Microhardness and Coalification Parameters as Sensitive Indicators of Tectonic Deformation in Coal Seams: A Case Study
Abstract
1. Introduction
1.1. Geological Background
1.2. Influence of Tectonic Deformation on Coal
1.3. Coal Rank and Microhardness
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Petrographic Analysis
- z—number of measurement points [-],
- uα—coefficient read from the normal distribution tables [-],
- γ—allowable relative error [-],
- Vv—least abundant component of the analyzed phase [-].
- δ—absolute measurement error [%].
2.3. Vitrinite Reflectance Measurements (R0)
2.4. Vickers Microhardness Analysis
3. Results
3.1. Fault Characteristics and Petrographic Analyses
3.2. Analysis of Coal Rank in Near-Fault Samples
3.3. Vickers Microhardness
4. Discussion
5. Conclusions
- A zone of reduced coal quality on the hanging-wall side (high content of structurally altered coal, reduced R0 and Hv—left part of Figure 3),
- A zone of enhanced mineralization on the downthrown side (increased mineral matter content and relatively high Hv—right block of the section.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osika, R. (Ed.) Budowa Geologiczna Polski. Tom VI: Złoża Surowców Mineralnych; Wydawnictwa Geologiczne: Warszawa, Poland, 1987. [Google Scholar]
- Gabzdyl, W. Geologia Złóż Węgla: Złoża Świata; Polska Agencja Ekologiczna: Warszawa, Poland, 1994. [Google Scholar]
- Manecki, A.; Muszyński, M. (Eds.) Przewodnik do Petrografii; Wydawnictwa AGH: Kraków, Poland, 2008. [Google Scholar]
- Stach, E.; Mackowsky, M.-T.; Teichmüller, M.; Taylor, G.H.; Chandra, D.; Teichmüller, R. Stach’s Textbook of Coal Petrology, 3rd ed.; Gebrüder Borntraeger: Stuttgart, Germany, 1982. [Google Scholar]
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Robert, P. Organic Petrology; Gebrüder Borntraeger: Stuttgart, Germany, 1998. [Google Scholar]
- Gabzdyl, W. Petrograficzne Zróżnicowanie Węgli w USCB; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 1999. [Google Scholar]
- Chudzicka, B. Próba klasyfikacji stopnia zuskokowania złóż węgla kamiennego Górnośląskiego Zagłębia Węglowego. Prz. Gór 1980, 11, 544–547. [Google Scholar]
- Pozzi, M.; Lewandowski, T. Komputerowy program do określenia stopnia zuskokowania złoża. In Prace Naukowe GIG, Proceedings of the VI Konferencja “Problemy Geologii w Ekologii i Górnictwie Podziemnym”, Ustroń, Poland, 9–11 October 1996; Głównego Instytutu Górnictwa: Katowice, Poland, 1996. [Google Scholar]
- Ćmiel, S.R.; Idziak, A.F. Some geomechanical properties of Carboniferous rocks near the fault. In Documenta Geonica, Proceedings of the 2nd Czech-Polish Geomechanical Symposium; Academy of Sciences of Geonics, Prague–Ostrava; DERES Publishers: Prague–Ostrava, Czech Republic, 1999; pp. 263–268. [Google Scholar]
- Jura, D. Morfotektonika i Ewolucja Różnowiekowych Niezgodności w Stropie Utworów Karbonu Górnośląskiego Zagłębia Węglowego; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2001. [Google Scholar]
- Ćmiel, S.R.; Jura, D.; Misz, M. Petrografia i jakość węgla oraz metan pokładu 404/4–405/1 przy uskokach w KWK Pniówek (GZW). In 6. Czesko–Polska Konferencja “Geologia Zagłębia Górnośląskiego”; Kožušníková, A., Ed.; Documenta Geonica: Ostrava, Czech Republic, 2006; p. 33. [Google Scholar]
- Ćmiel, S. Charakterystyka Epigenetycznych Zmian Węgla w Pokładach w Strefach Uskokowych Górnośląskiego Zagłębia Węglowego; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2009. [Google Scholar]
- Bukowska, M.; Ćmiel, S. Charakterystyka zmian właściwości skał karbońskich w strefach tektoniki nieciągłej w Górnośląskim Zagłębiu Węglowym. Gór. Geoinż 2011, 35, 111–119. [Google Scholar]
- Drzewiecki, J. Wpływ parametrów uskoku na zasięg jego oddziaływania. Gór. Geoinż 2011, 35, 183–190. [Google Scholar]
- Marcisz, M. Stopień zuskokowania złóż węgla kamiennego Górnośląskiego Zagłębia Węglowego. Miner. Resour. Manag. 2017, 33, 97–112. [Google Scholar]
- Botor, D. Burial and thermal history of the Upper Silesian Coal Basin (Poland) constrained by maturity modelling—Implications for coalification and natural gas generation. Ann. Soc. Geol. Pol. 2020, 90, 99–123. [Google Scholar] [CrossRef]
- Kotas, A. Ważniejsze cechy budowy geologicznej GZW na tle pozycji tektonicznej i budowy głębokiego podłoża utworów produktywnych. In Problemy Geodynamiki i Tąpań; Komitet Górnictwa PAN: Kraków, Poland, 1972; Volume 1, pp. 5–55. [Google Scholar]
- Kotas, A. Budowa geologiczna podłoża utworów produktywnych GZW. Kwart. Geol. 1968, 12, 1088–1090. [Google Scholar]
- Jaroszewski, W. Uskoki i zjawiska pokrewne. In Tektonika; Dadlez, R., Jaroszewski, W., Eds.; PWN: Warszawa, Poland, 1994; pp. 88–162. [Google Scholar]
- Probierz, K.; Marcisz, M.; Sobolewski, A. Rozpoznanie warunków geologicznych występowania węgla koksowego w rejonie Jastrzębia dla potrzeb projektu “Inteligentna koksownia”. Biul. Państwowego Inst. Geol. 2012, 452, 245–256. [Google Scholar]
- Kędzior, S.; Jelonek, I. Reservoir parameters and maceral composition of coal in different Carboniferous lithostratigraphical series of the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2013, 111, 98–105. [Google Scholar] [CrossRef]
- Godyń, K. Structurally altered hard coal in the areas of tectonic disturbances—An initial attempt at classification. Arch. Min. Sci. 2016, 61, 677–694. [Google Scholar] [CrossRef]
- Godyń, K.; Kožušníková, A. Microhardness of coal from near-fault zones in coal seams threatened with gas-geodynamic phenomena, Upper Silesian Coal Basin, Poland. Energies 2019, 12, 1756. [Google Scholar] [CrossRef]
- Shepherd, J.; Rixon, L.K.; Griffiths, L. Outbursts and geological structures in coal mines: A review. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 267–283. [Google Scholar] [CrossRef]
- Beamish, B.; Crosdale, P. Instantaneous outbursts in underground coal mines: An overview and some new insights. Int. J. Coal Geol. 1998, 35, 27–55. [Google Scholar] [CrossRef]
- Suchý, V.; Frey, M.; Wolf, M. Vitrinite reflectance and shear-induced graphitization in orogenic belts: A case study from the Kandersteg area, Helvetic Alps, Switzerland. Int. J. Coal Geol. 1997, 34, 1–20. [Google Scholar] [CrossRef]
- Opletal, V.; Geršlová, E.; Nehyba, S.; Sýkorová, I.; Řez, J. Geology and thermal maturity of Namurian deposits in the Němčičky Sub-basin as the South-eastern continuation of the Upper Silesian Coal Basin (Czech Republic). Int. J. Coal Geol. 2019, 216, 103323. [Google Scholar] [CrossRef]
- Song, X.; Chen, T.; Zhang, D. The acoustic characteristics of tectonically deformed coal in Huaibei Coalfield. Energies 2023, 16, 5179. [Google Scholar] [CrossRef]
- Wen, Z. Evaluation of heterogeneity in tectonically deformed coal reservoirs based on the Analytic Hierarchy Process–Entropy Weight Method coupling model: A case study. ACS Omega 2023, 8, 36700–36709. [Google Scholar] [CrossRef]
- Herbich, E. Analiza tektoniczna sieci uskokowej GZW. Ann. Soc. Geol. Pol. 1981, 51, 383–434. [Google Scholar]
- Godyń, K.; Dutka, B. Sorption and micro-scale strength properties of coals susceptible to outburst caused by changes in degree of coalification. Materials 2021, 14, 5807. [Google Scholar] [CrossRef]
- Cao, Z.; Xiong, Y.; Xue, Y.; Du, F.; Li, Z.; Huang, C.; Wang, S.; Yu, Y.; Wang, W.; Zhai, M.; et al. Diffusion Evolution Rules of Grouting Slurry in Mining-induced Cracks in Overlying Strata. Rock Mech. Rock Eng. 2025, 58, 6493–6512. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, W.; Guo, S.; Zhang, X.; Wang, L.; Zhang, J. Study on the Energy Evolution Mechanism and Fractal Characteristics of Coal Failure under Dynamic Loading. ACS Omega 2025, 10, 54710–54719. [Google Scholar] [CrossRef]
- Yin, S.; Li, Z.; Song, D.; Mu, H.; Niu, Y.; Wang, X. Study on the Energy Evolution Law and Bursting Liability of Coal Failure with Different Joint Inclination Angles. Appl. Sci. 2024, 14, 1120. [Google Scholar] [CrossRef]
- Ma, J.; Liu, F.; Song, L. Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact. Appl. Sci. 2025, 15, 6469. [Google Scholar] [CrossRef]
- Godyń, K.; Králová, L. Wykorzystanie pomiarów mikrotwardości Vickersa do analiz węgla kamiennego pochodzącego z partii F kopalni “Borynia-Zofiówka-Jastrzębie”, Ruch Zofiówka. Pr. Inst. Mech. Górotworu PAN 2017, 19, 25–33. [Google Scholar]
- Krause, E. Wpływ uwarunkowań geologicznych i gazowych na kształtowanie się zagrożenia wyrzutami gazów i skał w Górnośląskim Zagłębiu Węglowym. Pr. Nauk. GIG—Górnictwo Sr. 2007, 2, 65–76. [Google Scholar]
- Pluta, I.; Ślaski, R.; Orawski, K. Uwarunkowania silnych zjawisk gazogeodynamicznych zaistniałych w kopalniach “Pniówek” i “Zofiówka”. Pr. Nauk. GIG—Górnictwo Sr. 2006, 4, 17–27. [Google Scholar]
- Kędzior, S. Potencjał zasobowy metanu pokładów węgla w Polsce w kontekście uwarunkowań geologicznych. Gospod. Surowcami Miner. 2008, 24, 5–27. [Google Scholar]
- Kędzior, S. Możliwości zagospodarowania metanu występującego w stropowych partiach złóż węgla kamiennego: Przykład rejonu Bzie-Dębina 1 i Gołkowice (GZW). Polit. Energ. 2011, 14, 197–206. [Google Scholar]
- Bukowska, M. Właściwości fizyczne węgli GZW w aspekcie zagrożenia wyrzutami metanu i skał. Gór. Geoinż 2010, 34, 27–40. [Google Scholar]
- Godyń, K. Advancement of structural changes of near-fault coals as a parameter useful in predicting the possibility of gas-geodynamic phenomena. In Proceedings of the 8th Czech-Polish Conference “Geologia Zagłębi Węglonośnych”, Ostrava, Czech Republic, 19–21 October 2011; pp. 67–74. [Google Scholar]
- Godyń, K. Wpływ nieciągłości tektonicznych na strukturę wewnętrzną węgla kamiennego pochodzącego z wybranych pokładów KWK “Pniówek”, “Borynia-Zofiówka” i “Brzeszcze” GZW. Biul. Państwowego Inst. Geol. 2012, 448, 215–228. [Google Scholar]
- Godyń, K. Charakterystyka węgla kamiennego występującego w strefach przyuskokowych. Prz. Gór 2013, 69, 45–53. [Google Scholar]
- Yin, S.; Ding, W. Evaluation indexes of coalbed methane accumulation in the strong-deformed strike-slip fault zone considering tectonics and fractures: A 3D geomechanical simulation study. Geol. Mag. 2019, 156, 1052–1068. [Google Scholar] [CrossRef]
- Li, W.; Jiang, B.; Zhu, Y.-M. Impact of tectonic deformation on coal methane adsorption capacity. Adsorpt. Sci. Technol. 2019, 37, 698–708. [Google Scholar] [CrossRef]
- Hou, C.; Jiang, B.; Liu, H.; Song, Y.; Xu, S. The differences of nanoscale mechanical properties and their effects on deformation of tectonically deformed coals. J. Rock Mech. Geotech. Eng. 2020, 12, 1200–1211. [Google Scholar]
- Wang, A.; Li, J.; Cao, D.; Wei, Y.; Ding, L.; Zhao, M. Comparison of nanopore structure evolution in vitrinite and inertinite of tectonically deformed coals: A case study in the Wutongzhuang Coal Mine (North China). Front. Earth Sci. 2022, 10, 822338. [Google Scholar] [CrossRef]
- Qin, R.; Wang, L.; Cao, D.; Wang, A.; Wei, Y.; Li, J. Thermal simulation experimental study on the difference of macromolecular structures of tectonically deformed coals. Front. Earth Sci. 2022, 10, 992017. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Zhou, W.; Sun, L.; Huang, Z. Study on pore structure of tectonically deformed coals by carbon dioxide adsorption and nitrogen adsorption methods. Energies 2025, 18, 887. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Hower, J.C.; Mastalerz, M.; Rimmer, S.M. Anomalies in Vickers microhardness of subbituminous and high-volatile bituminous coals. Int. J. Coal Geol. 2024, 296, 104659. [Google Scholar] [CrossRef]
- Probierz, K. Wpływ metamorfizmu termalnego na stopień uwęglenia i skład petrograficzny pokładów węgla w obszarze Jastrzębia (GZW). Zesz. Nauk. Politech. Śląskiej Ser. Górnictwo 1989, 176, 126. [Google Scholar]
- Kułakowski, T. Wpływ warunków geologicznych na stopień metamorfozy węgli warstw żaclerskich w Dolnośląskim Zagłębiu Węglowym. Geol. Sudet 1979, 14, 103–139. [Google Scholar]
- Liu, H.; Jiang, B. Differentiated evolution of coal macromolecules in localized igneous intrusion zone: A case study of Zhuxianzhuang colliery, Huaibei coalfield, China. Fuel 2019, 254, 115692. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Komorek, J.; Lewandowska, M. Specific types of coal macerals from Orzesze and Ruda Beds from ”Pniówek” Coal Mine (Upper Silesian Coal Basin—Poland) as a manifestation of thermal metamorphism. Arch. Min. Sci. 2014, 59, 77–91. [Google Scholar] [CrossRef]
- Nowak, G.J. Dojrzałość termiczna węgli Dolnośląskiego Zagłębia Węglowego na tle ich petrografii i genezy. Biul. Państwowego Inst. Geol. 2000, 391, 89–146. [Google Scholar]
- Mukherjee, A.K.; Alam, M.M.; Ghose, S. Microhardness characteristics of Indian coal and lignite. Fuel 1989, 68, 670–674. [Google Scholar] [CrossRef]
- Kuś, J.; Misz-Kennan, J. Coal weathering and laboratory (artificial) coal oxidation. Int. J. Coal Geol. 2017, 171, 12–36. [Google Scholar] [CrossRef]
- Nandi, B.N.; Ciavaglia, L.A.; Montgomery, D.S. The variation of the microhardness and reflectance of coal under conditions of oxidation simulating weathering. J. Microsc. 1977, 109, 93–103. [Google Scholar] [CrossRef]
- Ryś, J. Stereologia Materiałów; Fotobit Design: Kraków, Poland, 1995. [Google Scholar]
- PN-ISO 7404-5:2002P; Metody Analizy Petrograficznej Węgla Kamiennego (Bitumicznego) i Antracytu—Część 5: Metoda Mikroskopowa Oznaczania Refleksyjności Witrynitu. PKN: Warsaw, Poland, 2002.
- Kožušníková, A. Determination of microhardness and elastic modulus of coal components by using indentation method. Geolines 2009, 22, 40–43. [Google Scholar]
- Applied Coal Petrology. In The Role of Petrology in Coal Utilization; Suárez-Ruiz, I., Crelling, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Cao, Y.; Mitchell, G.D.; Davis, A.; Wang, D. Deformation metamorphism of bituminous and anthracite coals from China. Int. J. Coal Geol. 2000, 43, 227–242. [Google Scholar] [CrossRef]
- Młynarczuk, M.; Skiba, M. An approach to detect local tectonic dislocations in coal seams based on roughness analysis. Arch. Min. Sci. 2022, 67, 743–756. [Google Scholar]
- Hou, Q.; Li, H.; Fan, J.; Ju, Y.; Wang, T.; Li, X.; Wu, Y. Structure and coalbed methane occurrence in tectonically deformed coals. Sci. China Earth Sci. 2012, 55, 1755–1763. [Google Scholar] [CrossRef]
- Wang, A.; Cao, D.; Wei, Y.; Liu, Z. Macromolecular structure controlling micro mechanical properties of vitrinite and inertinite in tectonically deformed coals—A case study in Fengfeng Coal Mine of Taihangshan Fault Zone (North China). Energies 2020, 13, 6618. [Google Scholar] [CrossRef]
- Zhang, N.; Yao, S.; Wang, Y. Nanopore structure and mechanical properties in brittle tectonically deformed coals explored by atomic force microscopy. Front. Earth Sci. 2022, 10, 844120. [Google Scholar] [CrossRef]
- Pan, J.; Zhu, H.; Hou, Q.; Wang, H.; Wang, S. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy. Fuel 2015, 139, 94–101. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Qu, M. Macromolecular evolution and structural defects in tectonically deformed coals. Fuel 2019, 236, 1432–1445. [Google Scholar] [CrossRef]
- Ren, J.; Weng, H.; Li, B.; Chen, F.; Liu, J.; Song, Z. The influence mechanism of pore structure of tectonically deformed coal on the adsorption and desorption hysteresis. Front. Earth Sci. 2022, 10, 841353. [Google Scholar] [CrossRef]
- Huan, X.; Guo, X.; Chen, X.; Guo, X. Influence of tectonically deformed coal-based activated carbon and its surface modification on methane adsorption. ACS Omega 2024, 9, 33510–33521. [Google Scholar] [CrossRef]
- Dutka, B. Effect of depth on the sorption capacity of coals affected by outburst hazard. Fuel 2021, 306, 121611. [Google Scholar] [CrossRef]



| Distance from the Fault Fissure [m] | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Macerals * [%] | L-10 | L-3 | L-1.5 | L-0.7 | L-0 | P-0.7 | P-1.5 | P-3 | P-10 | Mean | |
| Vitrinite | 76.33 | 71.78 | 81.86 | 80.21 | 80.54 | ![]() | 82.70 | 77.83 | 80.55 | 79.53 | 79.04 |
| Inertinite | 16.69 | 20.00 | 10.50 | 16.28 | 15.68 | 10.25 | 18.95 | 15.79 | 14.87 | 15.45 | |
| Liptinite | 6.98 | 8.23 | 7.64 | 3.51 | 3.77 | 7.05 | 3.22 | 3.66 | 5.60 | 5.52 | |
| Total maceral content in coal [%] | 98.92 | 98.46 | 94.1 | 99.35 | 98.84 | 71.39 | 99.05 | 98.87 | 99.19 | 95.35 | |
| Mineral matter in coal [%] | 1.08 | 1.54 | 5.91 | 0.65 | 1.17 | 28.6 | 0.94 | 1.13 | 0.81 | 4.65 | |
| Unaltered coal * [%] | 98.08 | 99.29 | 99.59 | 87.37 | 88.95 | 97.89 | 98.8 | 98.62 | 98.5 | 96.34 | |
| Fractures in coal * [%] | 1.50 | 0.71 | 0.41 | 7.04 | 8.61 | 1.44 | 1.19 | 1.38 | 1.50 | 2.64 | |
| Structurally altered coal ** [%] | 0.41 | 0 | 0 | 5.60 | 2.48 | 0.64 | 0 | 0 | 0 | 1.01 | |
| Sum of fractures and altered coal * [%] | 1.91 | 0.71 | 0.41 | 12.64 | 11.09 | 2.08 | 1.19 | 1.38 | 1.5 | 3.66 | |
| Sample ID | L-10 | L-3 | L-1.5 | L-0.7 | L-0 | P-0.7 | P-1.5 | P-3 | P-10 | Mean R0 [%] for All Samples |
|---|---|---|---|---|---|---|---|---|---|---|
| Vitrinite reflectance R0 [%] | 0.911 | 0.922 | 0.911 | 0.910 | 0.901 | 0.92 | 0.916 | 0.923 | 0.899 | 0.913 |
| Maximum vitrinite reflectance Rmax [%] | 1.047 | 1.134 | 1.004 | 1.003 | 0.981 | 1.189 | 1.121 | 0.989 | 0.974 | 1.049 |
| Minimum vitrinite reflectance Rmin [%] | 0.859 | 0.837 | 0.843 | 0.833 | 0.841 | 0.854 | 0.842 | 0.841 | 0.842 | 0.844 |
| Standard deviation (SD) | 0.097 | 0.153 | 0.081 | 0.085 | 0.070 | 0.177 | 0.145 | 0.074 | 0.066 |
| Sample ID | L-10 | L-3 | L-1.5 | L-0.7 | L-0 | P-0.7 | P-1.5 | P-3 | P-10 | Hv-mean |
|---|---|---|---|---|---|---|---|---|---|---|
| Vickers microhardness Hv | 55.20 | 57.04 | 55.53 | 55.20 | 56.88 | 58.15 | 58.00 | 58.25 | 55.95 | 56.69 |
| Max. Vickers microhardness Hv-max | 71.86 | 71.78 | 71.73 | 75.09 | 73.57 | 75.09 | 71.78 | 72.51 | 72.68 | 72.90 |
| Min. Vickers microhardness Hv-min | 39.50 | 47.92 | 38.39 | 40.54 | 39.07 | 40.54 | 47.92 | 36.57 | 32.85 | 40.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godyń, K. Microhardness and Coalification Parameters as Sensitive Indicators of Tectonic Deformation in Coal Seams: A Case Study. Appl. Sci. 2025, 15, 12972. https://doi.org/10.3390/app152412972
Godyń K. Microhardness and Coalification Parameters as Sensitive Indicators of Tectonic Deformation in Coal Seams: A Case Study. Applied Sciences. 2025; 15(24):12972. https://doi.org/10.3390/app152412972
Chicago/Turabian StyleGodyń, Katarzyna. 2025. "Microhardness and Coalification Parameters as Sensitive Indicators of Tectonic Deformation in Coal Seams: A Case Study" Applied Sciences 15, no. 24: 12972. https://doi.org/10.3390/app152412972
APA StyleGodyń, K. (2025). Microhardness and Coalification Parameters as Sensitive Indicators of Tectonic Deformation in Coal Seams: A Case Study. Applied Sciences, 15(24), 12972. https://doi.org/10.3390/app152412972


