An Integration Framework of Remote Sensing and Social Media for Dynamic Post-Earthquake Impact Assessment
Abstract
1. Introduction
2. Methodology
2.1. Assessing Physical Damage with SAR Imagery
2.2. Extracting Disaster Information in Social Media
2.2.1. Extracting Disaster-Affected Locations in Sina Weibo Texts
2.2.2. Analyzing Sentiment in Sina Weibo Texts
2.3. Analyzing Spatiotemporal Characteristics and Mining Topics in Affected Areas Using Dual-Dimensional Information
2.3.1. Analyzing Spatiotemporal Characteristics of Public Sentiment with Different Physical Damage
- Construction and Quantification of Public Sentiment Grids
- 2.
- Spatiotemporal Analysis of Dual-Dimensional Information
2.3.2. Analyzing Disaster-Related Topics Based on Semantic Networks
- Extraction Disaster-Related Keywords
- 2.
- Construction Disaster-Related Semantic network
- 3.
- Detection Disaster-Related Community
3. Study Area and Data
3.1. Stuay Area
3.2. Data Acquisition
3.2.1. Social Media Data Acquisition
3.2.2. Remote Sensing Data Acquisition
4. Result
4.1. Disaster Information Extraction from Social Media
4.1.1. Locations Extracted in the Affected Areas
4.1.2. Public Sentiment Extracted from Sina Weibo
4.2. Spatiotemporal Characteristics of Disaster Impacts in Affected Areas Based on Dual-Dimensional Information
4.2.1. Spatial Distribution of Physical Damage in Affected Areas
4.2.2. Temporal Evolution of Public Sentiment in Weibo Texts
4.2.3. Spatiotemporal Association Between Surface Deformation and Public Sentiment
4.3. Topic Transitions of Semantic Network in Affected Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, J.; Zheng, Z.; Lu, X.-Z.; Chen, K.-Y.; Lin, J.-R. Enhanced earthquake impact analysis based on social media texts via large language model. Int. J. Disaster Risk Reduct. 2024, 109, 104574. [Google Scholar] [CrossRef]
- EM-DAT. EM-DAT: Emergency Events Database. Available online: https://www.emdat.be/ (accessed on 4 December 2025).
- Chiu, Y.-Y.; Omura, H.; Chen, H.-E.; Chen, S.-C. Indicators for Post-Disaster Search and Rescue Efficiency Developed Using Progressive Death Tolls. Sustainability 2020, 12, 8262. [Google Scholar] [CrossRef]
- Lien, Y.N.; Jang, H.C.; Tsai, T.C. A MANET Based Emergency Communication and Information System for Catastrophic Natural Disasters. In Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems Workshops, Montreal, QC, Canada, 22–26 June 2009; pp. 412–417. [Google Scholar] [CrossRef]
- Li, L.; Bensi, M.; Baecher, G. Exploring the potential of social media crowdsourcing for post-earthquake damage assessment. Int. J. Disaster Risk Reduct. 2023, 98, 104062. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Chen, H.; Liu, Z.; Mao, W.; Zhu, J.; Hu, Y.; Baik, S.W. Damaged Building Detection From Post-Earthquake Remote Sensing Imagery Considering Heterogeneity Characteristics. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4708417. [Google Scholar] [CrossRef]
- Calò, M.; Ruggieri, S.; Doglioni, A.; Morga, M.; Nettis, A.; Simeone, V.; Uva, G. Probabilistic-based assessment of subsidence phenomena on the existing built heritage by combining MTInSAR data and UAV photogrammetry. Struct. Infrastruct. Eng. 2024, 1–16. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yang, W.; Liu, Y.; Gao, B.; Zhang, Q.; Lu, J. A Multi-Input Channel U-Net Landslide Detection Method Fusing SAR Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1215–1232. [Google Scholar] [CrossRef]
- Zhang, S.; He, X.; Xue, B.; Wu, T.; Ren, K.; Zhao, T. Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103985. [Google Scholar] [CrossRef]
- Zhu, X.X.; Wang, Y.; Kochupillai, M.; Werner, M.; Häberle, M.; Hoffmann, E.J.; Taubenböck, H.; Tuia, D.; Levering, A.; Jacobs, N.; et al. Geoinformation Harvesting From Social Media Data: A community remote sensing approach. IEEE Geosci. Remote Sens. Mag. 2022, 10, 150–180. [Google Scholar] [CrossRef]
- Heipke, C. Crowdsourcing geospatial data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 550–557. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Forati, A.M.; Ghose, R. Examining Community Vulnerabilities through multi-scale geospatial analysis of social media activity during Hurricane Irma. Int. J. Disaster Risk Reduct. 2022, 68, 102701. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Emrich, C.T.; Guo, D. A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartogr. Geogr. Inf. Sci. 2018, 45, 97–110. [Google Scholar] [CrossRef]
- Zou, L.; He, Z.; Zhou, C.; Zhu, W. Multi-class multi-label classification of social media texts for typhoon damage assessment: A two-stage model fully integrating the outputs of the hidden layers of BERT. Int. J. Digital Earth 2024, 17, 2348668. [Google Scholar] [CrossRef]
- Yang, T.; Xie, J.; Li, G.; Zhang, L.; Mou, N.; Wang, H.; Zhang, X.; Wang, X. Extracting Disaster-Related Location Information through Social Media to Assist Remote Sensing for Disaster Analysis: The Case of the Flood Disaster in the Yangtze River Basin in China in 2020. Remote Sens. 2022, 14, 1199. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, X.; Zan, X.; Xiao, C.; Li, B.; Han, K.; Liu, Z.; Liu, J. Crowdsourced social media and mobile phone signaling data for disaster impact assessment: A case study of the 8.8 Jiuzhaigou earthquake. Int. J. Disaster Risk Reduct. 2021, 58, 102200. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, Y.; Li, Z. Sentiment-topic dynamic collaborative analysis-based public opinion mapping in aviation disaster management: A case study of the MU5735 air crash. Int. J. Disaster Risk Reduct. 2024, 102, 104268. [Google Scholar] [CrossRef]
- Karimiziarani, M.; Foroumandi, E.; Moradkhani, H. Harnessing Twitter (X) with AI-enhanced natural language processing for disaster management: Insights from California wildfire. Environ. Model. Softw. 2025, 192, 106545. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, H.; Kong, F. Research on online public opinion in the investigation of the “7–20” extraordinary rainstorm and flooding disaster in Zhengzhou, China. Int. J. Disaster Risk Reduct. 2024, 105, 104422. [Google Scholar] [CrossRef]
- Weibo. 2023 Weibo Young User Development Report. Available online: https://data.weibo.com/report/reportDetail?id=471 (accessed on 4 December 2025).
- Wang, C.; Zhang, X.; Wu, J. Disaster information mining from a social perception perspective: A case study of the “23·7” extreme rainfall event in the Beijing–Tianjin–Hebei region. Int. J. Disaster Risk Reduct. 2024, 115, 105056. [Google Scholar] [CrossRef]
- Li, Y.; Peng, L.; Sang, Y.; Gao, H. The characteristics and functionalities of citizen-led disaster response through social media: A case study of the #HenanFloodsRelief on Sina Weibo. Int. J. Disaster Risk Reduct. 2024, 106, 104419. [Google Scholar] [CrossRef]
- Wieland, M.; Schmidt, S.; Resch, B.; Abecker, A.; Martinis, S. Fusion of geospatial information from remote sensing and social media to prioritise rapid response actions in case of floods. Nat. Hazard. 2025, 121, 8061–8088. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Hu, Z.; Sun, C.; Li, Z. A Novel D-InSAR and Offset Tracking Fusion Algorithm Based on Variance-Masked Mean Filtering. Electron. Lett. 2025, 61, e70173. [Google Scholar] [CrossRef]
- Peng, W.; Huang, X.; Wang, Z. Coseismic Deformation and Fault Inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from Steerable Pyramid and InSAR Observations. Remote Sens. 2023, 15, 222. [Google Scholar] [CrossRef]
- Peter, H.; Jäggi, A.; Fernández, J.; Escobar, D.; Ayuga, F.; Arnold, D.; Wermuth, M.; Hackel, S.; Otten, M.; Simons, W.; et al. Sentinel-1A–First precise orbit determination results. Adv. Space Res. 2017, 60, 879–892. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 338–351. [Google Scholar] [CrossRef]
- Mızrak, S. Public’s social media use during the Kahramanmaraş earthquakes on 6 February 2023. Int. J. Disaster Risk Reduct. 2024, 108, 104541. [Google Scholar] [CrossRef]
- Karimiziarani, M.; Moradkhani, H. Social response and Disaster management: Insights from twitter data Assimilation on Hurricane Ian. Int. J. Disaster Risk Reduct. 2023, 95, 103865. [Google Scholar] [CrossRef]
- Middleton, S.E.; Middleton, L.; Modafferi, S. Real-Time Crisis Mapping of Natural Disasters Using Social Media. IEEE Intell. Syst. 2014, 29, 9–17. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, J.P.; Rana, N.P. Authenticity of Geo-Location and Place Name in Tweets. In Proceedings of the Americas Conference on Information Systems, Boston, MA, USA, 10–12 August 2017; Available online: https://aisel.aisnet.org/amcis2017/eGovernment/Presentations/10 (accessed on 4 December 2025).
- Chen, Z.; Pokharel, B.; Li, B.; Lim, S. Location Extraction from Twitter Messages Using a Bidirectional Long Short-Term Memory Neural Network with Conditional Random Field Model. In Proceedings of the Geographical Information Systems Theory, Applications and Management, Cham, Switzerland, 23–25 April 2021; pp. 18–30. [Google Scholar] [CrossRef]
- Wilkho, R.S.; Gharaibeh, N.G. FF-NER: A named entity recognition model for harvesting web-based information about flash floods and related infrastructure impacts. Int. J. Disaster Risk Reduct. 2025, 125, 105604. [Google Scholar] [CrossRef]
- Košprdić, M.; Prodanović, N.; Ljajić, A.; Bašaragin, B.; Milošević, N. From zero to hero: Harnessing transformers for biomedical named entity recognition in zero- and few-shot contexts. Artif. Intell. Med. 2024, 156, 102970. [Google Scholar] [CrossRef]
- Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre-Training With Whole Word Masking for Chinese BERT. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 3504–3514. [Google Scholar] [CrossRef]
- Liu, Y.; Tuo, H.; He, M.; Fu, Q.; Yu, T.; Tang, J. Mapping Relationship Discovery of Multidimensional Architectures in Autonomous Transportation System Based on Text-Matching Model. J. Adv. Transp. 2023, 2023, 8707205. [Google Scholar] [CrossRef]
- Guo, D.; Zhao, Q.; Chen, Q.; Wu, J.; Li, L.; Gao, H. Comparison between sentiments of people from affected and non-affected regions after the flood. Geomat. Nat. Hazards Risk 2021, 12, 3346–3357. [Google Scholar] [CrossRef]
- Wang, Y.; Taylor, J.E. Coupling sentiment and human mobility in natural disasters: A Twitter-based study of the 2014 South Napa Earthquake. Nat. Hazard. 2018, 92, 907–925. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, C. Temporal and Spatial Evolution and Influencing Factors of Public Sentiment in Natural Disasters—A Case Study of Typhoon Haiyan. ISPRS Int. J. Geo-Inf. 2021, 10, 299. [Google Scholar] [CrossRef]
- Bai, H.; Wang, D.-L.; Feng, S.; Zhang, Y.-F. EKBSA: A Chinese Sentiment Analysis Model by Enhancing K-BERT. J. Comput. Sci. Technol. 2025, 40, 60–72. [Google Scholar] [CrossRef]
- Selivanov, A.; Rogov, O.Y.; Chesakov, D.; Shelmanov, A.; Fedulova, I.; Dylov, D.V. Medical image captioning via generative pretrained transformers. Sci. Rep. 2023, 13, 4171. [Google Scholar] [CrossRef]
- Petrillo, L.; Martinelli, F.; Santone, A.; Mercaldo, F. Toward the adoption of explainable pre-trained large language models for classifying human-written and ai-generated sentences. Electronics 2024, 13, 4057. [Google Scholar] [CrossRef]
- Bojić, L.; Zagovora, O.; Zelenkauskaite, A.; Vuković, V.; Čabarkapa, M.; Veseljević Jerković, S.; Jovančević, A. Comparing large Language models and human annotators in latent content analysis of sentiment, political leaning, emotional intensity and sarcasm. Sci. Rep. 2025, 15, 11477. [Google Scholar] [CrossRef]
- Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; Bi, X. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv 2025, arXiv:2501.12948. [Google Scholar]
- Chen, K.; Hou, X.; Li, X.; Xu, W.; Yi, H. Structured Report Generation for Breast Cancer Imaging Based on Large Language Modeling: A Comparative Analysis of GPT-4 and DeepSeek. Acad. Radiol. 2025, 32, 5693–5702. [Google Scholar] [CrossRef]
- Bansal, S.; Gupta, V.; Gupta, E.; Garg, P. Evaluating Handwritten Answers Using DeepSeek: A Comparative Analysis of Deep Learning-Based Assessment. Int. J. Comput. Intell. Syst. 2025, 18, 209. [Google Scholar] [CrossRef]
- Polak, M.P.; Morgan, D. Extracting accurate materials data from research papers with conversational language models and prompt engineering. Nat. Commun. 2024, 15, 1569. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Gu, S.S.; Reid, M.; Matsuo, Y.; Iwasawa, Y. Large language models are zero-shot reasoners. In Proceedings of the Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; p. 1613. [Google Scholar] [CrossRef]
- Wang, M.; Wang, M.; Xu, X.; Yang, L.; Cai, D.; Yin, M. Unleashing ChatGPT’s Power: A Case Study on Optimizing Information Retrieval in Flipped Classrooms via Prompt Engineering. IEEE Trans. Learn. Technol. 2024, 17, 629–641. [Google Scholar] [CrossRef]
- Aistudio. Natural Language Processing-ChnSentiCorp Chinese Sentiment Propensity Analysis. Available online: https://aistudio.baidu.com/datasetdetail/158737 (accessed on 4 December 2025).
- Neppalli, V.K.; Caragea, C.; Squicciarini, A.; Tapia, A.; Stehle, S. Sentiment analysis during Hurricane Sandy in emergency response. Int. J. Disaster Risk Reduct. 2017, 21, 213–222. [Google Scholar] [CrossRef]
- Gruebner, O.; Lowe, S.R.; Sykora, M.; Shankardass, K.; Subramanian, S.V.; Galea, S. A novel surveillance approach for disaster mental health. PLoS ONE 2017, 12, e0181233. [Google Scholar] [CrossRef]
- Statistics on Cable Television and 5G User Development in Gansu Province. Available online: https://app.gdj.gansu.gov.cn/home/infomation/detail/aid/40076.html (accessed on 4 December 2025).
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://esa-worldcover.org/en/data-access#citation (accessed on 4 December 2025).
- WorldPop. Global High Resolution Population Denominators Project. Available online: https://hub.worldpop.org/doi/10.5258/SOTON/WP00645 (accessed on 4 December 2025).
- Zhang, K.; Lu, J.; Ai, Z.; Wang, L.; Liu, Z.; Gu, P.; Liu, X. Transformer-based prototype network for Chinese nested named entity recognition. Sci. Rep. 2025, 15, 19820. [Google Scholar] [CrossRef]
- Amap. Geo/Reverse Geocoding. Available online: https://lbs.amap.com/api/webservice/guide/api/georegeo (accessed on 4 December 2025).
- Hu, J.; Zhang, Z.; Zhu, X.; Zhang, X.; Yang, S.; Huang, C.; Wang, W.; Li, X.; Hou, L.; Zhao, L. Geological hazard susceptibility assessment and forecasting analysis based on InSAR and C-L-A model. Int. J. Appl. Earth Obs. Geoinf. 2025, 143, 104840. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, H.; Feng, L.; Lyu, S. China Building Rooftop Area: The first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery. Earth Syst. Sci. Data 2023, 15, 3547–3572. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 4 December 2025).
- Yang, T.; Xie, J.; Li, G.; Mou, N.; Li, Z.; Tian, C.; Zhao, J. Social Media Big Data Mining and Spatio-Temporal Analysis on Public Emotions for Disaster Mitigation. ISPRS Int. J. Geo-Inf. 2019, 8, 29. [Google Scholar] [CrossRef]










| Level | Damage Category | Surface Deformation (cm) |
|---|---|---|
| 1 | Severe | >3 |
| 2 | Moderate | 1–3 |
| 3 | Minor | <1 |
| Dataset | Train | Test | Val |
|---|---|---|---|
| ChnSentiCorp | 9600 | 1200 | 1200 |
| Model | Precision (%) | Recall (%) | F1-Score (%) |
|---|---|---|---|
| BERT-WWM-ext (fine-tuned) | 83.01 | 87.59 | 85.24 |
| Expert prompt: You are a large language model prompt engineering expert. Please generate a prompt for an intelligent assistant according to the user’s requirements, following these rules: 1. Align with the user’s needs, specifying the assistant’s role, capabilities, and knowledge base. 2. Ensure the prompt is clear, precise, and concise, while maintaining high quality. 3. Output only the prompt itself, without any additional explanations. |
| Sentiment analysis prompt: ## Role You are a sentiment classification expert, specialized in identifying the sentiment polarity of text. With extensive experience in sentiment analysis, you can accurately recognize the sentiment tone expressed in any given text. ## Capabilities 1. Sentiment Classification: Accurately determine whether the text expresses “Positive,” “Negative,” or “Neutral” sentiment. ## Output Requirements 1. Output only the sentiment classification result; do not include explanations or additional text. 2. The output must be one of the following three options: “Positive,” “Negative,” or “Neutral.” 3. Maintain a clear, concise, and structured output format. ## Procedure 1. Read the input text carefully. 2. Determine its sentiment polarity. 3. Output the classification result according to the Output Requirements. ## Example Input: “Please stop the earthquakes. I really can’t sleep anymore.” Output: Negative Input: “May the world be free from disasters. The people of Gansu must persevere!” Output: Positive |
| Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
|---|---|---|---|---|
| DeepSeek-R1 | 96.90 | 98.14 | 95.49 | 96.80 |
| Number | Weibo Post (Chinese) | Weibo Post (English) | Sentiment |
|---|---|---|---|
| 1 | 希望世界没有灾难, 甘肃人民要坚持下去! | Wishing the world could be free from disasters. Hang in there, Gansu! | Positive |
| 2 | 地震灾后的冬至,一锅暖暖的汤面驱寒保暖, 临时安置的受灾群众与志愿者还在坚守。 | It’s Winter Solstice after the quake. A hot pot of noodle soup to warm us up. Survivors in temporary shelters and volunteers are still holding on. | Positive |
| 3 | 刚睡下被震醒, 床摇晃的很强烈, 现在都不敢睡觉了。 | Just fell asleep and the quake shook me awake. The bed was swaying so hard. Too scared to sleep now. | Negative |
| 4 | 人真的都要吓傻了, 这一瞬间真的好害怕的… | I was literally scared out of my wits… That moment was so terrifying. | Negative |
| 5 | 地震发生后, 部分地区受灾较严重。救援供保工作有序进行, 航拍震中, 救援队伍穿梭城间, 多了很多应急帐篷。 | After the quake, some areas got hit really bad. Rescue and aid efforts are underway. Aerial shots of the epicenter show teams working between buildings, with lots more emergency tents now. | Neutral |
| Phase | Temporal Range | Key Characteristics |
|---|---|---|
| Response phase | 19 December | Immediate emergency response, situation assessment, and rapid mobilization. |
| Rescue phase | 20–21 December | Large-scale search, rescue, and relief operations. |
| Recovery phase | 22–26 December | Resettlement arrangements and preparation for reconstruction efforts. |
| Phase | Negative (%) | Positive (%) | Neutral (%) |
|---|---|---|---|
| Response phase | 44.38 | 38.81 | 16.81 |
| Rescue phase | 31.50 | 52.73 | 15.77 |
| Recovery phase | 22.35 | 59.32 | 18.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Yang, T.; Li, G.; Hu, S.; Mou, N.; Chen, Z. An Integration Framework of Remote Sensing and Social Media for Dynamic Post-Earthquake Impact Assessment. Appl. Sci. 2025, 15, 13125. https://doi.org/10.3390/app152413125
Ren Z, Yang T, Li G, Hu S, Mou N, Chen Z. An Integration Framework of Remote Sensing and Social Media for Dynamic Post-Earthquake Impact Assessment. Applied Sciences. 2025; 15(24):13125. https://doi.org/10.3390/app152413125
Chicago/Turabian StyleRen, Zhigang, Tengfei Yang, Guoqing Li, Shengwu Hu, Naixia Mou, and Zugang Chen. 2025. "An Integration Framework of Remote Sensing and Social Media for Dynamic Post-Earthquake Impact Assessment" Applied Sciences 15, no. 24: 13125. https://doi.org/10.3390/app152413125
APA StyleRen, Z., Yang, T., Li, G., Hu, S., Mou, N., & Chen, Z. (2025). An Integration Framework of Remote Sensing and Social Media for Dynamic Post-Earthquake Impact Assessment. Applied Sciences, 15(24), 13125. https://doi.org/10.3390/app152413125

