Physical and Sensory Properties of Vegan Organic Microalgae Pasta with High Protein and/or Fiber Content
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Pasta Production
2.2.1. Small-Scale Production for Trials
2.2.2. Industrial Scale-Up Using Bronze Wire Drawing
2.3. Physical Analyses
2.3.1. Net Power Consumption
2.3.2. Residual Moisture Content After Drying
2.3.3. Color Analysis
2.3.4. Appearance
2.3.5. Optimal Cooking Time
2.3.6. Water Absorption
2.3.7. Cooking Losses
2.3.8. Bite Resistance/Firmness
2.4. Sensory Evaluation
2.4.1. Evaluation by German Panelists
2.4.2. Evaluation of Up-Scaled Samples by Spanish Panelists
2.5. Data Analysis
2.5.1. Statistical Evaluation
2.5.2. Principal Component Analysis
2.5.3. Multiple Logistic Regression Analysis
3. Results
3.1. Processing, Drying and Appearance
3.2. Pasta Quality Parameters and Bite Resistance
3.3. Changes in Sensory Pasta Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-Making Process: A Narrative Review on the Relation between Process Variables and Pasta Quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- I.P.O. International Pasta Organisation—Annual Report. Available online: https://internationalpasta.org/annual-report/ (accessed on 21 January 2025).
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed]
- Baune, M.-C.; Lickert, T.; Schilling, F.; Bindrich, U.; Tomasevic, I.; Heinz, V.; Smetana, S.; Terjung, N. Impact of Four Different Chlorella vulgaris Strains on the Properties of Durum Wheat Semolina Pasta. Appl. Sci. 2024, 14, 8760. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Canelli, G.; Tarnutzer, C.; Carpine, R.; Neutsch, L.; Bolten, C.J.; Dionisi, F.; Mathys, A. Biochemical and Nutritional Evaluation of Chlorella and Auxenochlorella Biomasses Relevant for Food Application. Front. Nutr. 2020, 7, 565996. [Google Scholar] [CrossRef]
- Brányiková, I.; Maršálková, B.; Doucha, J.; Brányik, T.; Bišová, K.; Zachleder, V.; Vítová, M. Microalgae—Novel highly efficient starch producers. Biotechnol. Bioeng. 2011, 108, 766–776. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Schmid, B.; Navalho, S.; Schulze, P.S.C.; Van De Walle, S.; Van Royen, G.; Schüler, L.M.; Maia, I.B.; Bastos, C.R.V.; Baune, M.-C.; Januschewski, E.; et al. Drying Microalgae Using an Industrial Solar Dryer: A Biomass Quality Assessment. Foods 2022, 11, 1873. [Google Scholar] [CrossRef]
- Van De Walle, S.; Gifuni, I.; Coleman, B.; Baune, M.-C.; Rodrigues, A.; Cardoso, H.; Fanari, F.; Muylaert, K.; Van Royen, G. Innovative vs classical methods for drying heterotrophic Chlorella vulgaris: Impact on protein quality and sensory properties. Food Res. Int. 2024, 182, 114142. [Google Scholar] [CrossRef]
- Graça, C.; Fradinho, P.; Sousa, I.; Raymundo, A. Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT 2018, 89, 466–474. [Google Scholar] [CrossRef]
- Elkot, W.F.; Elmahdy, A.; El-Sawah, T.H.; Alghamdia, O.A.; Alhag, S.K.; Al-Shahari, E.A.; Al-Farga, A.; Ismail, H.A. Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. Int. J. Biol. Macromol. 2024, 258, 128999. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT 2019, 115, 108439. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, M.; León, A.E. The use of Nannochloropsis sp. as a source of omega-3 fatty acids in dry pasta: Chemical, technological and sensory evaluation. Int. J. Food Sci. Technol. 2018, 53, 499–507. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT-Food Sci. Technol. 2013, 50, 312–319. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. LWT 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Van der Stricht, H.; Hung, Y.; Fischer, A.R.H.; Verbeke, W. Consumer segments less or more willing to adopt foods with microalgae proteins. Food Qual. Prefer. 2024, 113, 105047. [Google Scholar] [CrossRef]
- Hung, Y.; Van der Stricht, H.; Verbeke, W. Consumer Acceptance and Nutritional Expectations of Microalgae Protein Products: Insights from a Cross-European Study. Proceedings 2023, 91, 87. [Google Scholar] [CrossRef]
- Van der Stricht, H.; Profeta, A.; Hung, Y.; Verbeke, W. Consumers’ willingness-to-buy pasta with microalgae proteins—Which label can promote sales? Food Qual. Prefer. 2023, 110, 104948. [Google Scholar] [CrossRef]
- Bazarnova, J.; Nilova, L.; Trukhina, E.; Bernavskaya, M.; Smyatskaya, Y.; Aktar, T. Use of Microalgae Biomass for Fortification of Food Products from Grain. Foods 2021, 10, 3018. [Google Scholar] [CrossRef] [PubMed]
- Nilusha, R.A.T.; Jayasinghe, J.M.J.K.; Perera, O.D.A.N.; Perera, P.I.P. Development of Pasta Products with Nonconventional Ingredients and Their Effect on Selected Quality Characteristics: A Brief Overview. Int. J. Food Sci. 2019, 2019, 750726. [Google Scholar] [CrossRef] [PubMed]
- Laleg, K.; Barron, C.; Santé-Lhoutellier, V.; Walrand, S.; Micard, V. Protein enriched pasta: Structure and digestibility of its protein network. Food Funct. 2016, 7, 1196–1207. [Google Scholar] [CrossRef]
- Yao, M.; Li, M.; Dhital, S.; Tian, Y.; Guo, B. Texture and digestion of noodles with varied gluten contents and cooking time: The view from protein matrix and inner structure. Food Chem. 2020, 315, 126230. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Effect of Four Types of Dietary Fiber on the Technological Quality of Pasta. Food Sci. Technol. Int. 2011, 17, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, V.; Vitaglione, P. Functional foods: Planning and development. Mol. Nutr. Food Res. 2005, 49, 256–262. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; León, A.E. Sensory and nutritional attributes of fibre-enriched pasta. LWT-Food Sci. Technol. 2011, 44, 1429–1434. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R.; Siastała, M. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT-Food Sci. Technol. 2017, 77, 186–192. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- BMEL. Leitsätze des Deutschen Lebensmittelbuchs für Teigwaren. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/Lebensmittel-Kennzeichnung/LeitsaetzeTeigwaren.pdf?__blob=publicationFile&v=5 (accessed on 6 August 2024).
- European Commission. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- ISO 12232:2019; Photography—Digital Still Cameras—Determination of Exposure Index, ISO Speed Ratings, Standard Output Sensitivity, and Recommended Exposure Index. ISO: Geneva, Switzerland, 2019.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- ISO 11132:2021; Sensory Analysis—Methodology—Guidelines for the Measurement of the Performance of a Quantitative Descriptive Sensory Panel. ISO: Geneva, Switzerland, 2021.
- Sissons, M. Role of durum wheat composition on the quality of pasta and bread. Food 2008, 2, 75–90. [Google Scholar]
- Tan, C.; Wei, H.; Zhao, X.; Xu, C.; Peng, J. Effects of dietary fibers with high water-binding capacity and swelling capacity on gastrointestinal functions, food intake and body weight in male rats. Food Nutr. Res. 2017, 61, 1308118. [Google Scholar] [CrossRef] [PubMed]
- Teterycz, D.; Sobota, A.; Zarzycki, P.; Latoch, A. Legume flour as a natural colouring component in pasta production. J. Food Sci. Technol. 2020, 57, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Brennan, M.A.; Brennan, C.S.; Serventi, L. Effect of Vegetable Juice, Puree, and Pomace on Chemical and Technological Quality of Fresh Pasta. Foods 2021, 10, 1931. [Google Scholar] [CrossRef]
- Cunin, C.; Handschin, S.; Walther, P.; Escher, F. Structural changes of starch during cooking of durum wheat pasta. LWT Food Sci. Technol. 1995, 28, 323–328. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. How combinations of dietary fibres can affect physicochemical characteristics of pasta. LWT-Food Sci. Technol. 2015, 61, 41–46. [Google Scholar] [CrossRef]
- Balasooriya, R.N.; Wickramasinghe, I. Development and Evaluation of Physicochemical Properties of Pulse Added Protein Rich Pasta. Eur. J. Eng. Technol. Res. 2018, 3, 56–59. [Google Scholar] [CrossRef]
- Jayasena, V.; Nasar-Abbas, S.M. Development and quality evaluation of high-protein and high-dietary-fiber pasta using lupin flour. J. Texture Stud. 2012, 43, 153–163. [Google Scholar] [CrossRef]
- Panahi, Y.; Pishgoo, B.; Jalalian, H.R.; Mohammadi, E.; Taghipour, H.R.; Sahebkar, A.; Abolhasani, E. Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open-label clinical trial. Nutr. Diet. 2012, 69, 13–19. [Google Scholar] [CrossRef]
- Baune, M.-C.; Januschewski, E.; Bussa, M.; Van De Walle, S.; Gifuni, I.; Rodrigues, A.M.C.; Cardoso, M.H.; Van Royen, G.; Juadjur, A.; Jungbluth, N.; et al. Innovative vs. classical methods for drying heterotrophic Chlorella vulgaris: Impact on the nutritional properties, safety, sustainability and costs. Algal Res. 2025, 86, 103913. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies. Scientific Opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef]
- Chacón-Lee, T.L.; González-Mariño, G.E. Microalgae for “Healthy” Foods—Possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef]
Sample | Protein (g/100 g) | Fat (g/100 g) | CHO (g/100 g) | DF (g/100 g) | Moisture (g/100 g) | Energy (kcal) | Energy from Protein (%) | Claims 1 |
---|---|---|---|---|---|---|---|---|
Control | 11.0 | 1.4 | 72.1 | 3.16 | 11.9 | 339 | 13.0 | Source of protein, source of fiber |
3% CV | 11.5 | 1.6 | 71.1 | >3.61 | 11.7 | 340 | 13.5 | Source of protein, source of fiber |
5% CV | 11.8 | 1.7 | 70.4 | >3.95 | 11.6 | 340 | 13.8 | Source of protein, source of fiber |
dG | 17.2 | 1.8 | 66.0 | 3.16 | 11.7 | 345 | 20.0 | High protein, source of fiber |
3% CV + dG | 17.7 | 2.0 | 65.0 | >3.67 | 11.5 | 345 | 20.5 | High protein, source of fiber |
5% CV + dG | 18.0 | 2.1 | 64.3 | >4.01 | 11.4 | 346 | 20.8 | High protein, source of fiber |
AF | 10.6 | 1.5 | 69.5 | >5.95 | 11.6 | 334 | 12.7 | Source of protein, high fiber |
3% CV + AF | 11.1 | 1.6 | 68.6 | >6.31 | 11.5 | 335 | 13.3 | Source of protein, high fiber |
5% CV + AF | 11.5 | 1.7 | 68.2 | >6.33 | 11.3 | 336 | 13.6 | Source of protein, high fiber |
3% CV + dG + AF | 17.3 | 2.0 | 62.6 | >6.27 | 11.3 | 341 | 20.4 | High protein, high fiber |
5% CV + dG + AF | 17.2 | 2.1 | 62.9 | >6.08 | 11.2 | 342 | 20.2 | High protein, high fiber |
Sample | Net Power Consumption (W) | Moisture Content (%) | L* (D65) Dry | a* (D65) Dry | b* (D65) Dry | ΔE |
---|---|---|---|---|---|---|
Control 1 | 190.17 ± 42.84 cef | 10.24 ± 0.60 a | 74.50 ± 3.71 e | 2.26 ± 0.84 bc | 16.14 ± 3.87 c | – |
3% CV 1 | 187.59 ± 42.29 cdef | 10.80 ± 0.74 ab | 56.65 ± 6.45 d | 0.62 ± 1.39 a | 19.78 ± 2.80 d | 18.30 |
5% CV 1 | 176.01 ± 41.64 bc | 10.79 ± 0.60 ab | 54.19 ± 3.57 bd | 0.61 ± 0.65 a | 21.50 ± 3.18 d | 21.07 |
dG | 196.49 ± 44.27 f | 10.71 ± 0.49 ab | 74.36 ± 3.99 e | 2.82 ± 0.78 cd | 15.90 ± 2.91 bc | 0.62 |
3% CV + dG | 182.48 ± 40.40 bef | 10.27 ± 0.77 a | 51.71 ± 4.36 bcd | 1.22 ± 0.90 ab | 16.19 ± 1.55 c | 22.81 |
5% CV + dG | 171.48 ± 40.22 ab | 10.77 ± 1.02 ab | 50.18 ± 3.37 bc | 1.17 ± 0.93 a | 19.63 ± 2.58 d | 24.59 |
AF | 192.83 ± 41.20 ef | 10.78 ± 0.68 ab | 55.99 ± 4.95 d | 7.90 ± 1.21 e | 13.48 ± 2.63 ab | 19.53 |
3% CV + AF | 182.73 ± 38.69 bef | 10.84 ± 1.57 ab | 48.05 ± 4.66 ac | 4.53 ± 0.86 e | 16.33 ± 2.87 c | 26.55 |
5% CV + AF | 179.64 ± 42.84 be | 11.05 ± 0.93 ab | 45.48 ± 4.30 ac | 3.81 ± 0.87 d | 14.82 ± 2.78 ac | 29.09 |
3% CV + dG + AF | 180.25 ± 36.50 be | 10.39 ± 0.97 ab | 45.57 ± 2.63 a | 3.69 ± 0.61 d | 12.31 ± 1.95 a | 29.21 |
5% CV + dG + AF | 175.62 ± 35.50 bd | 11.39 ± 0.78 b | 43.50 ± 4.65 a | 2.89 ± 0.53 d | 13.03 ± 3.16 a | 31.16 |
Sample | Cooking Time (s) | Water Absorption (%) | Cooking Losses (%) |
---|---|---|---|
Control 1 | 190.0 ± 15.0 a | 105.0 ± 6.5 c | 0.33 ± 0.12 bcd |
3% CV 1 | 180.0 ± 0.0 a | 96.9 ± 1.6 bc | 0.42 ± 0.10 c |
5% CV 1 | 183.3 ± 5.0 a | 97.0 ± 4.2 bc | 0.37 ± 0.11 b |
dG | 190.0 ± 15.0 a | 90.3 ± 4.7 ab | 0.27 ± 0.13 abcd |
3% CV + dG | 190.0 ± 15.0 a | 90.6 ± 3.8 a | 0.26 ± 0.02 a |
5% CV + dG | 190.0 ± 15.0 a | 89.1 ± 4.1 a | 0.28 ± 0.02 abd |
AF | 180.0 ± 0.0 a | 103.4 ± 2.9 c | 0.40 ± 0.09 d |
3% CV + AF | 180.0 ± 0.0 a | 100.6 ± 1.2 c | 0.30 ± 0.01 abcd |
5% CV + AF | 180.0 ± 0.0 a | 100.3 ± 3.8 c | 0.33 ± 0.03 abcd |
3% CV + dG + AF | 190.0 ± 15.0 a | 93.0 ± 3.3 a | 0.33 ± 0.03 abcd |
5% CV + dG + AF | 193.3 ± 13.2 a | 93.7 ± 4.2 a | 0.32 ± 0.03 abcd |
Scale/Sample | Typical Odor | Fishy/Off Odor | After/Off Taste | Saltiness | Bite Resistance | Stickiness | Color | Acceptance |
---|---|---|---|---|---|---|---|---|
Scale | Low–intense | Low–intense | Absent–very different | Low–intense | Soft–firm | Low–intense | Light–dark (given scale) | |
Control 1 | 6.75 ± 0.49 e | 0.63 ± 0.67 a | 0.96 ± 0.97 a | 0.82 ± 1.08 a | 2.27 ± 1.21 a | 4.12 ± 3.14 a | 1.27 ± 0.47 a (yellow) | 91% (10/11) |
3% CV 1 | 2.41 ± 1.36 bc | 5.10 ± 1.51 de | 5.21 ± 1.54 d | 3.05 ± 2.12 ab | 4.21 ± 1.04 b | 4.39 ± 1.55 a | 12.32 ± 0.72 2,bc (green) | 27% (3/11) |
5% CV 1 | 2.03 ± 0.86 bc | 5.20 ± 1.95 de | 5.29 ± 1.35 d | 2.47 ± 1.85 ab | 4.12 ± 1.72 ab | 4.14 ± 1.92 a | 13.00 ± 0.00 2,bc (green) | 36% (4/11) |
dG | 6.35 ± 0.92 de | 1.36 ± 1.12 ab | 1.05 ± 0.57 ab | 1.15 ± 1.03 ab | 4.04 ± 1.32 ab | 3.92 ± 1.70 a | 2.00 ± 0.89 a (yellow) | 91% (10/11) |
3% CV + dG | 3.41 ± 1.18 bce | 4.85 ± 1.56 cde | 3.51 ± 1.20 ad | 2.34 ± 1.73 ab | 3.93 ± 1.16 ab | 3.55 ± 1.85 a | 12.27 ± 1.19 2,b (green) | 45% (5/11) |
5% CV + dG | 1.95 ± 1.49 bc | 5.14 ± 1.90 de | 5.15 ± 1.48 d | 2.53 ± 1.61 ab | 4.54 ± 1.89 b | 3.30 ± 1.24 a | 13.36 ± 0.50 2,b (green) | 27% (3/11) |
AF | 4.57 ± 1.93 ce | 2.95 ± 1.11 bc | 1.91 ± 0.86 ac | 1.79 ± 1.19 ab | 3.68 ± 1.31 ab | 5.15 ± 1.91 a | 12.68 ± 0.46 2,b (brown) | 82% (9/11) |
3% CV + AF | 2.44 ± 0.97 bc | 5.11 ± 1.68 de | 4.77 ± 1.47 cd | 2.21 ± 1.62 ab | 4.57 ± 1.20 b | 3.59 ± 1.32 a | 15.00 ± 0.00 2,d (brown) | 36% (4/11) |
5% CV + AF | 1.88 ± 1.45 bc | 6.53 ± 1.09 e | 6.02 ± 1.70 d | 3.27 ± 1.51 b | 4.75 ± 1.15 b | 3.56 ± 1.38 a | 15.64 ± 0.81 2,d (brown) | 36% (4/11) |
3% CV + dG + AF | 3.09 ± 1.81 acd | 4.14 ± 1.98 cd | 4.27 ± 1.54 bcd | 1.95 ± 1.90 ab | 4.31 ± 1.35 b | 3.18 ± 1.94 a | 15.27 ± 0,65 2,d (brown) | 18% (2/11) |
5% CV + dG + AF | 1.73 ± 0.90 ab | 6.36 ± 1.36 e | 6.64 ± 1.57 d | 2.77 ± 1.60 ab | 3.64 ± 1.42 ab | 3.50 ± 2.12 a | 15.64 ± 0.69 2,d (brown) | 27% (3/11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baune, M.-C.; Fanari, F.; Lickert, T.; Schilling, F.; Claret, A.; Guerrero, L.; Bindrich, U.; Heinz, V.; Terjung, N. Physical and Sensory Properties of Vegan Organic Microalgae Pasta with High Protein and/or Fiber Content. Appl. Sci. 2025, 15, 1639. https://doi.org/10.3390/app15031639
Baune M-C, Fanari F, Lickert T, Schilling F, Claret A, Guerrero L, Bindrich U, Heinz V, Terjung N. Physical and Sensory Properties of Vegan Organic Microalgae Pasta with High Protein and/or Fiber Content. Applied Sciences. 2025; 15(3):1639. https://doi.org/10.3390/app15031639
Chicago/Turabian StyleBaune, Marie-Christin, Fabio Fanari, Thomas Lickert, Frank Schilling, Anna Claret, Luis Guerrero, Ute Bindrich, Volker Heinz, and Nino Terjung. 2025. "Physical and Sensory Properties of Vegan Organic Microalgae Pasta with High Protein and/or Fiber Content" Applied Sciences 15, no. 3: 1639. https://doi.org/10.3390/app15031639
APA StyleBaune, M.-C., Fanari, F., Lickert, T., Schilling, F., Claret, A., Guerrero, L., Bindrich, U., Heinz, V., & Terjung, N. (2025). Physical and Sensory Properties of Vegan Organic Microalgae Pasta with High Protein and/or Fiber Content. Applied Sciences, 15(3), 1639. https://doi.org/10.3390/app15031639