Biological Potential of Tsuga canadensis: A Study on Seed, Cone Essential Oils, and Seed Lipophilic Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hydrodistillation
2.3. Extraction
2.4. Fatty Acids Methyl Esters (FAMEs) Determination
2.5. Methodology for Tocopherol Detection and Quantification
2.6. Methodology for Phytosterol Detection and Quantification
2.7. Analytical Techniques of Bioactive Compounds
2.8. Identification of Bioactive Compounds
2.9. Cell Culture
2.10. Cell Viability Assay
2.11. Statistical Analysis
2.12. Bacterial Strains and Culture Conditions
2.13. Determination of the Effectiveness of the EOs Against the Tested Bacteria
3. Results and Discussion
3.1. Composition of Seed and Cone EOs
3.2. Composition of Seed Lipophilic Extract
3.3. Cell Cytotoxicity Activity of T. canadensis Seed and Cone EOS
3.4. Antimicrobial Activities of T. canadensis Seed and Cone EOs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, K.L.; Goebel, P.C. The foundation species influence of Eastern hemlock (Tsuga canadensis) on biodiversity and ecosystem function on the Unglaciated Allegheny Plateau. For. Ecol. Manag. 2013, 289, 143–152. [Google Scholar] [CrossRef]
- Garr, H.D.; Éwe, G.E. Hemlock bark (Tsuga canadensis) for pharmaceutical purposes. J. Am. Pharm. Assoc. 1920, 9.6, 567–573. [Google Scholar]
- Ömer, K.; Kocak, A. Volatile constituents of Juniperus communis L., Taxus canadensis Marshall. and Tsuga canadensis (L.) Carr. from Canada. J. Agric. Sci. Technol. B 2014, 4, 135–140. [Google Scholar]
- Craft, J.D.; Setzer, W.N. Leaf essential oil composition of Tsuga canadensis growing wild in North Alabama and Northwest Georgia. Am. J. Essent. Oils Nat. Prod. 2017, 5, 26–29. [Google Scholar]
- Hofmann, T.; Albert, L.; Németh, L.; VrSanská, M.; Schlosserová, N.; Voběrková, S.; Visi-Rajczi, E. Antioxidant and Antibacterial Properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carriè re) Cone Extracts. Forests 2021, 12, 1189. [Google Scholar] [CrossRef]
- Royer, M.; Houde, R.; Viano, Y.; Stevanovic, T. Non-wood forest products based on extractives—A new opportunity for the Canadian forest industry part 1: Hardwood forest species. J. Food Res. 2012, 1, 8. [Google Scholar] [CrossRef]
- Hofmann, T.; Visi-Rajczi, E.; Albert, L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind. Crop. Prod. 2020, 145, 111935. [Google Scholar] [CrossRef]
- Thanh, T.T.; Vergnes, M.; Kaloustian, J.; El-Moselhy, T.F.; Amiot-Carlin, M.; Portugal, H. Effect of storage and heating on phytosterol concentrations in vegetable oils determined by GC/MS. J. Sci. Food Agric. 2006, 86, 220–225. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Szoka, Ł.; Karna, E.; Wiktorowska-Owczarek, A.; Sienkiewicz, M. Abies concolor seeds and cones as new source of essential composition and biological activity. Molecules 2017, 22, 1880. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Smeds, A.; Willfor, S. Chemical Composition and Content of Lipophilic Seed Extractives of Some Abies and Picea Species by Chem. Biodiversity 2016, 13, 1194–1201. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed.; CLSI document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Sienkiewicz, M.; Stobiecka, A.; Maciąg, A.; Szoka, Ł.; Karna, E. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates. Chem. Biodivers. 2015, 12, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Szoka, Ł.; Karna, E.; Wiktorowska-Owczarek, A.; Sienkiewicz, M. Composition and biological activity of Picea pungens and Picea orientalis seed and cone essential oils. Chem. Biodivers. 2017, 14, e1600264. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Németh-Zámboriné, E. Natural variability of essential oil components. In Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2016; pp. 87–125. [Google Scholar]
- Bohm, B.A.; Bruce, A.B. The Geography of Phytochemical Races; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet. Sci. 2013, 35, 484–490. [Google Scholar] [CrossRef]
- Wolff, R.L.; Lavialle, O.; Frédérique, P.; Aitzetmüller, K. Abietoid Seed Fatty Acid Compositions—A Review of the Genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and Preliminary Inferences on the Taxonomy of Pinaceae. Lipids 2002, 36, 1–8. [Google Scholar] [CrossRef]
- Wolff, R.L.; Destaillats, F.; Angers, P. α-Linolenic acid and its Δ5-desaturation product, coniferonic acid, in the seed lipids of Tsuga and Hesperopeuce as a taxonomic means to differentiate the two genera. Lipids 2001, 36, 211–213. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef]
- Ambrozova GPekarova, M.; Lojek, A. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw macrophages. Eur. J. Nutr. 2010, 49, 133–139. [Google Scholar] [CrossRef]
- Miazek, K.; Beton, K.; Śliwińska, A.; Brożek-Płuska, B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Genomics of Drug Sensitivity in Cancer On-Line Database, Sanger Institute and Massachusetts General Hospital Cancer Centre. Available online: https://www.cancerrxgene.org/ (accessed on 25 January 2025).
- Syazwani Ridzuan, A.; Mohd Amin, I.; Goot Heah, K.; Zulkapli, R. Vitamin E isomers and cancer research: A review. Asia Pac. J. Mol. Biol. Biotechnol. 2022, 30, 1–10. [Google Scholar] [CrossRef]
Compound | Seeds | Cones | RIexp. | RIlit. | |
---|---|---|---|---|---|
[%] | [%] | ||||
1 | Tricyclene | 5.4 | 1.5 | 916 | 927 |
2 | β-Thujene | 0.1 | 0.1 | 921 | 932 |
3 | α-Pinene | 10.2 | 22.9 | 931 | 936 |
4 | Camphene | 11.7 | 3.9 | 940 | 950 |
5 | Thuja-2,4(10)-diene | 0.0 | 0.6 | 943 | 957 |
6 | Sabinene | 0.3 | 0.0 | 970 | 973 |
7 | β-pinene | 1.3 | 19.6 | 973 | 978 |
8 | Myrcene | 0.6 | 23.1 | 985 | 987 |
9 | α-Phellandrene | 0.3 | 2.8 | 995 | 1002 |
10 | δ-Car-3-ene | tr | 0.0 | 1005 | 1010 |
11 | α-Terpinene | tr | 0.2 | 1006 | 1013 |
12 | p-Cymene | 0.7 | 1.8 | 1009 | 1015 |
13 | Limonene | 0.3 | 3.1 | 1018 | 1020 |
14 | β-Phellandrene | 1.3 | 1.7 | 1019 | 1025 |
15 | γ-Terpinene | 0.1 | 0.2 | 1046 | 1051 |
16 | trans-Sabinene hydrate | 0.1 | tr | 1053 | 1053 |
17 | Camphenilone | tr | tr | 1058 | 1058 |
18 | α-Pinene epoxide | 0.2 | tr | 1063 | 1071 |
19 | Campholen-6-ol | tr | 0.1 | 1065 | 1074 |
20 | p-Cymenene | tr | tr | 1068 | 1075 |
21 | Terpinolene | 0.1 | 0.4 | 1075 | 1082 |
22 | cis-Sabinene hydrate | 0.1 | 0.0 | 1079 | 1082 |
23 | Linallol | 0.1 | tr | 1082 | 1086 |
24 | Perillene | 0.1 | 0.1 | 1084 | 1090 |
25 | α-Fenchol | tr | 0.1 | 1093 | 1086 |
26 | α-Campholenal | 0.3 | 0.3 | 1099 | 1105 |
27 | trans-p-Mentha-2,8-dien-1-ol | 0.1 | 0.1 | 1100 | 1113 |
28 | trans-p-Menth-2-en-1-ol | 0.1 | 0.1 | 1102 | 1116 |
29 | Camphor | 0.3 | 0.1 | 1114 | 1123 |
30 | trans-Pinocarveol | 0.7 | 0.0 | 1120 | 1126 |
31 + 32 | trans-Pinocarveol + cis-Verbenol | 0.0 | 1.5 | 1119 | 1126 + 1132 |
32 | cis-Verbenol | 0.3 | 0.0 | 1121 | 1132 |
33 | trans-Verbenol | 1.8 | 0.3 | 1124 | 1136 |
34 | p-Mentha-1,5-dien-8-ol | 0.0 | 0.3 | 1126 | 1136 |
35 | Pinocarvone | 0.1 | 0.3 | 1133 | 1136 |
36 | cis-Sabinol | tr | tr | 1139 | 1140 |
37 | β-Pinene epoxide | 0.2 | 0.1 | 1141 | 1143 |
38 | α-Phellandren-8-ol | tr | 0.3 | 1144 | 1143 |
39 | Isoborneol | 0.4 | 0.7 | 1145 | 1142 |
40 | Borneol | 0.5 | tr | 1147 | 1150 |
41 | Cryptone | 0.0 | 0.1 | 1154 | 1132 |
42 | Terpinen-4-ol | 0.2 | 0.6 | 1158 | 1164 |
43 | Myrtenal | 0.4 | 0.7 | 1166 | 1172 |
44 | α-Terpienol | 0.1 | 2.2 | 1172 | 1176 |
45 | Myrtenol | 0.3 | 1.0 | 1177 | 1178 |
46 | cis-Piperitol | 0.1 | tr | 1190 | 1181 |
47 | trans-Carveol | tr | 0.1 | 1198 | 1200 |
48 | cis-Carveol | 0.1 | 0.0 | 1205 | 1210 |
49 | Neral | 0.1 | 0.1 | 1216 | 1215 |
50 | Piperitone | 0.3 | tr | 1220 | 1226 |
51 | Bornyl acetate | 41.4 | 7.1 | 1267 | 1270 |
52 | trans-Pinocarvyl acetate | 0.0 | 0.2 | 1275 | 1287 |
53 | Myrtenyl acetate | 0.6 | 0.1 | 1304 | 1304 |
54 | α-Cubebene | 0.1 | 0.0 | 1344 | 1355 |
55 | α-Ylangene | 0.1 | 0.0 | 1367 | 1376 |
56 | α-Copaene | 0.2 | 0.0 | 1372 | 1379 |
57 + 58 | β-Cubebene + β-Elemene | 0.3 | 0.0 | 1383 | 1384 + 1387 |
59 | (E)-β-Caryophellene | 1.9 | 0.0 | 1411 | 1421 |
60 | β-Copaene | 0.1 | 0.0 | 1423 | 1430 |
61 | α-Humulene | 1.9 | tr | 1444 | 1455 |
62 | γ-Muurolene | 0.9 | 0.1 | 1567 | 1474 |
63 | Germacrene D | 2.9 | 0.0 | 1478 | 1479 |
64 | β-Selinene | 0.2 | 0.0 | 1481 | 1486 |
65 | γ-Amorphene | 0.3 | 0.0 | 1485 | 1492 |
66 + 67 | α-Selinene + α-Muurolene | 0.4 | 0.0 | 1491 | 1494 |
68 | δ-Amorphene | 0.1 | 0.0 | 1498 | 1499 |
69 | γ-Cadinene | 0.8 | tr | 1510 | 1507 |
70 | δ-Cadinene | 0.9 | 0.0 | 1514 | 1520 |
71 + 72 | α-Calacorene + α-Cadinene | 0.2 | tr | 1540 | 1539 + 1539 |
73 | β-Calacorene | 0.2 | 0.1 | 1538 | 1541 |
74 | (E)-Nerolidol | 0.2 | tr | 1555 | 1547 |
75 | Germacrene D-4-ol | 0.2 | 0.0 | 1566 | 1559 |
76 | (E)-β-Caryophyllene oxide | 1.3 | 0.1 | 1567 | 1576 |
77 | Salvial-4(14)-en-1-one | 0.2 | tr | 1579 | 1592 |
78 | Humulene epoxide II | 1.0 | 0.1 | 1593 | 1601 |
79 | allo-Aromadendrene epoxide | 0.2 | 0.0 | 1626 | 1623 |
80 | T-Cadinol | tr | tr | 1630 | 1628 |
81 | Ledene oxide II | 0.5 | 0.0 | 1640 | 1641 |
82 | α-Cadinol | 0.1 | tr | 1637 | 1643 |
83 | Amorpha-4,7(11)-dien-3-one | tr | 0.0 | 1670 | 1677 |
84 | Amorpha-4,7(11)-dien-8-one | 0.3 | tr | 1669 | 1679 |
85 | 18-Norabieta-8,11,13-triene | 0.3 | 0.0 | 1998 | 1994 |
86 | Pimara-7,15-diene | 0.2 | 0.1 | 2009 | 1999 |
87 | Abietatriene | 0.2 | 0.1 | 2036 | 2039 |
88 | 13-epi-Manool | 0.4 | 0.1 | 2041 | 2057 |
89 | Abieta-8(14),13(15)-diene | 0.5 | tr | 2075 | 2071 |
90 | Pimara-7,15-dien-3-one | 0.4 | 0.3 | 2212 | 2227 |
91 | Dehydroabietal | 0.1 | 0.2 | 2232 | 2265 |
92 | Abietal | 0.1 | tr | 2296 | 2291 |
93 | Pentacosane | tr | tr | 2495 | 2500 |
94 | Abietol | tr | tr | 2296 | 2388 |
Sum of identified [%] | 99.1 | 99.7 | |||
Yield of essential oil [%] | 0.1 | 0.1 |
Compound | Amount |
---|---|
[% w/w of Dry Extract] | |
Palmitic (C16:0) | 0.025 |
Palmitoleic (C16:1; 9; cis) | 0.002 |
14-Methylhexadecanoic (C17:0) | 0.004 |
Stearic (C18:0) | 0.010 |
Oleic (C18:1; 9; cis) | 0.089 |
Elaidic (C18:1; 9; trans) | 0.011 |
Linoleic (C18:2; 9,12; cis) | 0.408 |
Pinolenic (C18:3; 5,9,12; cis) | 0.002 |
α-Linolenic (C18:3; 9,12,15; cis) | 0.004 |
Nonanoic (C19:0) | 0.010 |
Icosanoic (C20:0) | 0.001 |
Icos-11-enoic (C20:1; 11; cis) | 0.004 |
Icosa-11,14-trienoic (C20:2; 11,14; cis) | 0.015 |
Sciadonic (C20:3; 5,11,14; cis) | 0.154 |
Sum of identified fatty acids | 0.739 |
Not identified lipid extractives | |
β-Tocopherol | 0.0291 |
Sum of identified tocopherols (vit. E) | 0.0291 |
β-Sitosterol (24-α-ethylcholesterol) | 0.1532 |
Campesterol (24-α-methylocholesterol) | 0.0192 |
Sum of identified phytosterols | 0.1724 |
Tested Substance | MIC 2 (µL/mL) | MBC 3 (µL/mL) | MBC/MIC 4 | Properties |
---|---|---|---|---|
Cone EO | 1.95 ± 0.00 A | 13.02 ± 4.51 A | 7 | bacteriostatic |
Seed EO | 3.91 ± 0.00 A | 31.25 ± 0.00 A | 8 | bacteriostatic |
Thymol 1 | 1.90 ± 0.00 B | 3.80 ± 0.00 B | 2 | bactericidal |
Gentamycin (µg/mL) | 0.31 ± 0.00 B | 0.61 ± 0.00 | 2 | bactericidal |
Tested Substance | MIC 2 (µL/mL) | MBC 3 (µL/mL) | MBC/MIC 4 | Properties |
---|---|---|---|---|
Cone EO | 7.81 ± 0.00 A | 62.50 ± 0.00 A | 8 | bacteriostatic |
Seed EO | 13.02 ± 4.51 A | 62.50 ± 0.00 A | 5 | bacteriostatic |
Thymol 1 | 4.07 ± 1.41 B | 8.13 ± 2.81 B | 2 | bactericidal |
Gentamycyna (µg/mL) | 0.51 ± 0.18 B | 1.22 ± 0.00 B | 2 | bactericidal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wajs-Bonikowska, A.; Maciejczyk, E.; Szoka, Ł.; Kwiatkowski, P.; Meena, S.N.; Banaszczak, P. Biological Potential of Tsuga canadensis: A Study on Seed, Cone Essential Oils, and Seed Lipophilic Extract. Appl. Sci. 2025, 15, 1713. https://doi.org/10.3390/app15041713
Wajs-Bonikowska A, Maciejczyk E, Szoka Ł, Kwiatkowski P, Meena SN, Banaszczak P. Biological Potential of Tsuga canadensis: A Study on Seed, Cone Essential Oils, and Seed Lipophilic Extract. Applied Sciences. 2025; 15(4):1713. https://doi.org/10.3390/app15041713
Chicago/Turabian StyleWajs-Bonikowska, Anna, Ewa Maciejczyk, Łukasz Szoka, Paweł Kwiatkowski, Surya Nandan Meena, and Piotr Banaszczak. 2025. "Biological Potential of Tsuga canadensis: A Study on Seed, Cone Essential Oils, and Seed Lipophilic Extract" Applied Sciences 15, no. 4: 1713. https://doi.org/10.3390/app15041713
APA StyleWajs-Bonikowska, A., Maciejczyk, E., Szoka, Ł., Kwiatkowski, P., Meena, S. N., & Banaszczak, P. (2025). Biological Potential of Tsuga canadensis: A Study on Seed, Cone Essential Oils, and Seed Lipophilic Extract. Applied Sciences, 15(4), 1713. https://doi.org/10.3390/app15041713