Application of Machine Learning for Identifying Factors Associated with Renal Function Impairment in Gouty Arthritis Patients
Abstract
:1. Introduction
- Looking only at serum uric acid levels is not always sufficient to diagnose GA. Therefore, a model was developed, which is expected to provide insights into additional risk factors and the progression of GA.
- A different perspective from traditional approaches is offered by analyzing the contribution of multiple biomarkers with ML models instead of only a single biomarker (uric acid).
- Detailed analysis was performed using ML models to identify the factors affecting GA.
- This study focused on examining the biomarkers that play a role in the development of GA and ranking the importance of these factors.
- Based on the available information to date, although there are a few articles regarding the detection and classification of gout disease, there is currently no study conducted using machine learning methods for identifying the factors affecting the disease.
2. Literature Survey
3. Materials and Methods
3.1. Subject and Limitations
3.2. Dataset
3.3. Hyperparameter Tuning of Machine Learning Model
3.4. Decision Tree Classification
3.5. Random Forest Classification
3.6. Logistic Regression Classification
3.7. Artificial Neural Networks
4. Results
4.1. Evaluation Metrics
4.2. Performance of Models
- TP (true positive) number indicates the classification of patients with non-attack gout patients (Non-Gout) according to the test data.
- TN (true negative) number indicates the classification of gout attacks patients (Gout) according to the test data.
- FP (false positive) count indicates the number of patients in whom gout attack patients without non-attack gout patients according to the test data.
- FN (false negative) count indicates the number of patients in whom non-attack gout patients without gout attack patients according to the test data.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | accuracy |
ALT | alanine aminotransferase |
ANN | artificial neural network |
AST | aspartate aminotransferase |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CM | confusion matrix |
CRP | C-reactive protein |
DT | decision tree |
ESR | erythrocyte sedimentation rate |
F | F1 score |
FN | false negative |
FP | false positive |
GA | gouty arthritis |
GFR | glomerular filtration rate |
HDL | high-density lipoprotein |
LDH | lactic dehydrogenase |
LDH | lactate dehydrogenase |
LDL | low-density lipoprotein |
LR | logistic regression |
MCV | mean corpuscular volume |
ML | machine learning |
MSU | monosodium urate |
P | precision |
RF | random forest |
ROC | receiver operating characteristic curve |
S | sensitivity or recall |
SD | standard deviation |
SP | specificity |
T | number of data in the dataset |
TG | triglyceride |
TN | true negative |
TP | true positive |
x | explanatory variable |
y | response variable |
References
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Roddy, E.; Choi, H.K. Epidemiology of Gout. Rheum. Dis. Clin. N. Am. 2014, 40, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Roughley, M.J.; Belcher, J.; Mallen, C.D.; Roddy, E. Gout and risk of chronic kidney disease and nephrolithiasis: Meta-analysis of observational studies. Arthritis Res. Ther. 2015, 17, 90. [Google Scholar] [CrossRef]
- Borghi, C.; Agabiti-Rosei, E.; Johnson, R.J.; Kielstein, J.T.; Lurbe, E.; Mancia, G.; Redon, J.; Stack, A.G.; Tsioufis, K.P. Hyperuricaemia and gout in cardiovascular, metabolic, and kidney disease. Eur. J. Intern. Med. 2020, 80, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Golenbiewski, J.; Keenan, R.T. Moving the Needle: Improving the Care of the Gout Patient. Rheumatol. Ther. 2019, 6, 179–193. [Google Scholar] [CrossRef]
- Ren, K.; Yin, Y.; He, F.; Shao, Y.; Wang, S. Prognostic role of derived neutrophil-to-lymphocyte ratio in surgical triple-negative breast cancer. Cancer Manag. Res. 2018, 10, 4891–4898. [Google Scholar] [CrossRef]
- Jalal, D.I. Hyperuricemia, the kidneys, and the spectrum of associated diseases: A narrative review. Curr. Med. Res. Opin. 2016, 32, 1863–1869. [Google Scholar] [CrossRef]
- Curiel, R.V.; Guzman, N.J. Challenges Associated with the Management of Gouty Arthritis in Patients with Chronic Kidney Disease: A Systematic Review. Semin. Arthritis Rheum. 2012, 42, 166–178. [Google Scholar] [CrossRef]
- Jaffe, D.H.; Klein, A.B.; Benis, A.; Flores, N.M.; Gabay, H.; Morlock, R.; Teltsch, D.Y.; Chapnick, J.; Molad, Y.; Giveon, S.M.; et al. Incident gout and chronic kidney disease: Healthcare utilization and survival. BMC Rheumatol. 2019, 3, 11. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, H.-C.; Park, J.W.; Kim, I.-S.; Kim, J.-Y.; Kim, K.-C.; Chae, D.-S.; Jo, W.-L.; Song, J.-H. Diagnosis and Treatment of Inflammatory Joint Disease. Hip Pelvis 2017, 29, 211–222. [Google Scholar] [CrossRef]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Ikebuchi, Y.; Ito, K.; Kusanagi, Y.; Chiba, T.; Tadokoro, S.; et al. Common Defects of ABCG2, a High-Capacity Urate Exporter, Cause Gout: A Function-Based Genetic Analysis in a Japanese Population. Sci. Transl. Med. 2009, 1, 5ra11. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Cheng, R.-J.; Xia, Z.-J.; Zhang, Q.-P.; Liu, Y. Risk of dementia in gout and hyperuricaemia: A meta-analysis of cohort studies. BMJ Open 2021, 11, e041680. [Google Scholar] [CrossRef] [PubMed]
- Urano, W.; Yamanaka, H.; Tsutani, H.; Nakajima, H.; Matsuda, Y.; Taniguchi, A.; Hara, M.; Kamatani, N. The inflammatory process in the mechanism of decreased serum uric acid concentrations during acute gouty arthritis. J. Rheumatol. 2002, 29, 1950–1953. [Google Scholar] [PubMed]
- Chhana, A.; Pool, B.; Wei, Y.; Choi, A.; Gao, R.; Munro, J.; Cornish, J.; Dalbeth, N. Human Cartilage Homogenates Influence the Crystallization of Monosodium Urate and Inflammatory Response to Monosodium Urate Crystals: A Potential Link Between Osteoarthritis and Gout. Arthritis Rheumatol. 2019, 71, 2090–2099. [Google Scholar] [CrossRef]
- Gremese, E.; Bruno, D.; Varriano, V.; Perniola, S.; Petricca, L.; Ferraccioli, G. Serum Albumin Levels: A Biomarker to Be Repurposed in Different Disease Settings in Clinical Practice. J. Clin. Med. 2023, 12, 6017. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Katz, R.; Ix, J.H.; Gutierrez, O.M.; A Peralta, C.; Parikh, C.R.; Satterfield, S.; Petrovic, S.; Devarajan, P.; Bennett, M.; et al. Association of serum albumin levels with kidney function decline and incident chronic kidney disease in elders. Nephrol. Dial. Transplant. 2018, 33, 986–992. [Google Scholar] [CrossRef]
- Costa, A.; Pais, M.; Loureiro, J.; Stella, F.; Radanovic, M.; Gattaz, W.; Forlenza, O.; Talib, L. Decision tree-based classification as a support to diagnosis in the Alzheimer’s disease continuum using cerebrospinal fluid biomarkers: Insights from automated analysis. Braz. J. Psychiatry 2022, 44, 370–377. [Google Scholar] [CrossRef]
- Sumiati, S.; Repi, V.V.R.; Hendriyati, P.; Anharudin, A.; Yusta, A.; Triayudi, A. Classification of cardiac disorders based on electrocardiogram data using a decision tree classification approach with the C45 algorithm. IAES Int. J. Artif. Intell. 2023, 12, 1128–1138. [Google Scholar] [CrossRef]
- Arief Wisky, I.; Yanto, M.; Wiyandra, Y.; Syahputra, H.; Hadi, F. Machine learning classification of infectious disease distribution status. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 1557–1566. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Sarica, A.; Cerasa, A.; Quattrone, A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review. Front. Aging Neurosci. 2017, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, H.; Jin, X.; Zheng, P.; Hu, S.; Xu, X.; Yu, W.; Yan, J. Study of cardiovascular disease prediction model based on random forest in eastern China. Sci. Rep. 2020, 10, 5245. [Google Scholar] [CrossRef]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef]
- Liu, L.J.; Zhang, X.; He, N.; Liu, K.; Shi, X.; Feng, T.; Geng, T.; Yuan, D.; Kang, L.; Jin, T. Genetic variation in WDR1 is associated with gout risk and gout-related metabolic indices in the Han Chinese population. Genet. Mol. Res. 2016, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- San Gabriel, D.E.D.; Slark, J. The association of gout with an increased risk of hypertension and diabetes mellitus among stroke survivors in New Zealand: A cross-sectional study using routinely collected electronic health data. JRSM Cardiovasc. Dis. 2019, 8, 204800401986323. [Google Scholar] [CrossRef] [PubMed]
- Richette, P.; Clerson, P.; Bouée, S.; Chalès, G.; Doherty, M.; Flipo, R.M.; Lambert, C.; Lioté, F.; Poiraud, T.; Schaeverbeke, T.; et al. Identification of patients with gout: Elaboration of a questionnaire for epidemiological studies. Ann. Rheum. Dis. 2015, 74, 1684–1690. [Google Scholar] [CrossRef]
- Nie, J.; Deng, M.-G.; Wang, K.; Liu, F.; Xu, H.; Feng, Q.; Li, X.; Yang, Y.; Zhang, R.; Wang, S. Higher HEI-2015 scores are associated with lower risk of gout and hyperuricemia: Results from the National Health and Nutrition Examination Survey 2007–2016. Front. Nutr. 2022, 9, 921550. [Google Scholar] [CrossRef]
- Gregorich, M.; Kammer, M.; Heinzel, A.; Böger, C.; Eckardt, K.-U.; Heerspink, H.L.; Jung, B.; Mayer, G.; Meiselbach, H.; Schmid, M.; et al. Development and Validation of a Prediction Model for Future Estimated Glomerular Filtration Rate in People with Type 2 Diabetes and Chronic Kidney Disease. JAMA Netw. Open 2023, 6, e231870. [Google Scholar] [CrossRef]
- Wang, H.; Bowe, B.; Cui, Z.; Yang, H.; Swamidass, S.J.; Xie, Y.; Al-Aly, Z. A Deep Learning Approach for the Estimation of Glomerular Filtration Rate. IEEE Trans. Nanobiosci. 2022, 21, 560–569. [Google Scholar] [CrossRef]
- Nakano, F.K.; Åkesson, A.; de Boer, J.; Dedja, K.; D’hondt, R.; Haredasht, F.N.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; et al. Comparison between the EKFC-equation and machine learning models to predict Glomerular Filtration Rate. Sci. Rep. 2024, 14, 26383. [Google Scholar] [CrossRef]
- Kunlayawutipong, T.; Rattanathammethee, T.; Punnachet, T.; Hantrakun, N.; Piriyakhuntorn, P.; Hantrakool, S.; Chai-Adisaksopha, C.; Rattarittamrong, E.; Tantiworawit, A.; Norasetthada, L.; et al. Prevalence and risk factors for hyperuricemia and hyperuricosuria in patients with hematologic malignancies. Front. Med. 2024, 11, 1343000. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Neogi, T.; Jansen, T.L.T.; Dalbeth, N.; Fransen, J.; Schumacher, H.R.; Berendsen, D.; Brown, M.; Choi, H.; Edwards, N.L.; Janssens, H.J.E.M.; et al. 2015 Gout classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2015, 74, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Sher, M.; Minallah, N.; Ahmad, T.; Khan, W. Hyperparameters analysis of long short-term memory architecture for crop classification. Int. J. Electr. Comput. Eng. 2023, 13, 4661. [Google Scholar] [CrossRef]
- Simanjuntak, A.; Lumbantoruan, R.; Sianipar, K.; Gultom, R.; Simaremare, M.; Situmeang, S.; Panggabean, E. Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection. J. Nas. Tek. Elektro Dan Teknol. Inf. 2024, 13, 60–67. [Google Scholar] [CrossRef]
- Boyd, C.; Brown, G.C.; Kleinig, T.J.; Mayer, W.; Dawson, J.; Jenkinson, M.; Bezak, E. Hyperparameter selection for dataset-constrained semantic segmentation: Practical machine learning optimization. J. Appl. Clin. Med. Phys. 2024, 25, 14542. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Kapoor, V.; Madan, M.; Dave, M. The Analytical Comparison of ID3 and C4.5 using WEKA. Int. J. Comput. Appl. 2017, 167, 1–4. [Google Scholar] [CrossRef]
- Cao, H.E.C.; Sarlin, R.; Jung, A. Learning Explainable Decision Rules via Maximum Satisfiability. IEEE Access 2020, 8, 218180–218185. [Google Scholar] [CrossRef]
- Dunham, M.H. Data Mining-Introductory and Advanced Topics; Prentice Hall: Hoboken, NJ, USA, 2020. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fu, X.; Chen, Y.; Yan, J.; Chen, Y.; Xu, F. BGRF: A broad granular random forest algorithm. J. Intell. Fuzzy Syst. 2023, 44, 8103–8117. [Google Scholar] [CrossRef]
- Yu, T.; Liu, C.; Yan, Z.; Shi, X. A Multi-Task Framework for Action Prediction. Information 2020, 11, 158. [Google Scholar] [CrossRef]
- Ceriani, L.; Verme, P. The origins of the Gini index: Extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J. Econ. Inequal. 2012, 10, 421–443. [Google Scholar] [CrossRef]
- LaValley, M.P. Logistic Regression. Circulation 2008, 117, 2395–2399. [Google Scholar] [CrossRef]
- Sekiya, M.; Sakaino, S.; Toshiaki, T. Linear Logistic Regression for Estimation of Lower Limb Muscle Activations. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 523–532. [Google Scholar] [CrossRef]
- Hill, T.; Marquez, L.; O’Connor, M.; Remus, W. Artificial neural network models for forecasting and decision making. Int. J. Forecast. 1994, 10, 5–15. [Google Scholar] [CrossRef]
- Park, W.J.; Park, J.-B. History and application of artificial neural networks in dentistry. Eur. J. Dent. 2018, 12, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Göktepe Körpeoğlu, S.; Filiz, A.; Göktepe Yıldız, S. AI-Driven Predictions of Mathematical Problem-Solving Beliefs: Fuzzy Logic, Adaptive Neuro-Fuzzy Inference Systems, and Artificial Neural Networks. Appl. Sci. 2025, 15, 494. [Google Scholar] [CrossRef]
- Gajawada, S.; Kumar, A.; Celestina Vanaja, D.M.; Sri Valikala, B.S. Artificial Heart Neural Networks—An Idea. Glob. J. Comput. Sci. Technol. 2021, 21, 19–20. [Google Scholar] [CrossRef]
- Mishra, M.V.; Agarwal, S.M.; Puri, N. Comprehensive and Comparative Analysis of Neural Network. Int. J. Comput. Appl. 2018, 2, 8. [Google Scholar] [CrossRef]
- Parapuram, G.; Mokhtari, M.; Ben Hmida, J. An Artificially Intelligent Technique to Generate Synthetic Geomechanical Well Logs for the Bakken Formation. Energies 2018, 11, 680. [Google Scholar] [CrossRef]
- Sova, O.; Turinskyi, O.; Shyshatskyi, A.; Dudnyk, V.; Zhyvotovskyi, R.; Prokopenko, Y.; Hurskyi, T.; Hordiichuk, V.; Nikitenko, A.; Remez, A. Development of an algorithm to train artificial neural networks for intelligent decision support systems. East. Eur. J. Enterp. Technol. 2020, 1, 46–55. [Google Scholar] [CrossRef]
- Bal, F.; Kayaalp, F. A Novel Deep Learning-Based Hybrid Method for the Determination of Productivity of Agricultural Products: Apple Case Study. IEEE Access 2023, 11, 7808–7821. [Google Scholar] [CrossRef]
Variables | Male | Female | Total |
---|---|---|---|
Number of patients | 179 (64.90%) | 97 (35.10%) | 276 (100.00%) |
Age, mean + standard deviation (SD) | 64.49 ± 12.40 | 71.22 ± 10.47 | 66.85 ± 12.17 |
Age at first attack + SD | 58.87 ± 12.78 | 65.62 ± 10.94 | 61.24 ± 12.56 |
GFR + SD | 68.97 ± 21.09 | 58.56 ± 19.07 | 65.31 ± 20.97 |
Hyperparameter Name | Value |
---|---|
Criterion | Entropy |
Max depth | 5 |
CCP alpha | 0.018918996053595438 |
Max depth | 5 |
Max leaf nodes | 15 |
Max features | None |
Min samples leaf | 10 |
Min samples split | 11 |
Splitter | Best |
Hyperparameter Name | Value |
---|---|
N Estimators | 242 |
Class weight | Balanced |
Criterion | Gini |
Max depth | 6 |
CCP alpha | 0.009390071578941839 |
Bootstrap | True |
Max samples | 0.9670121495383591 |
Max features | Sqrt |
Min samples leaf | 15 |
Min samples split | 3 |
Hyperparameter Name | Value |
---|---|
C | 1.8183496720710062 |
L1 ratio | 0.18340450985343382 |
Max Iter | 500 |
Penalty | L1 |
Solver | Saga |
Hyperparameter Name | Value |
---|---|
Activation function | ReLU |
Optimizer | SGD |
Learning rate | 0.001 |
Loss | Sparse categorical entropy |
Validation split | 0.1 |
Epoch | 100 |
Batch size | 4 |
Model | A | P | S | F | SP | ROC AUC |
---|---|---|---|---|---|---|
Decision tree | 0.928571 | 0.866667 | 1.000000 | 0.928571 | 0.866667 | 0.933333 |
Random forest | 0.857143 | 0.846154 | 0.846154 | 0.846154 | 0.866667 | 0.856410 |
Logistic regression | 0.821429 | 0.833333 | 0.769231 | 0.800000 | 0.933333 | 0.817949 |
ANN | 0.857100 | 0.800000 | 0.923100 | 0.857100 | 0.800000 | 0.861500 |
Models | TP | TN | FP | FN | Samples |
---|---|---|---|---|---|
Decision tree | 13 | 13 | 2 | 0 | 28 |
Random forest | 11 | 13 | 2 | 2 | 28 |
Logistic regression | 10 | 13 | 2 | 3 | 28 |
ANN | 12 | 12 | 3 | 1 | 28 |
Models | ||||
---|---|---|---|---|
Class | DT | RF | LR | ANN |
Gout | 13 | 11 | 10 | 12 |
Non-gout | 13 | 13 | 13 | 12 |
Feature Name | RF Classification (%) |
---|---|
CREATIN | 0.234179 |
UREA | 0.162304 |
HAEMOGLOBIN | 0.093477 |
ALBUMIN | 0.043521 |
URIC ACID | 0.042693 |
LDH | 0.031623 |
GLUCOSE | 0.027593 |
MCV | 0.026070 |
ALT | 0.025176 |
LYMPHOCYTE | 0.024879 |
EOSINOPHIL | 0.023152 |
PLT | 0.022635 |
HDL | 0.022486 |
TOTAL PROTEIN | 0.021319 |
SEDIMENTATION | 0.020957 |
MONOCYTE | 0.020675 |
WBC | 0.020099 |
CRP | 0.019134 |
LDL | 0.018854 |
MPV | 0.017552 |
Feature Name | DT Classification (%) |
---|---|
CREATIN | 0.588792 |
HAEMOGLOBIN | 0.108985 |
URIC ACID | 0.065655 |
HDL | 0.058617 |
UREA | 0.046587 |
SEDIMENTATION | 0.023664 |
LDH | 0.016008 |
PLT | 0.015976 |
TOTAL PROTEIN | 0.014848 |
TRIGLYCERIDE | 0.013363 |
EOSINOPHIL | 0.011136 |
Feature Name | LR Classification Co-Efficient |
---|---|
CREATIN | 3.418836 |
UREA | 2.827242 |
URIC ACID | 1.579555 |
HYPERTENSION | 1.329566 |
LDH | 0.963876 |
HYPERLIPIDEMIA | 0.660478 |
URICOLYSIS | 0.651395 |
EOSINOPHIL | 0.469698 |
NOTROPHILE | 0.456201 |
HDL | 0.386265 |
MPV | 0.350879 |
GLUCOSE | 0.329433 |
MONOCYTE | 0.057605 |
Feature Name | ANN Feature Importance (%) |
---|---|
CREATIN | 0.125542 |
UREA | 0.114828 |
HAEMOGLOBIN | 0.083080 |
DIABETES | 0.067443 |
URIC ACID | 0.063294 |
CORONARY ARTERY DISEASE | 0.057614 |
HYPERTENSION | 0.044978 |
HYPERLIPIDEMIA | 0.041536 |
PLT | 0.040198 |
ALBUMIN | 0.038311 |
CRP | 0.038147 |
SEDIMENTATION | 0.032884 |
ALT | 0.028782 |
LDH | 0.025137 |
LYMPHOCYTE | 0.020704 |
EOSINOPHIL | 0.017293 |
MCV | 0.016175 |
NOTROPHILE | 0.014993 |
WBC | 0.012409 |
MONOCYTE | 0.011735 |
MPV | 0.011646 |
LDL | 0.011591 |
References | Year | Dataset | Model | Metrics | Results |
---|---|---|---|---|---|
[28] | 2023 | 2010–2019 collected dataset of 4.637 patients with type 2 diabetes and chronic kidney disease | Multivariable linear mixed-effects model | R2 | 0.74 |
[29] | 2022 | 22991 observation data for 5186 patients | dlGFR | Accuracy | 0.8830 |
[30] | 2024 | 13 different cohorts of 19.629 patients | RF | MSE | 294.24 |
Ours | 2025 | Data on 276 patients between 2018 and 2023 | DT | Accuracy | 0.9285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cüre, O.; Bal, F. Application of Machine Learning for Identifying Factors Associated with Renal Function Impairment in Gouty Arthritis Patients. Appl. Sci. 2025, 15, 3236. https://doi.org/10.3390/app15063236
Cüre O, Bal F. Application of Machine Learning for Identifying Factors Associated with Renal Function Impairment in Gouty Arthritis Patients. Applied Sciences. 2025; 15(6):3236. https://doi.org/10.3390/app15063236
Chicago/Turabian StyleCüre, Osman, and Fatih Bal. 2025. "Application of Machine Learning for Identifying Factors Associated with Renal Function Impairment in Gouty Arthritis Patients" Applied Sciences 15, no. 6: 3236. https://doi.org/10.3390/app15063236
APA StyleCüre, O., & Bal, F. (2025). Application of Machine Learning for Identifying Factors Associated with Renal Function Impairment in Gouty Arthritis Patients. Applied Sciences, 15(6), 3236. https://doi.org/10.3390/app15063236