; Kristić, J.; Crnčan, A.; Djurkin Kušec, I.; Canavari, M. Consumers’ Preference for the Consumption of the Fresh Black Slavonian Pig’s Meat. Foods 2023, 12, 1255. [Google Scholar] [CrossRef]
- Howard, D.M.; Pong-Wong, R.; Knap, P.W.; Kremer, V.D.; Woolliams, J.A. Selective Advantage of Implementing Optimal Contributions Selection and Timescales for the Convergence of Long-Term Genetic Contributions. Genet. Sel. Evol. 2018, 50, 24. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Safdar, M.; Badshah, F.; Bibi, S.; Fatima, A.; Saeed, S.; Ashiq, K. Genetic Diversity in Livestock Breeds: Challengess and Conservation. In Animal Production and Health; Safdar, M., Ed.; ISRES Publishing: Konya, Turkey, 2024; ISBN 978-625-6959-64-4. [Google Scholar]
- Bates, M. Perspective Chapter: The Role of British Breeds and Breeders in the Development of the Modern International Pig Industry. In Tracing the Domestic Pig; Kušec, G., Kušec Djurkin, I., Eds.; InTech Open: London, UK, 2022. [Google Scholar]
- Fisher, R.A. The Correlation between Relatives on the Supposition of Mendelian Inheritance. Trans. R. Soc. Edinb. 1918, 52, 399–433. [Google Scholar] [CrossRef]
- Wright, S. Inbreeding and Homozygosis. Proc. Natl. Acad. Sci. USA 1933, 19, 411–420. [Google Scholar] [CrossRef]
- Darwin, C.R. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom; John, M., Ed.; John Murray: London, UK, 1876. [Google Scholar]
- Bereskin, B.; Shelby, C.E.; Rowe, K.E.; Urban, W.E.; Blunn, C.T.; Chapman, A.B.; Garwood, V.A.; Hazel, L.N.; Lasley, F.J.; Magee, W.T.; et al. Inbreeding and Swine Productivity Traits. J. Anim. Sci. 1968, 27, 339–350. [Google Scholar] [CrossRef]
- Saura, M.; Fernández, A.; Varona, L.; Fernández, A.I.; De Cara, M.Á.R.; Barragán, C.; Villanueva, B. Detecting Inbreeding Depression for Reproductive Traits in Iberian Pigs Using Genome-Wide Data. Genet. Sel. Evol. 2015, 47, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuo, Y.; Ning, C.; Zhou, L.; Liu, J.F. Estimate of Inbreeding Depression on Growth and Reproductive Traits in a Large White Pig Population. G3 Genes Genomes Genet. 2022, 12, jkac118. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetic-DS Falconer, 3rd ed.; Falconer, D.S., Ed.; Longman Sientific and Tehcnical: Harlow, UK, 1981. [Google Scholar]
- Gutierrez, J.P.; Altarriba, J.; Diaz, C.; Quintanilla, R.; Cañón, J.; Piedrafitta, J. Pedigree Analysis of Eight Spanish Beefcattle Breeds. Genet. Sel. Evol. 2003, 35, 43–63. [Google Scholar] [CrossRef]
- Goyache, F.; Gutiérrez, J.P.; Fernández, I.; Gomez, E.; Alvarez, I.; Díez, J.; Royo, L.J. Using Pedigree Information to Monitor Genetic Variability of Endangered Populations: The Xalda Sheep Breed of Asturias as an Example. J. Anim. Breed. Genet. 2003, 120, 95–105. [Google Scholar] [CrossRef]
- Wright, S. Cofficient of Inbreeding and Relationship. Am. Nat. 1922, 56, 330–338. [Google Scholar] [CrossRef]
- Welsh, C.S.; Stewart, T.S.; Schwab, C.; Blackburn, H.D. Pedigree Analysis of 5 Swine Breeds in the United States and the Implications for Genetic Conservation. J. Anim. Sci. 2010, 88, 1610–1618. [Google Scholar] [CrossRef]
- Melka, M.G.; Schenkel, F. Analysis of Genetic Diversity in Four Canadian Swine Breeds Using Pedigree Data. Can. J. Anim. Sci. 2010, 90, 331–340. [Google Scholar] [CrossRef]
- Mariani, E.; Summer, A.; Ablondi, M.; Sabbioni, A. Genetic Variability and Management in Nero Di Parma Swine Breed to Preserve Local Diversity. Animals 2020, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Crovetti, A.; Sirtori, F.; Pugliese, C.; Franci, O.; Bozzi, R. Pedigree Analysis of Cinta Senese and Mora Romagnola Breeds. Acta Argic. Slov. Suppl. 2013, 4, 41–44. [Google Scholar]
- Casellas, J. On Individual-Specific Prediction of Hidden Inbreeding Depression Load. J. Anim. Breed. Genet. 2018, 135, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Casellas, J.; Ibáñez-Escriche, N.; Varona, L.; Rosas, J.P.; Noguera, J.L. Inbreeding Depression Load for Litter Size in Entrepelado and Retinto Iberian Pig Varieties1. J. Anim. Sci. 2019, 97, 1979–1986. [Google Scholar] [CrossRef]
- Gourdine, J.L.; Sørensen, C.A.; Rydhmer, L. There Is Room for Selection in a Small Local Pig Breed When Using Optimum Contribution Selection: A Simulation Study. J. Anim. Sci. 2012, 90, 76–84. [Google Scholar] [CrossRef]
- Škorput, D.; Špehar, M.; Luković, Z. Managing Genetic Diversity in Pig Populations: Implications of Optimal Contribution Selection in the Black Slavonian Pig. Ital. J. Anim. Sci. 2022, 21, 1259–1267. [Google Scholar] [CrossRef]
- Henryon, M.; Liu, H.; Berg, P.; Su, G.; Nielsen, H.M.; Gebregiwergis, G.T.; Sørensen, A.C. Pedigree Relationships to Control Inbreeding in Optimum-Contribution Selection Realise More Genetic Gain than Genomic Relationships. Genet. Sel. Evol. 2019, 7, 344. [Google Scholar] [CrossRef]
- Woolliams, J.A.; Berg, P.; Dagnachew, B.S.; Meuwissen, T.H.E. Genetic Contributions and Their Optimization. J. Anim. Breed. Genet. 2015, 132, 89–99. [Google Scholar] [CrossRef]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Application of Individual Increase in Inbreeding to Estimate Realized Effective Sizes from Real Pedigrees. J. Anim. Breed. Genet. 2008, 125, 301–310. [Google Scholar] [CrossRef]
- Boichard, D.; Maignel, L.; Verrier, É. The Value of Using Probabilities of Gene Origin to Measure Genetic Variability in a Population. Genet. Sel. Evol. 1997, 29, 5–23. [Google Scholar] [CrossRef]
- Fernández, J.; Villanueva, B.; Pong-Wong, R.; Toro, M.Á. Efficiency of the Use of Pedigree and Molecular Marker Information in Conservation Programs. Genetics 2005, 170, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Krupa, E.; Moravčíková, N.; Krupová, Z.; Žáková, E. Assessment of the Genetic Diversity of a Local Pig Breed Using Pedigree and Snp Data. Genes 2021, 12, 1972. [Google Scholar] [CrossRef]
- Posta, J.; Szabó, P.; Komlósi, I. Pedigree Analysis of Mangalica Pig Breeds. Ann. Anim. Sci. 2016, 16, 701–709. [Google Scholar] [CrossRef]
- Škorput, D.; Gvozdanović, K.; Klišanić, V.; Menčik, S.; Karolyi, D.; Margeta, P.; Kušec, G.; Djurkin Kušec, I.; Luković, Z.; Salajpal, K. Genetic Diversity in Banija Spotted Pig: Pedigree and Microsatellite Analyses. J. Cent. Eur. Agric. 2018, 19, 871–876. [Google Scholar] [CrossRef]
- Zhao, J.; Li, T.; Zhu, C.; Jiang, X.; Zhao, Y.; Xu, Z.; Yang, S.; Chen, A. Selection and Use of Microsatellite Markers for Individual Identification and Meat Traceability of Six Swine Breeds in the Chinese Market. Food Sci. Technol. Int. 2018, 24, 292–300. [Google Scholar] [CrossRef]
- Radko, A.; Smołucha, G.; Koseniuk, A. Microsatellite Dna Analysis for Diversity Study, Individual Identification and Parentage Control in Pig Breeds in Poland. Genes 2021, 12, 595. [Google Scholar] [CrossRef]
- Georges, M.; Lathrop, M.; Bouquet, Y.; Hilbert, P.; Marcotte, A.; Schwers, A.; Roupain, J.; Vassart, G.; Hanset, R. Linkage Relationships among 20 Genetic Markers in Cattle. Evidence for Linkage between Two Pairs of Blood Group Systems: B-Z and S-F/V Respectively. Anim. Genet. 1990, 21, 95–105. [Google Scholar]
- Jain, K.; Pandita, P.; Mathuria, A.; Mehak; Das, D.; Saini, A.; Mani, I. Emerging Tools for Generating Genomics Data. In Advances in Genomics; Springer: Singapore, 2024; pp. 1–39. [Google Scholar]
- Crow, J.F.; Kimura, M. An Introduction to Population Genetics Theory; Harper and Row: New York, NJ, USA, 1970. [Google Scholar]
- Yaro, M.; Munyard, K.A.; Stear, M.J.; Groth, D.M. Molecular Identification of Livestock Breeds: A Tool for Modern Conservation Biology. Biol. Rev. 2017, 92, 993–1010. [Google Scholar] [CrossRef]
- Hoban, S.; Archer, F.I.; Bertola, L.D.; Bragg, J.G.; Breed, M.F.; Bruford, M.W.; Coleman, M.A.; Ekblom, R.; Funk, W.C.; Grueber, C.E.; et al. Global Genetic Diversity Status and Trends: Towards a Suite of Essential Biodiversity Variables (EBVs) for Genetic Composition. Biol. Rev. 2022, 97, 1511–1538. [Google Scholar] [CrossRef]
- Zanella, R.; Peixoto, J.O.; Cardoso, F.F.; Cardoso, L.L.; Biegelmeyer, P.; Cantão, M.E.; Otaviano, A.; Freitas, M.S.; Caetano, A.R.; Ledur, M.C. Genetic Diversity Analysis of Two Commercial Breeds of Pigs Using Genomic and Pedigree Data. Genet. Sel. Evol. 2016, 48, 24. [Google Scholar] [CrossRef] [PubMed]
- SanCristobal, M.; Chevalet, C.; Haley, C.S.; Joosten, R.; Rattink, A.P.; Harlizius, B.; Groenen, M.A.M.; Amigues, Y.; Boscher, M.Y.; Russell, G.; et al. Genetic Diversity within and between European Pig Breeds Using Microsatellite Markers. Anim. Genet. 2006, 37, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Charoensook, R.; Gatphayak, K.; Brenig, B.; Knorr, C. Genetic Diversity Analysis of Thai Indigenous Pig Population Using Microsatellite Markers. Asian-Australas. J. Anim. Sci. 2019, 32, 1491–1500. [Google Scholar] [CrossRef]
- Van Ba, N.; Nam, L.Q.; Do, D.N.; Van Hau, N.; Pham, L.D. An Assessment of Genetic Diversity and Population Structures of Fifteen Vietnamese Indigenous Pig Breeds for Supporting the Decision Making on Conservation Strategies. Trop. Anim. Health Prod. 2020, 52, 1033–1041. [Google Scholar] [CrossRef]
- Sahu, K.; Gopi, G.V.; Gupta, S.K. Unveiling the Genetic Structure of Pig Population in a Himalayan State Uttarakhand through Microsatellite and Mitochondrial DNA Analyses. Trop. Anim. Health Prod. 2024, 56, 183. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, S.; Kalivas, A.; Ganopoulos, I.; Stea, E.; Michailidis, G.; Tsaftaris, A.; Argiriou, A. A Multi-Farm Assessment of Greek Black Pig Genetic Diversity Using Microsatellite Molecular Markers. Genet. Mol. Res. 2014, 13, 2752–2765. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, G.A.; Alexander, L.J.; Hu, Z.; Smith, T.P.L.; Keele, J.W.; Beattie, C.W. A Comprehensive Map of the Porcine Genome. Genome Res. 1996, 6, 371–391. [Google Scholar] [CrossRef]
- van Zeveren, A.; Peelman, L.; van de Weghe, A.; Bouquet, Y. A Genetic Study of Four Belgian Pig Populations by Means of Seven Microsatellite Loci. J. Anim. Breed. Genet. 1995, 112, 191–204. [Google Scholar] [CrossRef]
- Laval, G.; Iannuccelli, N.; Legault, C.; Milan, D.; Groenen, M.A.M.; Giuffra, E.; Andersson, L.; Nissen, P.H.; JØrgensen, C.B.; Beeckmann, P.; et al. Genetic Diversity of Eleven European Pig Breeds. Genet. Sel. Evol. 2000, 32, 187–203. [Google Scholar] [CrossRef]
- Megens, H.J.; Crooijmans, R.P.M.A.; Cristobal, M.S.; Hui, X.; Li, N.; Groenen, M.A.M. Biodiversity of Pig Breeds from China and Europe Estimated from Pooled DNA Samples: Differences in Microsatellite Variation between Two Areas of Domestication. Genet. Sel. Evol. 2008, 40, 103–128. [Google Scholar] [CrossRef]
- Sollero, B.P.; Paiva, S.R.; Faria, D.A.; Guimarães, S.E.F.; Castro, S.T.R.; Egito, A.A.; Albuquerque, M.S.M.; Piovezan, U.; Bertani, G.R.; Mariante, A.d.S. Genetic Diversity of Brazilian Pig Breeds Evidenced by Microsatellite Markers. Livest. Sci. 2009, 123, 8–15. [Google Scholar] [CrossRef]
- Wang, J.Y.; Guo, J.F.; Zhang, Q.; Hu, H.M.; Lin, H.C.; Wang, C.; Zhang, Y.; Wu, Y. Genetic Diversity of Chinese Indigenous Pig Breeds in Shandong Province Using Microsatellite Markers. Asian-Australas. J. Anim. Sci. 2011, 24, 28–36. [Google Scholar] [CrossRef]
- Ayizanga, R.A.; Kayang, B.B.; Adomako, K.; Adenyo, C.; Inoue-Murayama, M.; Asamoah, L. Genetic Diversity of Some Ghanaian Pigs Based on Microsatellite Markers. Livest. Res. Rural. Dev. 2016, 28, 24. [Google Scholar]
- Ramos, A.M.; Crooijmans, R.P.M.A.; Affara, N.A.; Amaral, A.J.; Archibald, A.L.; Beever, J.E.; Bendixen, C.; Churcher, C.; Clark, R.; Dehais, P.; et al. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by next Generation Sequencing Technology. PLoS ONE 2009, 4, e6524. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Jiang, J.; Kang, H.; Feng, X.; Zhang, Q.; Liu, J.F. Identification of Genome-Wide Copy Number Variations among Diverse Pig Breeds Using SNP Genotyping Arrays. PLoS ONE 2013, 8, e68683. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, R.T.; Nonneman, D.J.; Rohrer, G.A. Genome-Wide Copy Number Variations Using SNP Genotyping in a Mixed Breed Swine Population. PLoS ONE 2015, 10, e0133529. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Bozzi, R.; García-Casco, J.; Núñez, Y.; Ribani, A.; Franci, O.; García, F.; Škrlep, M.; Schiavo, G.; Bovo, S.; et al. Genomic Diversity, Linkage Disequilibrium and Selection Signatures in European Local Pig Breeds Assessed with a High Density SNP Chip. Sci. Rep. 2019, 9, 13546. [Google Scholar] [CrossRef]
- Mekonnen, K.T.; Lee, D.H.; Cho, Y.G.; Son, A.Y.; Seo, K.S. Genomic and Conventional Inbreeding Coefficient Estimation Using Different Estimator Models in Korean Duroc, Landrace, and Yorkshire Breeds Using 70K Porcine SNP BeadChip. Animals 2024, 14, 2621. [Google Scholar] [CrossRef]
- Chaweewan, K.; Mahinchai, P.; Kongsook, S.; Soponchit, S.; Weerasamith, P.; Awiruttapanich, W.; Prapawat, P.; Jamparat, W.; Chanthaworn, T.; Rattanamahavichai, N.; et al. Genetic Divergence of Thai Indigenous Pigs from Three Distinct Geographic Regions Revealed by Microsatellite Marker Analysis. Animals 2023, 13, 625. [Google Scholar] [CrossRef]
- Hayah, I.; Talbi, C.; Chafai, N.; Houaga, I.; Botti, S.; Badaoui, B. Genetic Diversity and Breed-Informative SNPs Identification in Domestic Pig Populations Using Coding SNPs. Front. Genet. 2023, 14, 1229741. [Google Scholar] [CrossRef]
- Yan, Z.; Song, K.; Wang, P.; Gun, S.; Long, X. Evaluation of the Genetic Diversity and Population Structure of Four Native Pig Populations in Gansu Province. Int. J. Mol. Sci. 2023, 24, 17154. [Google Scholar] [CrossRef] [PubMed]
- Dadousis, C.; Muñoz, M.; Óvilo, C.; Fabbri, M.C.; Araújo, J.P.; Bovo, S.; Potokar, M.Č.; Charneca, R.; Crovetti, A.; Gallo, M.; et al. Admixture and Breed Traceability in European Indigenous Pig Breeds and Wild Boar Using Genome-Wide SNP Data. Sci. Rep. 2022, 12, 7346. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, L.; Ma, Z.; Mao, Y.; Wang, G.; Zheng, R.; Zuo, B.; Wang, Y. Analysis of the Genetic Diversity and Genetic Structure of Jiangshan Black Pigs Using Single Nucleotide Polymorphism (SNP) Chips. Animals 2024, 14, 2660. [Google Scholar] [CrossRef]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.J.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Sun, H.; Lu, S.; Gou, X.; Yan, D.; Xu, Z.; Zhang, Z.; Qadri, Q.R.; Zhang, Z.; Wang, Z.; et al. Genetic Diversity and Selection Signatures Within Diannan Small-Ear Pigs Revealed by Next-Generation Sequencing. Front. Genet. 2020, 11, 733. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Y.; Hu, Y.; Yin, L.; Tang, Z.; Yin, D.; Zhu, M.; Yu, M.; Li, X.; Zhou, Y.; et al. Whole Genome Variants across 57 Pig Breeds Enable Comprehensive Identification of Genetic Signatures That Underlie Breed Features. J. Anim. Sci. Biotechnol. 2020, 11, 115. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Y.; Xu, Y.; Luan, Y.; Zhou, H.; Qi, X.; Hu, M.; Wang, D.; Wang, Z.; Fu, Y.; et al. A Compendium and Comparative Epigenomics Analysis of Cis-Regulatory Elements in the Pig Genome. Nat. Commun. 2021, 12, 2217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, Y.; Yang, Y.; Yi, G.; Lian, J.; Xie, B.; Yao, Y.; Chen, M.; Niu, Y.; Liu, L.; et al. Integration of Multi-Omics Data Reveals Cis-Regulatory Variants That Are Associated with Phenotypic Differentiation of Eastern from Western Pigs. Genet. Sel. Evol. 2022, 54, 62. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Wang, C.; Li, Z.; Jiang, B.; Zhang, R.; Tong, L.; Qu, Y.; He, S.; Chen, H.; et al. The Pig Pangenome Provides Insights into the Roles of Coding Structural Variations in Genetic Diversity and Adaptation. Genome Res. 2023, 33, 1833–1847. [Google Scholar] [CrossRef]
- Fan, S.; Kong, C.; Chen, Y.; Zheng, X.; Zhou, R.; Zhang, X.; Wu, X.; Zhang, W.; Ding, Y.; Yin, Z. Copy Number Variation Analysis Revealed the Evolutionary Difference between Chinese Indigenous Pigs and Asian Wild Boars. Genes 2023, 14, 472. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Li, Z.; Zeng, Q.; Yang, F.; Song, Y.; Song, Y.; He, J. Genomic Breed Composition of Ningxiang Pig via Different SNP Panels. J. Anim. Physiol. Anim. Nutr. 2022, 106, 783–791. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Gao, G.X.; Zhou, Y.; Guo, C.X.; Li, B.; El-Ashram, S.; Li, Z.L. Genome-Wide Association Studies Uncover Genes Associated with Litter Traits in the Pig. Animal 2022, 16, 100672. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Hao, X.; Xu, Z.; Sun, H.; Zhao, Q.; Cao, R.; Zhang, Z.; Ma, P.; Sun, Y.; Qi, Z.; et al. Genome-Wide Detection of Runs of Homozygosity in Laiwu Pigs Revealed by Sequencing Data. Front. Genet. 2021, 12, 629966. [Google Scholar] [CrossRef]
- Hlongwane, N.L.; Hadebe, K.; Soma, P.; Dzomba, E.F.; Muchadeyi, F.C. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front. Genet. 2020, 11, 344. [Google Scholar] [CrossRef]
- Secomandi, S.; Gallo, G.R.; Rossi, R.; Rodríguez Fernandes, C.; Jarvis, E.D.; Bonisoli-Alquati, A.; Gianfranceschi, L.; Formenti, G. Pangenome Graphs and Their Applications in Biodiversity Genomics. Nat. Genet. 2025, 57, 13–26. [Google Scholar] [CrossRef]
- Vogt, G. Epigenetic Variation in Animal Populations: Sources, Extent, Phenotypic Implications, and Ecological and Evolutionary Relevance. J. Biosci. 2021, 46, 24. [Google Scholar]
- Li, M.; Chen, L.; Tian, S.; Lin, Y.; Tang, Q.; Zhou, X.; Li, D.; Yeung, C.K.L.; Che, T.; Jin, L.; et al. Comprehensive Variation Discovery and Recovery of Missing Sequence in the Pig Genome Using Multiple de Novo Assemblies. Genome Res. 2017, 27, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.F.; Wang, S.; Wang, C.L.; Xu, R.H.; Wang, W.W.; Jiang, Y.; Wang, M.S.; Jiang, L.; Dai, L.H.; Wang, J.R.; et al. Pangenome Obtained by Long-Read Sequencing of 11 Genomes Reveal Hidden Functional Structural Variants in Pigs. iScience 2023, 26, 106119. [Google Scholar] [CrossRef]
- Du, H.; Zhuo, Y.; Lu, S.; Li, W.; Zhou, L.; Sun, F.; Liu, G.; Liu, Y.-F. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. Genom. Proteom. Bioinform. 2024, qzae081. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Yuan, T.; Cao, M.; He, Y.; Zhang, L.; Li, X.; Jiang, Y.; Li, K.; Sun, J.; et al. Pangenome and Genome Variation Analyses of Pigs Unveil Genomic Facets for Their Adaptation and Agronomic Characteristics. iMeta 2024, 3, e257. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, Y.; Yin, H.; Cai, Z.; Wang, Y.; Bai, L.; Kern, C.; Halstead, M.; Chanthavixay, G.; Trakooljul, N.; et al. Pig Genome Functional Annotation Enhances the Biological Interpretation of Complex Traits and Human Disease. Nat. Commun. 2021, 12, 5848. [Google Scholar] [CrossRef]
- Silió, L.; Rodríguez, M.C.; Fernández, A.; Barragán, C.; Benítez, R.; Óvilo, C.; Fernández, A.I. Measuring Inbreeding and Inbreeding Depression on Pig Growth from Pedigree or SNP-Derived Metrics. J. Anim. Breed. Genet. 2013, 130, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, I.; Royo, L.J.; Gutiérrez, J.P.; Fernández, I.; Arranz, J.J.; Goyache, F. Relationship between Genealogical and Microsatellite Information Characterizing Losses of Genetic Variability: Empirical Evidence from the Rare Xalda Sheep Breed. Livest. Sci. 2008, 115, 80–88. [Google Scholar] [CrossRef]
- Gvozdanović, K.; Škorput, D.; Kušec, I.D.; Salajpal, K.; Kušec, G. Estimation of Population Differentiation Using Pedigree and Molecular Data in Black Slavonian Pig. Acta Fytotech. Zootech. 2020, 23, 241–249. [Google Scholar] [CrossRef]
- Nikolic, N.; Park, Y.S.; Sancristobal, M.; Lek, S.; Chevalet, C. What Do Artificial Neural Networks Tell Us about the Genetic Structure of Populations? The Example of European Pig Populations. Genet. Res. 2009, 91, 121–132. [Google Scholar] [CrossRef]
- Schiavo, G.; Bertolini, F.; Galimberti, G.; Bovo, S.; Dall’Olio, S.; Nanni Costa, L.; Gallo, M.; Fontanesi, L. A Machine Learning Approach for the Identification of Population-Informative Markers from High-Throughput Genotyping Data: Application to Several Pig Breeds. Animal 2020, 14, 223–232. [Google Scholar] [CrossRef]
Molecular Marker | Year | Pig Breed | Reference |
---|---|---|---|
Microsatellite | 1994 | Sus scrofa | [77] |
Microsatellite | 1995 | Landrace, Negative, Piétrain, Large White | [78] |
Microsatellite | 2000 | European pig breeds | [79] |
Microsatellite | 2008 | European and Chinese pig breeds | [80] |
Microsatellite | 2009 | Brazilian pig breeds | [81] |
Microsatellite | 2010 | Chinese autochthonous pig breed | [82] |
Microsatellite | 2015 | Greek black pig breed | [76] |
Microsatellite | 2017 | Ghanaian pig breed | [83] |
Microsatellite | 2019 | Black Slavonian pig breed | [27] |
Single Nucleotide Polymorphisms (SNP) | 2009 | Landrace | [84] |
Single Nucleotide Polymorphisms (SNP) | 2013 | Chinese autochthonous breeds, Asian wild boar | [85] |
Single Nucleotide Polymorphisms (SNP) | 2015 | Duroc, Landrace, Yorkshire | [86] |
Single Nucleotide Polymorphisms (SNP) | 2019 | European autochthonous pig breeds | [87] |
Single Nucleotide Polymorphisms (SNP) | 2019 | Chinese autochthonous pig breeds | [9] |
Single Nucleotide Polymorphisms (SNP) | 2024 | Korean Duroc, Landrace, Yorkshire | [88] |
Genomic Approaches | Year | Pig Breed | Reference |
---|---|---|---|
Whole-genome Sequencing (WGS) | 2012 | Duroc | [94] |
Whole-genome sequencing (WGS) | 2020 | European autochthonous pig breeds | [6] |
Genome-Wide Association Studies | 2020 | Different pig breeds (57) | [95] |
Genome-Wide Association Studies | 2020 | Sus scrofa | [96] |
Genome-Wide Association Studies | 2022 | Suhuai, Chinese Min Zhu, Large White | [43] |
Epigenomic analysis | 2021 | Meishan, Enshi Black, Duroc, Large White | [97] |
Next-generation sequencing | 2022 | Luchuan and Duroc breeds | [98] |
Pangenome analysis | 2023 | Euroasia pig breeds | [99] |
Copy Number Variations (CNVs) | 2023 | Chinese autochthonous pigs, Asian wild boars | [100] |
Approaches | Year | Pig Breed | Reference |
---|---|---|---|
Pedigree, SNP | 2013 | Iberian pig breed | [112] |
Pedigree, SNP | 2016 | Landrace, Large White | [71] |
Microsatellite, pedigree | 2018 | Banija spotted pig breed | [63] |
Microsatellite, pedigree | 2020 | Black Slavonian pig breed | [114] |
Pedigree, SNP | 2021 | Přeštice Black-Pied pig breed | [61] |
Microsatellite, pedigree, SNP | 2022 | Autochthonous pig breeds (Croatia, Slovenia, Serbia) | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margeta, V.; Škorput, D.; Djurkin Kušec, I.; Kralik, Z.; Kušec, G.; Gvozdanović, K. A Comprehensive Review: Molecular and Genealogical Methods for Preserving the Genetic Diversity of Pigs. Appl. Sci. 2025, 15, 3394. https://doi.org/10.3390/app15063394
Margeta V, Škorput D, Djurkin Kušec I, Kralik Z, Kušec G, Gvozdanović K. A Comprehensive Review: Molecular and Genealogical Methods for Preserving the Genetic Diversity of Pigs. Applied Sciences. 2025; 15(6):3394. https://doi.org/10.3390/app15063394
Chicago/Turabian StyleMargeta, Vladimir, Dubravko Škorput, Ivona Djurkin Kušec, Zlata Kralik, Goran Kušec, and Kristina Gvozdanović. 2025. "A Comprehensive Review: Molecular and Genealogical Methods for Preserving the Genetic Diversity of Pigs" Applied Sciences 15, no. 6: 3394. https://doi.org/10.3390/app15063394
APA StyleMargeta, V., Škorput, D., Djurkin Kušec, I., Kralik, Z., Kušec, G., & Gvozdanović, K. (2025). A Comprehensive Review: Molecular and Genealogical Methods for Preserving the Genetic Diversity of Pigs. Applied Sciences, 15(6), 3394. https://doi.org/10.3390/app15063394