Key Barriers to Personalized Learning in Times of Artificial Intelligence: A Literature Review
Abstract
:1. Introduction
2. Method
2.1. Formulation of Research Questions
2.2. Search Protocol
2.3. Inclusion and Exclusion Criteria
2.4. Selection and Data Extraction Process
2.5. Data Analysis and Synthesis
3. Results
3.1. General Characteristics of Studies on PL
3.2. Methodological Strategies in PL Studies
3.3. Technologies Used in PL Studies
3.4. Educational Modalities Related to PL
3.5. Factors Limiting PL
3.6. Correlational Analysis
4. Discussion
4.1. Implications for Educators
4.2. Implications for Policymakers
4.3. Implications for Technology Developers
4.4. Strategies to Overcome Challenges
Funding
Acknowledgments
Conflicts of Interest
References
- Barrera Castro, G.P.; Chiappe, A.; Becerra Rodriguez, D.F.; Sepulveda, F.G. Harnessing AI for Education 4.0: Drivers of Personalized Learning. J. e-Learn. 2024, 22, 1–14. [Google Scholar] [CrossRef]
- Rouhiainen, L. Inteligencia Artificial: 101 Cosas Que Debes Saber Hoy Sobre Nuestro Futuro; Editorial Planeta: Barcelona, Spain, 2018. [Google Scholar]
- Holmes, W.; Bialik, M.; Fadel, C. Artificial Intelligence in Education Promises and Implications for Teaching and Learning; Center for Curriculum Redesign: Boston, MA, USA, 2019. [Google Scholar]
- Dwivedi, P.; Kant, V.; Bharadwaj, K.K. Learning Path Recommendation Based on Modified Variable Length Genetic Algorithm. Educ. Inf. Technol. 2018, 23, 819–836. [Google Scholar] [CrossRef]
- Murad, D.F.; Heryadi, Y.; Isa, S.M.; Budiharto, W. Personalization of Study Material Based on Predicted Final Grades Using Multi-Criteria User-Collaborative Filtering Recommender System. Educ. Inf. Technol. 2020, 25, 5655–5668. [Google Scholar] [CrossRef]
- Ennouamani, S.; Mahani, Z.; Akharraz, L. A Context-Aware Mobile Learning System for Adapting Learning Content and Format of Presentation: Design, Validation and Evaluation. Educ. Inf. Technol. 2020, 25, 3919–3955. [Google Scholar] [CrossRef]
- OEI-UNESCO. Aprendizaje Personalizado; OEI-UNESCO: Geneva, Switzerland, 2017. [Google Scholar]
- Lee, D.; Huh, Y.; Lin, C.-Y.; Reigeluth, C.M. Technology Functions for Personalized Learning in Learner-Centered Schools. Educ. Tech. Res. Dev. 2018, 66, 1269–1302. [Google Scholar] [CrossRef]
- Aziz Hussin, A. Education 4.0 Made Simple: Ideas for Teaching. Int. J. Educ. Lit. Stud. 2018, 6, 92. [Google Scholar] [CrossRef]
- Walkington, C.; Bernacki, M.L. Appraising Research on Personalized Learning: Definitions, Theoretical Alignment, Advancements, and Future Directions. J. Res. Technol. Educ. 2020, 52, 235–252. [Google Scholar] [CrossRef]
- Lee, D.; Huh, Y.; Lin, C.-Y.; Reigeluth, C.M.; Lee, E. Differences in Personalized Learning Practice and Technology Use in High- and Low-Performing Learner-Centered Schools in the United States. Educ. Tech. Res. Dev 2021, 69, 1221–1245. [Google Scholar] [CrossRef]
- Herold, B. The Case(s) Against Personalized Learning. Educ. Week 2017, 37, 4–5. [Google Scholar]
- Li, F.; He, Y.; Xue, Q. Progress, Challenges and Countermeasures of Adaptive Learning. Educ. Technol. Soc. 2021, 24, 238–255. [Google Scholar]
- Shemshack, A.; Spector, J.M. A Systematic Literature Review of Personalized Learning Terms. Smart Learn. Environ. 2020, 7, 33. [Google Scholar] [CrossRef]
- Varona Klioukina, S.; Engel, A. Prácticas de Personalización Del Aprendizaje Mediadas Por Las Tecnologías Digitales: Una Revisión Sistemática. Edutec 2024, 87, 236–250. [Google Scholar] [CrossRef]
- Benkovska, N.; Kharchenko, N.; Kulbach, L.; Rabokorovka, G.; Bolotnykova, T. Analyzing pedagogical strategies for personalized learning to compensate for students’ learning losses. Eduweb 2024, 18, 235–244. [Google Scholar] [CrossRef]
- Kunze, A.; Rutherford, T. Blood from a Stone: Where Teachers Report Finding Time for Computer-Based Instruction. Comput. Educ. 2018, 127, 165–177. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, M.; Yu, S.; Chen, L.; Zhang, J. Evaluation of a Student-Centered Online One-to-One Tutoring System. Interact. Learn. Environ. 2023, 31, 4251–4269. [Google Scholar] [CrossRef]
- Benton, L.; Mavrikis, M.; Vasalou, A.; Joye, N.; Sumner, E.; Herbert, E.; Revesz, A.; Symvonis, A.; Raftopoulou, C. Designing for “Challenge” in a Large-scale Adaptive Literacy Game for Primary School Children. Brit. J Educ. Tech. 2021, 52, 1862–1880. [Google Scholar] [CrossRef]
- Chen, M.A.; Hwang, G.; Chang, Y. A Reflective Thinking-promoting Approach to Enhancing Graduate Students’ Flipped Learning Engagement, Participation Behaviors, Reflective Thinking and Project Learning Outcomes. Brit. J Educ. Tech 2019, 50, 2288–2307. [Google Scholar] [CrossRef]
- Jang, Y.; Choi, S.; Jung, H.; Kim, H. Practical Early Prediction of Students’ Performance Using Machine Learning and eXplainable AI. Educ. Inf. Technol. 2022, 27, 12855–12889. [Google Scholar] [CrossRef]
- Louhab, F.E.; Bahnasse, A.; Bensalah, F.; Khiat, A.; Khiat, Y.; Talea, M. Novel Approach for Adaptive Flipped Classroom Based on Learning Management System. Educ. Inf. Technol. 2020, 25, 755–773. [Google Scholar] [CrossRef]
- Lwande, C.; Oboko, R.; Muchemi, L. Learner Behavior Prediction in a Learning Management System. Educ. Inf. Technol. 2021, 26, 2743–2766. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Education 4.0 and 5.0: Integrating Artificial Intelligence (AI) for Personalized and Adaptive Learning. J. Artif. Intell. Robot. 2024, 1, 29–43. [Google Scholar] [CrossRef]
- Du Boulay, B. Escape from the Skinner Box: The Case for Contemporary Intelligent Learning Environments. Brit. J. Educ. Tech. 2019, 50, 2902–2919. [Google Scholar] [CrossRef]
- FitzGerald, E.; Kucirkova, N.; Jones, A.; Cross, S.; Ferguson, R.; Herodotou, C.; Hillaire, G.; Scanlon, E. Dimensions of Personalisation in Technology-enhanced Learning: A Framework and Implications for Design. Brit. J. Educ. Tech. 2018, 49, 165–181. [Google Scholar] [CrossRef]
- Reyes Parra, D.; Rozo García, H.A.; Buitrago Espitia, J.E. Aportes de La Tecnología al Aprendizaje Personalizado: Una Revisión a La Literatura. Rev. Diá Logos 2024, 16, 9–29. [Google Scholar] [CrossRef]
- Vidergor, H.E.; Ben-Amram, P. Khan Academy Effectiveness: The Case of Math Secondary Students’ Perceptions. Comput. Educ. 2020, 157, 103985. [Google Scholar] [CrossRef]
- Mavric, M. The Montessori Approach as a Model of Personalized Instruction. J. Montessori Res. 2020, 6, 13–25. [Google Scholar] [CrossRef]
- Hwang, G.-H.; Chen, B.; Huang, C.-W. Development and Effectiveness Analysis of a Personalized Ubiquitous Multi-Device Certification Tutoring System Based on Bloom’s Taxonomy of Educational Objectives. J. Educ. Technol. Soc. 2016, 19, 223–236. [Google Scholar]
- Borgobello, A.; Monjelat, N. Vygotsky en la Sociedad Digital. RPM 2019, 19, 1–24. [Google Scholar] [CrossRef]
- Kucirkova, N.; Gerard, L.; Linn, M.C. Designing Personalised Instruction: A Research and Design Framework. Brit. J. Educ. Tech. 2021, 52, 1839–1861. [Google Scholar] [CrossRef]
- Konijn, E.A.; Hoorn, J.F. Robot Tutor and Pupils’ Educational Ability: Teaching the Times Tables. Comput. Educ. 2020, 157, 103970. [Google Scholar] [CrossRef]
- Ramírez-Montoya, M.S.; Castillo-Martínez, I.M.; Sanabria-Z, J.; Miranda, J. Complex Thinking in the Framework of Education 4.0 and Open Innovation—A Systematic Literature Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 4. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kitchenham, B.; Pretorius, R.; Budgen, D.; Pearl Brereton, O.; Turner, M.; Niazi, M.; Linkman, S. Systematic Literature Reviews in Software Engineering—A Tertiary Study. Inf. Softw. Technol. 2010, 52, 792–805. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Pinninti, L.R. Teacher Research for Continuing Professional Development: 3R Approach. In Continuing Professional Development of English Language Teachers; Dhanavel, S.P., Ed.; Springer Nature: Singapore, 2022; pp. 117–133. ISBN 978-981-19-5068-1. [Google Scholar]
- Airyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. J. Vis. Exp. 2019, 152, e58494. [Google Scholar]
- Pech, G.; Delgado, C. Assessing the Publication Impact Using Citation Data from Both Scopus and WoS Databases: An Approach Validated in 15 Research Fields. Scientometrics 2020, 125, 909–924. [Google Scholar] [CrossRef]
- Vindrola-Padros, C.; Johnson, G.A. Rapid Techniques in Qualitative Research: A Critical Review of the Literature. Qual. Health Res. 2020, 30, 1596–1604. [Google Scholar] [CrossRef]
- Mayring, P. Qualitative Content Analysis: A Step-by-Step Guide; SAGE Publications: London, UK, 2021. [Google Scholar]
- Bulut, O.; Shin, J.; Cormier, D.C. Learning Analytics and Computerized Formative Assessments: An Application of Dijkstra’s Shortest Path Algorithm for Personalized Test Scheduling. Mathematics 2022, 10, 2230. [Google Scholar] [CrossRef]
- Melesko, J.; Ramanauskaite, S. Time Saving Students’ Formative Assessment: Algorithm to Balance Number of Tasks and Result Reliability. Appl. Sci. 2021, 11, 6048. [Google Scholar] [CrossRef]
- Shin, J.; Bulut, O. Building an Intelligent Recommendation System for Personalized Test Scheduling in Computerized Assessments: A Reinforcement Learning Approach. Behav. Res. 2022, 54, 216–232. [Google Scholar] [CrossRef]
- Oliveira, E.; Galvao De Barba, P.; Corrin, L. Enabling Adaptive, Personalised and Context-Aware Interaction in a Smart Learning Environment: Piloting the iCollab System. Australas. J. Educ. Technol. 2021, 37, 1–23. [Google Scholar] [CrossRef]
- Troussas, C.; Chrysafiadi, K.; Virvou, M. An Intelligent Adaptive Fuzzy-Based Inference System for Computer-Assisted Language Learning. Expert Syst. Appl. 2019, 127, 85–96. [Google Scholar] [CrossRef]
- Walkington, C.; Bernacki, M.L. Personalizing Algebra to Students’ Individual Interests in an Intelligent Tutoring System: Moderators of Impact. Int. J. Artif. Intell. Educ. 2019, 29, 58–88. [Google Scholar] [CrossRef]
- Kew, S.N.; Tasir, Z. Developing a Learning Analytics Intervention in E-Learning to Enhance Students’ Learning Performance: A Case Study. Educ. Inf. Technol. 2022, 27, 7099–7134. [Google Scholar] [CrossRef]
- Kleinman, E.; Shergadwala, M.; Teng, Z.; Villareale, J.; Bryant, A.; Zhu, J.; Seif El-Nasr, M. Analyzing Students’ Problem-Solving Sequences: A Human-in-the-Loop Approach. Learn. Anal. 2022, 9, 138–160. [Google Scholar] [CrossRef]
- Liu, Z.; Moon, J. A Framework for Applying Sequential Data Analytics to Design Personalized Digital Game-Based Learning for Computing Education. Educ. Technol. Soc. 2023, 26, 181–197. [Google Scholar] [CrossRef]
- Terzieva, V.; Bontchev, B.; Dankov, Y.; Paunova-Hubenova, E. How to Tailor Educational Maze Games: The Student’s Preferences. Sustainability 2022, 14, 6794. [Google Scholar] [CrossRef]
- Taherisadr, M.; Faruque, M.A.A.; Elmalaki, S. ERUDITE: Human-in-the-Loop IoT for an Adaptive Personalized Learning System. IEEE Internet Things J. 2024, 11, 14532–14550. [Google Scholar] [CrossRef]
- Harwell, M.R. Research Design for Qualitative/Quantitative/Mixed Methods. In The SAGE Handbook for Research in Education: Pursuing Ideas as the Keystone of Exemplary Inquiry; Conrad, C., Serlin, R., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2011; p. 11. ISBN 978-1-4129-8000-5. [Google Scholar]
- Almousa, O.; Alghowinem, S. Conceptualization and Development of an Autonomous and Personalized Early Literacy Content and Robot Tutor Behavior for Preschool Children. User Model User Adap. Inter. 2023, 33, 261–291. [Google Scholar] [CrossRef]
- Pflaumer, N.; Knorr, N.; Berkling, K. Appropriation of Adaptive Literacy Games into the German Elementary School Classroom. Brit. J. Educ. Tech. 2021, 52, 1917–1934. [Google Scholar] [CrossRef]
- Albano, G.; Dello Iacono, U. GeoGebra in e-learning environments: A possible integration in mathematics and beyond. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 4331–4343. [Google Scholar] [CrossRef]
- Arsovic, B.; Stefanovic, N. E-Learning Based on the Adaptive Learning Model: Case Study in Serbia. Sādhanā 2020, 45, 266. [Google Scholar] [CrossRef]
- Beemer, J.; Spoon, K.; He, L.; Fan, J.; Levine, R.A. Ensemble Learning for Estimating Individualized Treatment Effects in Student Success Studies. Int. J. Artif. Intell. Educ. 2018, 28, 315–335. [Google Scholar] [CrossRef]
- Bunting, L.; Segerstad, Y.H.A.; Barendregt, W. Swedish Teachers’ Views on the Use of Personalised Learning Technologies for Teaching Children Reading in the English Classroom. Int. J. Child Comput. Interact. 2021, 27, 100236. [Google Scholar] [CrossRef]
- Christodoulou, A.; Angeli, C. Adaptive Learning Techniques for a Personalized Educational Software in Developing Teachers’ Technological Pedagogical Content Knowledge. Front. Educ. 2022, 7, 789397. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Yan, Y. Modeling Knowledge Proficiency Using Multi-Hierarchical Capsule Graph Neural Network. Appl. Intell. 2022, 52, 7230–7247. [Google Scholar] [CrossRef]
- Islam, M.Z.; Ali, R.; Haider, A.; Islam, M.Z.; Kim, H.S. PAKES: A Reinforcement Learning-Based Personalized Adaptability Knowledge Extraction Strategy for Adaptive Learning Systems. IEEE Access 2021, 9, 155123–155137. [Google Scholar] [CrossRef]
- Shi, D.; Wang, T.; Xing, H.; Xu, H. A Learning Path Recommendation Model Based on a Multidimensional Knowledge Graph Framework for E-Learning. Knowl. Based Syst. 2020, 195, 105618. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Zou, L.; Miao, J.; Zhang, Y.-X.; Hwang, G.-J.; Zhu, Y. An Individualized Intervention Approach to Improving University Students’ Learning Performance and Interactive Behaviors in a Blended Learning Environment. Interact. Learn. Environ. 2020, 28, 231–245. [Google Scholar] [CrossRef]
- Wang, R.; Chen, L.; Solheim, I. Modeling Dyslexic Students’ Motivation for Enhanced Learning in E-Learning Systems. ACM Trans. Interact. Intell. Syst. 2020, 10, 1–34. [Google Scholar] [CrossRef]
- Hang, C.N.; Wei Tan, C.; Yu, P.-D. MCQGen: A Large Language Model-Driven MCQ Generator for Personalized Learning. IEEE Access 2024, 12, 102261–102273. [Google Scholar] [CrossRef]
- Iatrellis, O.; Stamatiadis, E.; Samaras, N.; Panagiotakopoulos, T.; Fitsilis, P. An Intelligent Expert System for Academic Advising Utilizing Fuzzy Logic and Semantic Web Technologies for Smart Cities Education. J. Comput. Educ. 2023, 10, 293–323. [Google Scholar] [CrossRef]
- Ogunseiju, O.R.; Gonsalves, N.; Akanmu, A.A.; Abraham, Y.; Nnaji, C. Automated Detection of Learning Stages and Interaction Difficulty from Eye-Tracking Data within a Mixed Reality Learning Environmen. Smart Sustain. Built Environ. 2023, 13, 1473–1489. [Google Scholar] [CrossRef]
- Hernandez Cardenas, L.S.; Castano, L.; Cruz Guzman, C.; Nigenda Alvarez, J.P. Personalised Learning Model for Academic Leveling and Improvement in Higher Education. Australas. J. Educ. Technol. 2022, 38, 72–82. [Google Scholar] [CrossRef]
- Emara, N.; Ali, N.; Abu Khurma, O. Adaptive Learning Framework (Alef) in UAE Public Schools from the Parents’ Perspective. Soc. Sci. 2023, 12, 297. [Google Scholar] [CrossRef]
- Temdee, P. Smart Learning Environment for Enhancing Digital Literacy of Thai Youth: A Case Study of Ethnic Minority Group. Wirel. Pers. Commun. 2021, 118, 1841–1852. [Google Scholar] [CrossRef]
- Salinas Ibáñez, J.; De Benito Crosetti, B.; Moreno García, J.; Lizana Carrió, A. Nuevos Diseños y Formas Organizativas Flexibles en Educación Superior: Construcción de Itinerarios Personales de Aprendizaje. Pixel-Bit 2022, 63, 65–91. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Paul, A.; Kim, J.H.; Karthigaikumar, P. An Immersive Learning Model Using Evolutionary Learning. Comput. Electr. Eng. 2018, 65, 236–249. [Google Scholar] [CrossRef]
- Van Schoors, R.; Elen, J.; Raes, A.; Depaepe, F. Tinkering the Teacher–Technology Nexus: The Case of Teacher- and Technology-Driven Personalisation. Educ. Sci. 2023, 13, 349. [Google Scholar] [CrossRef]
- Sheromova, T.S.; Khuziakhmetov, A.N.; Kazinets, V.A.; Sizova, Z.M.; Buslaev, S.I.; Borodianskaia, E.A. Learning Styles and Development of Cognitive Skills in Mathematics Learning. EURASIA J. Math. Sci. Tech. Ed. 2020, 16, em1895. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-S.; Perrotta, C.; Gašević, D. Empowering Learners with Personalised Learning Approaches? Agency, Equity and Transparency in the Context of Learning Analytics. Assess. Eval. High. Educ. 2020, 45, 554–567. [Google Scholar] [CrossRef]
- Tsybulsky, D. Digital Curation for Promoting Personalized Learning: A Study of Secondary-School Science Students’ Learning Experiences. J. Res. Technol. Educ. 2020, 52, 429–440. [Google Scholar] [CrossRef]
- Niu, S.J.; Luo, J.; Niemi, H.; Li, X.; Lu, Y. Teachers’ and Students’ Views of Using an AI-Aided Educational Platform for Supporting Teaching and Learning at Chinese Schools. Educ. Sci. 2022, 12, 858. [Google Scholar] [CrossRef]
- Daruwala, I.; Bretas, S.; Ready, D.D. When Logics Collide: Implementing Technology-Enabled Personalization in the Age of Accountability. Educ. Res. 2021, 50, 157–164. [Google Scholar] [CrossRef]
- Bingham, A.J. How Distributed Leadership Facilitates Technology Integration: A Case Study of “Pilot Teachers”. Teach. Coll. Rec. Voice Scholarsh. Educ. 2021, 123, 1–34. [Google Scholar] [CrossRef]
- Fake, H.; Dabbagh, N. Personalized Learning Within Online Workforce Learning Environments: Exploring Implementations, Obstacles, Opportunities, and Perspectives of Workforce Leaders. Tech. Know. Learn. 2020, 25, 789–809. [Google Scholar] [CrossRef]
- Nitkin, D.; Ready, D.D.; Bowers, A.J. Using Technology to Personalize Middle School Math Instruction: Evidence from a Blended Learning Program in Five Public Schools. Front. Educ. 2022, 7, 646471. [Google Scholar] [CrossRef]
- Schmid, R.; Petko, D. Does the Use of Educational Technology in Personalized Learning Environments Correlate with Self-Reported Digital Skills and Beliefs of Secondary-School Students? Comput. Educ. 2019, 136, 75–86. [Google Scholar] [CrossRef]
Scopus | Web of Science (Wos) |
---|---|
TITLE-ABS-KEY (“personalized learning” OR “personalized adaptative learning” OR “adaptative learning” AND experience OR case AND study) AND PUBYEAR > 2017 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (LANGUAGE, “English”)) | ((“personalized learning” OR “personalized adaptative learning” OR “adaptative learning”) AND (experience OR case AND study)) (All Fields) and 2024 or 2023 or 2022 or 2021 or 2020 or 2019 or 2018 (Publication Years) and Article (Document Types) and English (Languages) |
Technology | N° of Studies |
---|---|
Combined technologies | 29 (42.6%) |
Artificial Intelligence | 20 (29.4%) |
Other Platforms | 12 (17.6%) |
Learning Management System | 5 (7.3%) |
Learning Analytics | 2 (3.1%) |
Total | 68 (100%) |
Category | # Studies | Subcategories |
---|---|---|
Conceptual | 4 (6.1%) | Implementation Terminology Theoretical |
Institutional | 10 (14.7%) | Infrastructure Time Workload Financing Teacher training |
Psychological | 20 (29.4%) | Resistance Emotional Distraction Commitment Motivation |
Technological | 48 (70.6%) | Design Skills Support Incompatibility Methodology Effectiveness Ethical Access |
Pedagogical | 29 (42.6%) | Resource Design Evaluation Support Planning Effectively Methodology |
Academic Level | E-Learning | B-Learning | AI | OP | LMS | Technol. | Pedag. | Psychol. |
---|---|---|---|---|---|---|---|---|
Higher | 63.60% | 31.80% | 59.10% | 27.30% | 31.80% | 63.60% | 40.90% | 27.30% |
Secondary | 22.20% | 66.70% | 44.40% | 55.60% | 22.20% | 44.40% | 55.60% | 33.30% |
Elementary | 12.50% | 50.00% | 50.00% | 50.00% | 12.50% | 37.50% | 50.00% | 37.50% |
Continuous | 54.50% | 27.30% | 54.50% | 36.40% | 18.20% | 54.50% | 27.30% | 18.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera Castro, G.P.; Chiappe, A.; Ramírez-Montoya, M.S.; Alcántar Nieblas, C. Key Barriers to Personalized Learning in Times of Artificial Intelligence: A Literature Review. Appl. Sci. 2025, 15, 3103. https://doi.org/10.3390/app15063103
Barrera Castro GP, Chiappe A, Ramírez-Montoya MS, Alcántar Nieblas C. Key Barriers to Personalized Learning in Times of Artificial Intelligence: A Literature Review. Applied Sciences. 2025; 15(6):3103. https://doi.org/10.3390/app15063103
Chicago/Turabian StyleBarrera Castro, Gina Paola, Andrés Chiappe, María Soledad Ramírez-Montoya, and Carolina Alcántar Nieblas. 2025. "Key Barriers to Personalized Learning in Times of Artificial Intelligence: A Literature Review" Applied Sciences 15, no. 6: 3103. https://doi.org/10.3390/app15063103
APA StyleBarrera Castro, G. P., Chiappe, A., Ramírez-Montoya, M. S., & Alcántar Nieblas, C. (2025). Key Barriers to Personalized Learning in Times of Artificial Intelligence: A Literature Review. Applied Sciences, 15(6), 3103. https://doi.org/10.3390/app15063103