The Impact of Plasma Intensity on the Unused Rate in Semiconductor Manufacturing: Comparative Analysis Across Intensity Ranges from 30 to 3000
Abstract
:1. Introduction
2. Processes of Semiconductor Manufacturing and Measurement Methods
2.1. Processes of Semiconductor Manufacturing
2.1.1. Wafer Fabrication and Photolithography
2.1.2. Etching, Ion Implantation, and Deposition
2.1.3. Electrical Die Sorting and Packaging
2.2. Measurement Methods
3. Methodology
3.1. Data Overview
3.2. Correlation Analysis
3.3. ANOVA and Post Hoc Testing
4. Experimental Data
4.1. Explanation of Collected Data
4.2. Summary Statistics
- Group 1: Plasma intensities less than 100, including NF3 and SF6.
- Group 2: Plasma intensities of 500, 600, and 700, including CH2F2 and CHF3.
- Group 3: Plasma intensities of 1000, 2000, and 3000, including the gases C4F6, C4F8, and CF4.
5. Analysis of Group 1 Performance
5.1. Data Overview: Group 1
5.2. Correlation Analysis Between Plasma Intensity and 1-Ui
5.3. Analysis of the Mean of Group 1 by Plasma for Each Gas
5.4. Analysis of Pairwise Mean Test Between Plasma Level: Group 1
5.5. General Trends: Group 1
6. Analysis of Group 2 Performance
6.1. Data Overview: Group 2
6.2. Correlation Analysis Between Plasma Intensity and 1-Ui
6.3. Analysis of the Mean of Group 2 by Plasma for Each Gas
6.4. Analysis of Pairwise Mean Test Between Plasma Level: Group 2
6.5. General Trends: Group 2
7. Analysis of Group 3 Performance
7.1. Data Overview: Group 3
7.2. Correlation Analysis Between Plasma and 1-Ui by Gas
7.2.1. C4F8
7.2.2. CF4
7.2.3. C4F6
7.3. Analysis of the Mean of Group 3 by Plasma for Each Gas
7.4. Analysis of Pairwise Mean Test Between Plasma Level: Group 3
7.5. General Trends: Group 3
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynn, S.A.; MacGearailt, N.; Ringwood, J.V. Real-time virtual metrology and control for plasma etch. J. Process Control 2012, 22, 666–676. [Google Scholar] [CrossRef]
- Coburn, J.W.; Winters, H.F. Plasma etching-A discussion of mechanisms. J. Appl. Phys. 1979, 16, 391–403. [Google Scholar] [CrossRef]
- Michael, A.L.; Allan, J.L. Principles of Plasma Discharges and Materials Processing; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2005. [Google Scholar]
- Stanley, W. Silicon Processing for the VLSI Era, Vol. 1: Process Technology; Lattice Publishing: San Diego, CA, USA, 2000. [Google Scholar]
- Lee, B.J.; Yun, S.Y.; Jeong, I.K.; Hwang, Y.; Park, J.H.; Kim, J. Improving the Measurement of Characteristic Parameters for the Determination of GHG Emissions in the Semiconductor and Display Industries in Korea. Appl. Sci. 2023, 13, 8834. [Google Scholar] [CrossRef]
- Nagapurkar, P.; Nandy, P.; Nimbalkar, S. Cleaner Chips: Decarbonization in Semiconductor Manufacturing. Sustainability 2024, 16, 218. [Google Scholar] [CrossRef]
- Gottscho, R.A.; Vitkavage, S.C. Microscopic uniformity in plasma etching. J. Vac. Sci. Technol. B 1992, 10, 2133–2147. [Google Scholar] [CrossRef]
- Haase, M.; Melzer, M.; Lang, N.; Ecke, R.; Zimmermann, S.; Van Helden, J.-P.H.; Schulz, S.E. On the relationship between SiF4 plasma species and sample properties in ultra low-k etching processes. AIP Adv. 2020, 10, 065212. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Yeom, H.J.; Kim, J.H.; Chegal, W.; Cho, Y.J.; Kwon, D.-C.; Jeong, J.-R.; Lee, H.-C. Discharge physics and atomic layer etching in Ar/C4F6 inductively coupled plasmas with a radio frequency bias. Phys. Plasmas 2021, 28, 063504. [Google Scholar] [CrossRef]
- Hao, Q.; Kim, P.; Nam, S.K.; Kang, S.Y.; Donnelly, V.M. Real-time monitoring of atomic layer etching in Cl2/Ar pulsed gas, pulsed power plasmas by optical emission spectroscopy. J. Vac. Sci. Technol. A 2023, 41, 032605. [Google Scholar] [CrossRef]
- Song, W.S.; Kang, J.E.; Hong, S.J. Spectroscopic Analysis of CF4/O2 Plasma Mixed with N2 for Si3N4 Dry Etching. Coatings 2022, 12, 1064. [Google Scholar] [CrossRef]
- Choi, J.E.; Park, H.; Lee, Y.; Hong, S.J. Virtual Metrology for Etch Profile in Silicon Trench Etching With SF6/O2/Ar Plasma. IEEE Trans. Semicond. Manuf. 2022, 35, 128–136. [Google Scholar] [CrossRef]
- Lee, H.J.; Tak, H.W.; Kim, S.B.; Kim, S.K.; Park, T.H.; Kim, J.Y.; Sung, D.; Lee, W.; Lee, S.B.; Kim, K.; et al. Characteristics of high aspect ratio SiO2 etching using C4H2F6 isomers. Appl. Surf. Sci. 2023, 639, 158190. [Google Scholar] [CrossRef]
- Markku, T. Handbook of Silicon Based MEMS Materials and Technologies, 2nd ed.; William Andrew: New York, NY, USA, 2020. [Google Scholar]
- SAMSUNG Website. Available online: https://semiconductor.samsung.com/kr/support/tools-resources/fabrication-process/semiconductor-encyclopedia-the-eight-essential-semiconductor-fabrication-processes-at-a-glance/ (accessed on 25 October 2024).
- Park, H.-W.; Cha, W.B.; Uhm, S. Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs). Appl. Chem. Eng. 2018, 29, 10–17. [Google Scholar]
- Chiang, T.; Li, F. Rule-based Scheduling in Wafer Fabrication with Due Date-based Objectives. Comput. Oper. Res. 2012, 39, 2820–2835. [Google Scholar] [CrossRef]
- Montoya-Torres, J.R. A literature survey on the design approaches and operational issues of automated wafer-transport systems for wafer fabs. Prod. Plan. Control 2006, 17, 648–663. [Google Scholar] [CrossRef]
- Yang, C.-F.; Kam, S.; Liu, C.; Tzou, J.; Wang, J.-L. Assessment of Removal Efficiency of Perfluorocompounds (PFCs) in a Semiconductor Fabrication Plant by Gas Chromatography. Chemosphere 2009, 76, 1273–1277. [Google Scholar] [CrossRef]
- Lee, B.J.; Hwang, Y.; Jo, D.K.; Jeong, J. A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays. Atmosphere 2023, 14, 1220. [Google Scholar] [CrossRef]
- U.S. EPA. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases#f-gases (accessed on 25 October 2024).
- Hilleringmann, U. Silicon Semiconductor Technology; Springer: Berlin, Germany, 2023. [Google Scholar]
- Park, D.-U.; Byun, H.-J.; Choi, S.-J.; Jeong, J.-Y.; Yoon, C.-S.; Kim, C.-N.; Ha, K.-C.; Park, D.-Y. Review on potential risk factors in wafer fabrication process of semiconductor industry. Korean J. Occup. Environ. Med. 2011, 23, 333–342. [Google Scholar] [CrossRef]
- Arif, M.; Rahman, M.; San, W.Y. A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int. J. Adv. Manuf. Technol. 2012, 63, 481–504. [Google Scholar] [CrossRef]
- Roccaforte, F.; Giannazzo, F.; Greco, G. Ion implantation doping in silicon carbide and gallium nitride electronic devices. Proc. Micro 2022, 2, 23–53. [Google Scholar] [CrossRef]
- Pearton, S. Ion implantation in III–V semiconductor technology. Int. J. Mod. Phys. B 1993, 7, 4687–4761. [Google Scholar] [CrossRef]
- Chou, P.B.; Rao, A.R.; Sturzenbecker, M.C.; Wu, F.Y.; Brecher, V.H. Automatic defect classification for semiconductor manufacturing. Mach. Vis. Appl. 1997, 9, 201–214. [Google Scholar] [CrossRef]
- Kim, T.; Behdinan, K. Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: A review. J. Intell. Manuf. 2023, 34, 3215–3247. [Google Scholar] [CrossRef]
- KS I 0587; Measurement Methods for the Volumetric Flow of Non-CO2 Greenhouse Gases (CF4, NF3, SF6, N2O) Used in Semiconductor and Display Processes (2018). Korean Standards Service Network: Seoul, Republic of Korea, 2018.
- NIER (National Institute of Environmental Research). N2O, HFCs, PFCs, SF6, NF3 of Greenhouse Gas in Industrial Process—Fourier Transform Infra-Red Spectroscopy (ES 13501); National Institute of Environmental Research: Incheon, Republic of Korea, 2024. [Google Scholar]
- Abdi, H.; Williams, L.J. Newman-Keuls test and Tukey test. Encycl. Res. Des. 2010, 2, 897–902. [Google Scholar]
- Keselman, H.; Cribbie, R.A.; Holland, B. Pairwise multiple comparison test procedures: An update for clinical child and adolescent psychologists. J. Clin. Child Adolesc. Psychol. 2004, 33, 623–645. [Google Scholar] [CrossRef]
- Rausch, J.R.; Maxwell, S.E.; Kelley, K. Analytic methods for questions pertaining to a randomized pretest, posttest, follow-up design. J. Clin. Child Adolesc. Psychol. 2003, 32, 467–486. [Google Scholar] [CrossRef]
- Williams:, L.J.; Abdi, H. Post-hoc comparisons. Encycl. Res. Des. 2010, 1060–1067. [Google Scholar]
Response time, T90 | Typically less than 120 s, depending on the gas flow and measurement time |
Wavelength Range |
|
Optical Resolution | 0.3–10 nm FWHM |
Min. Exposure Time | 1 msec |
Resolution | 8 cm−1 |
Scan Frequency | 10 scans/s |
Source | SiC, 1550 K |
Beamsplitter | ZnSe |
Window material | ZnSe |
Wave number range | 900–4200 cm−1 |
Collected Data | Description |
---|---|
plasma | Plasma intensity levels |
Flow rate in/out: | The flow rate of gases entering and leaving the system. |
Conc in/out | Concentration of gases entering and leaving the system. |
Volume flow rate in/out | In and out of the system. |
Ui | the proportion of gas consumed during the semiconductor manufacturing process |
1-Ui | not utilized in the process, that is either unconsumed, lost, or left over at the end of the manufacturing process |
Plasma (W) | Flow Late in (LPM) | Flow Late Out (LPM) | Conc In (ppm) | Conc Out (ppm) | Volume Flow Rate In | Volume Flow Rate Out | 1-Ui | |
---|---|---|---|---|---|---|---|---|
count | 8324 | 8324 | 8324 | 8324 | 8324 | 8324 | 8324 | 8324 |
mean | 1209.55 | 62.69 | 61.88 | 979.90 | 295.42 | 61,810.41 | 18,657.99 | 0.30 |
std | 974.72 | 2.33 | 6.43 | 367.56 | 248.87 | 23,674.80 | 16,640.30 | 0.23 |
min | 40.00 | 57.04 | 45.07 | 478.07 | 0.00 | 27,270.65 | 0.00 | 0.00 |
Q1 | 500 | 62.48 | 55.65 | 608.07 | 143.27 | 37,991.50 | 8833.04 | 0.11 |
Q2 | 1000 | 63.62 | 63.96 | 820.78 | 223.07 | 52,841.82 | 14,102.37 | 0.32 |
Q3 | 2000 | 64.38 | 65.70 | 1324.66 | 379.91 | 84,269.48 | 24,444.16 | 0.47 |
max | 3000 | 64.38 | 89.76 | 1525.78 | 1129.21 | 95,407.02 | 76,205.57 | 1.04 |
Plasma | Flow Late Out | Conc Out | Volume Flow Rate Out | 1-Ui | |
---|---|---|---|---|---|
Plasma | 1.000 | −0.261 | −0.052 | −0.107 | −0.016 |
Flow late out | −0.261 | 1.000 | 0.235 | 0.330 | 0.241 |
Conc out | −0.052 | 0.235 | 1.000 | 0.993 | 0.906 |
Volume flow Rate out | −0.107 | 0.330 | 0.993 | 1.000 | 0.899 |
1-Ui | −0.016 | 0.241 | 0.906 | 0.899 | 1.0 |
40 | 50 | 60 | 70 | 80 | 90 | 500 | 600 | 700 | 1000 | 2000 | 3000 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C4F6 | - | - | - | - | - | - | - | - | - | 302 | 302 | 302 | 906 |
C4F8 | - | - | - | - | - | - | - | - | - | 1033 | 855 | 609 | 2577 |
CF4 | - | - | - | - | - | - | - | - | - | 305 | 304 | 305 | 914 |
CH2F2 | - | - | - | - | - | - | 441 | 442 | 429 | - | - | - | 1312 |
CHF3 | - | - | - | - | - | - | 409 | 410 | 411 | - | - | - | 1230 |
NF3 | 96 | - | 98 | - | 96 | - | - | - | - | - | - | - | 290 |
SF6 | - | 363 | - | 366 | - | 366 | - | - | - | - | - | - | 1095 |
Gas | Linear Correlation Coefficient | Rank Correlation Coefficient | p-Value |
---|---|---|---|
NF3 | −0.315 | −0.240 | 0.000 |
SF6 | 0.000 | −0.011 | 0.886 |
Comparison | Mean Difference | p-Value |
---|---|---|
Plasma 40 vs. 60 | −0.180 | <0.001 |
Plasma 40 vs. 80 | −0.206 | <0.01 |
Plasma 60 vs. 80 | −0.026 | <0.106 |
Gas | Correlation Type | Correlation Coefficient | p-Value |
---|---|---|---|
CH2F2 | Pearson (Linear) | −0.124 | 0.000 |
CH2F2 | Spearman (Rank) | −0.360 | 0.000 |
CHF3 | Pearson (Linear) | −0.172 | 0.000 |
CHF3 | Spearman (Rank) | −0.379 | 0.000 |
Gas | F-Statistics | p-Value |
---|---|---|
CH2F2 | 10.18 | 0.00 |
CHF3 | 19.15 | 0.00 |
Gas | Comparison | Mean Difference | p-Value |
---|---|---|---|
CH2F2 | 700 vs. 500 | 0.028 | <0.001 |
CH2F2 | 600 vs. 500 | 0.015 | 0.046 |
CHF3 | 700 vs. 500 | 0.105 | <0.001 |
CHF3 | 700 vs. 600 | 0.066 | 0.000 |
Gas | Plasma | Count | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|---|
C4F6 | 1000 | 302 | 0.11 | 0.03 | 0.06 | 0.11 | 0.11 | 0.11 | 0.29 |
C4F6 | 2000 | 302 | 0.12 | 0.03 | 0.06 | 0.11 | 0.12 | 0.12 | 0.30 |
C4F6 | 3000 | 302 | 0.05 | 0.03 | 0.00 | 0.03 | 0.04 | 0.05 | 0.21 |
C4F8 | 1000 | 1033 | 0.48 | 0.14 | 0.01 | 0.50 | 0.51 | 0.52 | 0.90 |
C4F8 | 2000 | 855 | 0.35 | 0.10 | 0.01 | 0.36 | 0.37 | 0.37 | 0.69 |
C4F8 | 3000 | 689 | 0.34 | 0.10 | 0.02 | 0.35 | 0.36 | 0.36 | 0.70 |
CF4 | 1000 | 305 | 0.37 | 0.04 | 0.25 | 0.35 | 0.36 | 0.36 | 0.55 |
CF4 | 2000 | 304 | 0.33 | 0.04 | 0.20 | 0.31 | 0.32 | 0.32 | 0.56 |
CF4 | 3000 | 305 | 0.26 | 0.04 | 0.19 | 0.24 | 0.25 | 0.25 | 0.50 |
Gas | Pearson Correlation | Spearman Correlation | p Value |
---|---|---|---|
C4F8 | −0.443 | −0.677 | 0.00 |
CF4 | −0.705 | −0.809 | 0.00 |
C4F6 | −0.608 | −0.538 | 0.00 |
Sum_sq | df | F | PR (>F) | Gas | |
---|---|---|---|---|---|
C (plasma) | 11.57651 | 2 | 406.069 | 0.000 | C4F8 |
Residual | 36.69079 | 2574 | C4F8 | ||
C (plasma) | 1.72091 | 2 | 472.451 | 0.000 | CF4 |
Residual | 1.65916 | 911 | CF4 | ||
C (plasma) | 0.92371 | 2 | 517.930 | 0.000 | C4F6 |
Residual | 0.80523 | 903 | C4F6 |
Gas | Plasma Level 1 | Plasma Level 2 | T-Statistic | p-Value |
---|---|---|---|---|
C4F8 | 1000 | 2000 | 23.023 | 0.000 |
C4F8 | 1000 | 3000 | 22.820 | 0.000 |
C4F8 | 2000 | 3000 | 1.782 | 0.075 |
CF4 | 1000 | 2000 | 11.423 | 0.000 |
CF4 | 1000 | 3000 | 31.095 | 0.000 |
CF4 | 2000 | 3000 | 18.360 | 0.000 |
C4F6 | 1000 | 2000 | −2.189 | 0.029 |
C4F6 | 1000 | 3000 | 26.614 | 0.000 |
C4F6 | 2000 | 3000 | 27.923 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, D.K.; Woo, J.; Kim, J.; Lee, B.-J.; Jeon, E.-c.; Lee, J. The Impact of Plasma Intensity on the Unused Rate in Semiconductor Manufacturing: Comparative Analysis Across Intensity Ranges from 30 to 3000. Appl. Sci. 2025, 15, 1441. https://doi.org/10.3390/app15031441
Min DK, Woo J, Kim J, Lee B-J, Jeon E-c, Lee J. The Impact of Plasma Intensity on the Unused Rate in Semiconductor Manufacturing: Comparative Analysis Across Intensity Ranges from 30 to 3000. Applied Sciences. 2025; 15(3):1441. https://doi.org/10.3390/app15031441
Chicago/Turabian StyleMin, Dae Kee, Jiyun Woo, Jinwook Kim, Bong-Jae Lee, Eui-chan Jeon, and Joohee Lee. 2025. "The Impact of Plasma Intensity on the Unused Rate in Semiconductor Manufacturing: Comparative Analysis Across Intensity Ranges from 30 to 3000" Applied Sciences 15, no. 3: 1441. https://doi.org/10.3390/app15031441
APA StyleMin, D. K., Woo, J., Kim, J., Lee, B.-J., Jeon, E.-c., & Lee, J. (2025). The Impact of Plasma Intensity on the Unused Rate in Semiconductor Manufacturing: Comparative Analysis Across Intensity Ranges from 30 to 3000. Applied Sciences, 15(3), 1441. https://doi.org/10.3390/app15031441