Association Between ‘Weekend Warrior’ and Other Leisure-Time Physical Activity Patterns and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study Using Data from the Korea National Health and Nutrition Examination Survey (2014–2023)
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Activity Assessment
2.3. NAFLD Assessment
2.4. Covariate Assessment
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association Between Physical Activity Patterns and NAFLD
3.3. NAFLD Prevalence According to Specific Physical Activity Patterns
3.4. Stratified Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMI | Body mass index |
| HSI | hepatic steatosis index |
| KNHANES | Korea National Health and Nutrition |
| MASLD | metabolic dysfunction-associated steatotic liver disease |
| MVPA | moderate-to-vigorous physical activity |
| NAFLD | nonalcoholic fatty liver disease |
| OR | odds ratio |
References
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: An updated meta-analysis of 501,022 adult individuals. Gut 2021, 70, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Alwan, A.; Maclean, D.R.; Riley, L.M.; d’Espaignet, E.T.; Mathers, C.D.; Stevens, G.A.; Bettcher, D. Monitoring and surveillance of chronic non-communicable diseases: Progress and capacity in high-burden countries. Lancet 2010, 376, 1861–1868. [Google Scholar] [CrossRef]
- Harrison, S.A.; Day, C.P. Benefits of lifestyle modification in NAFLD. Gut 2007, 56, 1760–1769. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Brownson, R.C.; Boehmer, T.K.; Luke, D.A. Declining rates of physical activity in the United States: What are the contributors? Annu. Rev. Public Health 2005, 26, 421–443. [Google Scholar] [CrossRef]
- Lee, I.-M.; Sesso, H.D.; Oguma, Y.; Paffenbarger, R.S., Jr. The “weekend warrior” and risk of mortality. Am. J. Epidemiol. 2004, 160, 636–641. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Jae, S.Y.; Laukkanen, J.A. ‘Weekend warrior’and regularly active physical activity patterns confer similar cardiovascular and mortality benefits: A systematic meta-analysis. Eur. J. Prev. Cardiol. 2023, 30, e7–e10. [Google Scholar] [CrossRef] [PubMed]
- Trapp, E.G.; Chisholm, D.J.; Freund, J.; Boutcher, S.H. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. 2008, 32, 684–691. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.-j.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; European Association for the Study of Diabetes; European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Obes. Facts 2016, 9, 65–90. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Low, S.; Chin, M.C.; Ma, S.; Heng, D.; Deurenberg-Yap, M. Rationale for redefining obesity in Asians. Ann. Acad. Med. Singap. 2009, 38, 66–74. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Kany, S.; Al-Alusi, M.A.; Rämö, J.T.; Pirruccello, J.P.; Churchill, T.W.; Lubitz, S.A.; Maddah, M.; Guseh, J.S.; Ellinor, P.T.; Khurshid, S. Associations of “weekend warrior” physical activity with incident disease and cardiometabolic health. Circulation 2024, 150, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Su, B.Y.; Wang, S.; Liu, T.J.; Leng, Y.; Liu, Z.Y.; Liu, L.; Xiong, Z. Association between weekend warriors and MASLD—A cross-sectional study of the NHANES database 2017–2020. Front. Med. 2025, 12, 1531437. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ye, Z.; Zhang, Y.; He, P.; Zhou, C.; Yang, S.; Zhang, Y.; Gan, X.; Qin, X. Accelerometer-derived moderate-to-vigorous physical activity and incident nonalcoholic fatty liver disease. BMC Med. 2024, 22, 398. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Rezende, L.F.; Joh, H.-K.; Keum, N.; Ferrari, G.; Rey-Lopez, J.P.; Rimm, E.B.; Tabung, F.K.; Giovannucci, E.L. Long-term leisure-time physical activity intensity and all-cause and cause-specific mortality: A prospective cohort of US adults. Circulation 2022, 146, 523–534. [Google Scholar] [CrossRef]
- Yang, H.J.; Hong, Y.P.; Yoon, T.-Y.; Ryoo, J.-H.; Choi, J.-M.; Oh, C.-M. Independent and synergistic associations of aerobic physical activity and resistance exercise with nonalcoholic fatty liver disease. Gut Liver 2023, 17, 600–609. [Google Scholar] [CrossRef]
- Kistler, K.D.; Brunt, E.M.; Clark, J.M.; Diehl, A.M.; Sallis, J.F.; Schwimmer, J.B.; the NASH CRN Research Group. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2011, 106, 460–468. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex differences in nonalcoholic fatty liver disease: State of the art and identification of research gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- Lavin, K.M.; Perkins, R.K.; Jemiolo, B.; Raue, U.; Trappe, S.W.; Trappe, T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J. Appl. Physiol. 2020, 128, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhuang, C.; Zhang, Y.; Liu, C.; Li, Y. Association of weekend warriors and other physical activity patterns with hypertension in NHANES 2007–2018. Sci. Rep. 2025, 15, 10042. [Google Scholar] [CrossRef]
- Alonso, C.; Fernández-Ramos, D.; Varela-Rey, M.; Martínez-Arranz, I.; Navasa, N.; Van Liempd, S.M.; Trueba, J.L.L.; Mayo, R.; Ilisso, C.P.; de Juan, V.G.; et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 2017, 152, 1449–1461.e7. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Lefere, S.; Tacke, F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep. 2019, 1, 30–43. [Google Scholar] [CrossRef]
- Neuschwander-Tetri, B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology 2010, 52, 774–788. [Google Scholar] [CrossRef]
- Gehrke, N.; Biedenbach, J.; Huber, Y.; Straub, B.K.; Galle, P.R.; Simon, P.; Schattenberg, J.M. Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters–an animal model of life style intervention in NAFLD. Sci. Rep. 2019, 9, 4007. [Google Scholar] [CrossRef] [PubMed]
- Heinle, J.W.; DiJoseph, K.; Sabag, A.; Oh, S.; Kimball, S.R.; Keating, S.; Stine, J.G. Exercise is medicine for nonalcoholic fatty liver disease: Exploration of putative mechanisms. Nutrients 2023, 15, 2452. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.K.; Lee, S.; Yang, M.-J.; Leeuwenburgh, C.; Kim, J.-S. Exercise-induced autophagy in fatty liver disease. Exerc. Sport Sci. Rev. 2017, 45, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Oates, J.R.; McKell, M.C.; Moreno-Fernandez, M.E.; Damen, M.S.; Deepe, G.S., Jr.; Qualls, J.E.; Divanovic, S. Macrophage function in the pathogenesis of non-alcoholic fatty liver disease: The mac attack. Front. Immunol. 2019, 10, 2893. [Google Scholar] [CrossRef]
- Stevanović, J.; Beleza, J.; Coxito, P.; Ascensão, A.; Magalhães, J. Physical exercise and liver “fitness”: Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Mol. Metab. 2020, 32, 1–14. [Google Scholar] [CrossRef]

| Total | Non-NAFLD | NAFLD | p Value | |
|---|---|---|---|---|
| Demographic & Anthropometric Indicators | ||||
| Number of participants | 44,264 | 33,531 | 10,733 | |
| Age | <0.001 | |||
| M ± SD (years) | 51.9 ± 16.9 | 52.1 ± 17.2 | 51.4 ± 15.9 | |
| 19–44 | 15,535 (35.1) | 11,726 (35.0) | 3809 (35.5) | |
| 45–64 | 16,705 (37.7) | 12,362 (36.9) | 4343 (40.5) | |
| ≥65 | 12,024 (27.2) | 9443 (28.2) | 2581 (24.0) | |
| Sex, n (%) | <0.001 | |||
| Male | 19,331 (43.7) | 13,956 (41.6) | 5375 (50.1) | |
| Female | 24,933 (56.3) | 19,575 (58.4) | 5358 (49.9) | |
| BMI, kg/m2 | <0.001 | |||
| M ± SD | 24.0 ± 3.6 | 22.6 ± 2.5 | 28.2 ± 3.2 | |
| <23 | 18,639 (42.1) | 18,379 (54.8) | 260 (2.4) | |
| 23–24.9 | 10,199 (23.0) | 9050 (27.0) | 1149 (10.7) | |
| ≥25 | 15,426 (34.8) | 6102 (18.2) | 9324 (86.9) | |
| Sociodemographic Indicators | ||||
| Education, n (%) | <0.001 | |||
| Middle school or below | 12,840 (29.0) | 9525 (28.4) | 3315 (30.9) | |
| High school | 14,431 (32.6) | 10,870 (32.4) | 3561 (33.2) | |
| College or above | 16,993 (38.4) | 13,136 (39.2) | 3857 (35.9) | |
| Household income, n (%) | <0.001 | |||
| Low | 8148 (18.4) | 6162 (18.4) | 1986 (18.5) | |
| Mid-low | 10,697 (24.2) | 8019 (23.9) | 2678 (25.0) | |
| Mid-high | 12,140 (27.4) | 9098 (27.1) | 3042 (28.3) | |
| High | 13,279 (30.0) | 10,252 (30.6) | 3027 (28.2) | |
| Marital status, n (%) | 0.007 | |||
| Never married | 7934 (17.9) | 6040 (18.0) | 1894 (17.6) | |
| Married | 30,620 (69.2) | 23,261 (69.4) | 7359 (68.6) | |
| Divorced or widowed | 5710 (12.9) | 4230 (12.6) | 1480 (13.8) | |
| Lifestyle Indicators | ||||
| Alcohol intake, n (%) | 0.001 | |||
| <1 time/month | 22,690 (51.3) | 17,036 (50.8) | 5654 (52.7) | |
| 1–4 times/month | 14,894 (33.6) | 11,350 (33.8) | 3544 (33.0) | |
| ≥2 times/week | 6680 (15.1) | 5200 (15.3) | 1535 (14.3) | |
| Smoking, n (%) | <0.001 | |||
| Non-smoker | 27,865 (63.0) | 21,605 (64.4) | 6260 (58.3) | |
| Ex-smoker | 9644 (21.8) | 7194 (21.5) | 2450 (22.8) | |
| Current-smoker | 6755 (15.3) | 4732 (14.1) | 2023 (18.8) | |
| Type-2 diabetes, n (%) | <0.001 | |||
| Yes | 5767 (12.9) | 2934 (8.7) | 2833 (26.4) | |
| No | 38,836 (87.1) | 30,957 (91.3) | 7879 (73.6) | |
| Hypertension, n (%) | <0.001 | |||
| Yes | 14,085 (31.6) | 9253 (27.3) | 4832 (45.1) | |
| No | 30,518 (68.4) | 24,638 (72.7) | 5880 (54.9) | |
| Physical activity patterns, n (%) | <0.001 | |||
| Inactive | 36,494 (81.8) | 27,507 (81.2) | 8987 (83.9) | |
| Weekend warrior | 746 (1.7) | 580 (1.7) | 166 (1.5) | |
| Regularly active | 7363 (16.5) | 5804 (17.1) | 1559 (14.6) | |
| Total MVPA | 0.013 | |||
| M ± SD (min/week) | 79.8 ± 190.2 | 82.9 ± 194.2 | 70.1 ± 176.6 | |
| Physical Activity Pattern | Case/Participants (%) | Model 1 a | Model 2 b | Model 3 c |
|---|---|---|---|---|
| OR (95% CI) | ||||
| Inactive | 8987/36,494 (24.6%) | 1 [Ref] | 1 [Ref] | 1 [Ref] |
| Weekend warrior | 167/743 (22.4%) | 0.69 (0.56–0.85) | 0.80 (0.64–0.99) | 0.74 (0.57–0.95) |
| Regularly active | 1566/7326 (21.4%) | 0.75 (0.70–0.81) | 0.83 (0.77–0.89) | 0.66 (0.59–0.72) |
| Inactive (N = 36,394) | Weekend Warrior (N = 743) | Regularly Active (N = 7326) | |
|---|---|---|---|
| OR (95% CI) | |||
| Frequency | |||
| 1 | 1 [Ref] | 0.91 (0.62–1.33) | NA |
| 2 | 1 [Ref] | 0.76 (0.59–0.99) | NA |
| 3–4 | 1 [Ref] | NA | 0.84 (0.74–0.94) |
| ≥5 | 1 [Ref] | NA | 0.82 (0.75–0.90) |
| Intensity a | |||
| <33% | 1 [Ref] | 0.76 (0.56–1.08) | 0.83 (0.75–0.92) |
| 33–66% | 1 [Ref] | 0.99 (0.40–2.41) | 0.78 (0.65–0.93) |
| >66% | 1 [Ref] | 0.76 (0.59–0.99) | 0.76 (0.67–0.85) |
| Total MVPA | |||
| 150–300 (min/week) | 1 [Ref] | 0.86 (0.67–1.10) | 0.85 (0.76–0.95) |
| >300 (min/week) | 1 [Ref] | 0.67 (0.45–0.99) | 0.81 (0.73–0.89) |
| Resistance training | |||
| Yes (≥2 days/week) | 1 [Ref] | 0.70 (0.47–1.07) | 0.72 (0.65–0.80) |
| No (<2 days/week) | 1 [Ref] | 0.82 (0.64–1.05) | 0.97 (0.88–1.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.S.; An, S.Y.; Jeon, J.Y.; Lee, D.H. Association Between ‘Weekend Warrior’ and Other Leisure-Time Physical Activity Patterns and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study Using Data from the Korea National Health and Nutrition Examination Survey (2014–2023). Appl. Sci. 2025, 15, 13172. https://doi.org/10.3390/app152413172
Kim YS, An SY, Jeon JY, Lee DH. Association Between ‘Weekend Warrior’ and Other Leisure-Time Physical Activity Patterns and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study Using Data from the Korea National Health and Nutrition Examination Survey (2014–2023). Applied Sciences. 2025; 15(24):13172. https://doi.org/10.3390/app152413172
Chicago/Turabian StyleKim, Yun Sung, Seo Yeong An, Justin Y. Jeon, and Dong Hoon Lee. 2025. "Association Between ‘Weekend Warrior’ and Other Leisure-Time Physical Activity Patterns and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study Using Data from the Korea National Health and Nutrition Examination Survey (2014–2023)" Applied Sciences 15, no. 24: 13172. https://doi.org/10.3390/app152413172
APA StyleKim, Y. S., An, S. Y., Jeon, J. Y., & Lee, D. H. (2025). Association Between ‘Weekend Warrior’ and Other Leisure-Time Physical Activity Patterns and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study Using Data from the Korea National Health and Nutrition Examination Survey (2014–2023). Applied Sciences, 15(24), 13172. https://doi.org/10.3390/app152413172

