Cutting Force Estimation Using Milling Spindle Vibration-Based Machine Learning
Abstract
:1. Introduction
2. Relationship Between Tool Wear and Cutting Force
2.1. Machining Experiments
2.2. Effect of Tool Wear on Cutting Force
3. Cutting Force Estimation Using LSTM-Based Time-Series Machine Learning
3.1. LSTM-Based Time-Series Machine Learning
3.2. LSTM Architecture for Cutting Force Estimation
4. Training and Analysis of Cutting Force Estimation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Byrne, G.; Dornfeld, D.; Inasaki, I.; Ketteler, G.; König, W.; Teti, R. Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Ann. 1995, 44, 541–567. [Google Scholar] [CrossRef]
- de Leon, M.A.L.; Kolarik, J.; Byrtus, R.; Koziorek, J.; Zmij, P.; Martinek, R. Tool condition monitoring methods applicable in the metalworking process. Arch. Comput. Methods Eng. 2024, 31, 221–242. [Google Scholar] [CrossRef]
- Siddhpura, A.; Paurobally, R. A review of flank wear prediction methods for tool condition monitoring in a turning process. Int. J. Adv. Manuf. Technol. 2013, 65, 371–393. [Google Scholar] [CrossRef]
- Audy, J. An appraisal of techniques and equipment for cutting force measurement. J. Zhejiang Univ. A 2006, 7, 1781–1789. [Google Scholar] [CrossRef]
- Hanif, M.I.; Aamir, M.; Ahmed, N.; Maqsood, S.; Muhammad, R.; Akhtar, R.; Hussain, I. Optimization of facing process by indigenously developed force dynamometer. Int. J. Adv. Manuf. Technol. 2019, 100, 1893–1905. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, Y.; Li, Y.; Zhao, Y.; Wang, P. A novel dynamometer for monitoring milling process. Int. J. Adv. Manuf. Technol. 2017, 92, 2535–2543. [Google Scholar] [CrossRef]
- Raheem, A.; Khan, R.; Mazhar, A.R.; Ya, H.H.; Alam, M.A.; Ahmed, T.; Azeem, M. A review of recent studies of dynamometers for cutting force measurement in machining processes. In Proceedings of the International Conference on Robotics and Automation in Industry, Rawalpindi, Pakistan, 26–27 October 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, W. Tool wear condition monitoring in milling process based on current sensors. IEEE Access 2020, 8, 95491–95502. [Google Scholar] [CrossRef]
- Li, X.; Djordjevich, A.; Venuvinod, P. Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring. IEEE Trans. Ind. Electron. 2000, 47, 697–702. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, L.; Yang, Z.; Bo, J.; Zhang, Y. Tool wear condition monitoring by combining spindle motor current signal analysis and machined surface image processing. Int. J. Adv. Manuf. Technol. 2021, 116, 2697–2709. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, B.; Zhu, L. Sequential spindle current-based tool condition monitoring with support vector classifier for milling process. Int. J. Adv. Manuf. Technol. 2017, 92, 3319–3328. [Google Scholar] [CrossRef]
- Li, X. A brief review: Acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tools Manuf. 2002, 42, 157–165. [Google Scholar] [CrossRef]
- Jemielniak, K.; Kossakowska, J. Tool wear monitoring based on wavelet transform of raw acoustic emission signal. Adv. Manuf. Sci. Technol. 2010, 34, 5–16. [Google Scholar]
- Hase, A.; Wada, M.; Koga, T.; Mishina, H. The relationship between acoustic emission signals and cutting phenomena in turning process. Int. J. Adv. Manuf. Technol. 2014, 70, 947–955. [Google Scholar] [CrossRef]
- Kishawy, H.A.; Hegab, H.; Umer, U.; Mohany, A. Application of acoustic emissions in machining processes: Analysis and critical review. Int. J. Adv. Manuf. Technol. 2018, 98, 1391–1407. [Google Scholar] [CrossRef]
- Sun, X. Milling tool condition monitoring based on an integrated wireless vibration sensing tool holder. Int. J. Precis. Eng. Manuf. 2024, 25, 2611–2623. [Google Scholar] [CrossRef]
- Arslan, H.; Er, A.O.; Orhan, S.; Aslan, E. Tool condition monitoring in turning using statistical parameters of vibration signal. Int. J. Acoust. Vib. 2016, 21, 371–378. [Google Scholar] [CrossRef]
- Yesilyurt, I.; Ozturk, H. Tool condition monitoring in milling using vibration analysis. Int. J. Prod. Res. 2007, 45, 1013–1028. [Google Scholar] [CrossRef]
- Kaliyannan, D.; Thangamuthu, M.; Pradeep, P.; Gnansekaran, S.; Rakkiyannan, J.; Pramanik, A. Tool Condition Monitoring in the Milling Process Using Deep Learning and Reinforcement Learning. J. Sens. Actuator Netw. 2024, 13, 42. [Google Scholar] [CrossRef]
- Caggiano, A.; Mattera, G.; Nele, L. Smart Tool Wear Monitoring of CFRP/CFRP Stack Drilling Using Autoencoders and Memory-Based Neural Networks. Appl. Sci. 2023, 13, 3307. [Google Scholar] [CrossRef]
- Turšič, N.; Klančnik, S. Tool Condition Monitoring Using Machine Tool Spindle Current and Long Short-Term Memory Neural Network Model Analysis. Sensors 2024, 24, 2490. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Wu, K.-D.; Shih, W.-C.; Hsu, P.-K.; Hung, J.-P. Prediction of Surface Roughness Based on Cutting Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network. Appl. Sci. 2020, 10, 3941. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Yao, J.; Yu, T.; Qu, S.; Zhao, J. The Investigation of Graphene Oxide-Enhanced Hybrid Slurry Preparation and Its Polishing Characteristic on CVD Single Crystal Diamond. Materials 2024, 17, 6053. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zeng, Y.; Starly, B. Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis and prognosis. SN Appl. Sci. 2021, 3, 442. [Google Scholar] [CrossRef]
- Coto-Jiménez, M. Robustness of LSTM neural networks for the enhancement of spectral parameters in noisy speech signals. In Advances in Computational Intelligence: MICAI 2018 Proceedings, Part II; Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H., Eds.; Springer: Cham, Switzerland, 2018; pp. 227–238. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Bu, L.; Nie, S.; Bai, Y.; Zhao, Y.; Mei, N. Methodology and experimental verification for predicting the remaining useful life of milling cutters based on hybrid CNN-LSTM-Attention-PSA. Machines 2024, 12, 752. [Google Scholar] [CrossRef]
List | Specifications | ||
---|---|---|---|
Dynamometer (9257B & 5167A81 Kistler, Winterthur, Switzerland) | Range Fx, Fy | kN | −5~5 |
Sensitivity | pC/N | −7.5 | |
Analog output | V | −10~10 | |
Vibration sensor (8688A10 & 5134B, Kistler) | Range | g | −10~10 |
Sensitivity | mV/g | 500 | |
Analog output | V | −5~5 | |
Data acquisition (DAQ) (PXIe-1092 & PXIe-6363, NI, Austin, TX, USA) | Analog input | V | −10~10 |
ADC resolution | bit | 16 | |
Sample rate | Sample/s | Max 2M |
List | Specifications | ||
---|---|---|---|
Machining center (Mytrunnion-5G, Kitamura, Toyama-ken, Japan) | Spindle Speed | rpm | 20~20,000 |
Travel (X, Y, Z) | mm | 815 × 745 × 500 | |
Accuracy | um | 0.99/Full Stroke | |
Endmill (Tool) (WALTER, Tübingen, Germany) | Tool diameter | mm | 16, |
Number of teeth | 4 | ||
Corner radius | mm | 3 | |
Workpiece | Materials | Ti-6Al-4V | |
Size | mm | 100 × 100 × 65 | |
Machining condition | Radial depth | mm | 3 |
Axial depth | mm | 5 | |
Cutting speed | m/min | 60 | |
Feed per tooth | mm/teeth | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.-D.; Lee, H.-H.; Ha, K.-N.; Kim, S.-R.; Lee, M.C. Cutting Force Estimation Using Milling Spindle Vibration-Based Machine Learning. Appl. Sci. 2025, 15, 2336. https://doi.org/10.3390/app15052336
Ryu J-D, Lee H-H, Ha K-N, Kim S-R, Lee MC. Cutting Force Estimation Using Milling Spindle Vibration-Based Machine Learning. Applied Sciences. 2025; 15(5):2336. https://doi.org/10.3390/app15052336
Chicago/Turabian StyleRyu, Je-Doo, Hoon-Hee Lee, Kyoung-Nam Ha, Sung-Ryul Kim, and Min Cheol Lee. 2025. "Cutting Force Estimation Using Milling Spindle Vibration-Based Machine Learning" Applied Sciences 15, no. 5: 2336. https://doi.org/10.3390/app15052336
APA StyleRyu, J.-D., Lee, H.-H., Ha, K.-N., Kim, S.-R., & Lee, M. C. (2025). Cutting Force Estimation Using Milling Spindle Vibration-Based Machine Learning. Applied Sciences, 15(5), 2336. https://doi.org/10.3390/app15052336