Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Preparation
2.2. Inoculum Preparation
2.3. Subcritical Water Pretreatment
2.4. Biochemical Hydrogen Potential (BHP) Assays
2.5. Analytical Methods
2.6. Data Processing
3. Results and Discussion
3.1. Physicochemical Characterization of the Untreated Pulp
3.2. Physicochemical Characterization of the Solid Fractions Obtained After Subcritical Water Hydrolysis
3.3. Physicochemical Characterization of the Liquid Fractions Obtained After Subcritical Water Hydrolysis
3.4. BHP Tests
3.5. Mass and Energy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciconini, G.; Favaro, S.P.; Roscoe, R.; Miranda, C.H.B.; Tapeti, C.F.; Miyahira, M.A.M.; Bearari, A.; Galvani, F.; Borsato, A.V.; Colnago, L.A.; et al. Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Ind. Crops Prod. 2013, 45, 208–214. [Google Scholar] [CrossRef]
- Falasca, S.; Ulberich, A.; Pitta-Alvarez, S. Development of agroclimatic zoning model to delimit the potential growing areas for macaw palm (Acrocomia aculeata). Theor. Appl. Climatol. 2017, 129, 1321–1333. [Google Scholar] [CrossRef]
- Gama de Souza, F.; Fernandes de Araújo, F.; de Paulo Farias, D.; Wasem Zanotto, A.; Neri-Numa, I.A.; Pastore, G.M. Brazilian fruits of Arecaceae family: An overview of some representatives with promising food, therapeutic and industrial applications. Food Res. Int. 2020, 138, 109690. [Google Scholar] [CrossRef]
- Biesdorf, E.M.; Fávaro, S.P.; Conceição, L.D.H.C.S.; Sá, S.F.; Pimentel, L.D. Production and quality of leaf biomass from Acrocomia aculeata for bioenergy. Ind. Crops Prod. 2024, 214, 118501. [Google Scholar] [CrossRef]
- Macaúba Conta Agora com Zoneamento Agrícola de Risco Climático. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/86749208/macauba-conta-agora-com-zoneamento-agricola-de-risco-climatico (accessed on 6 November 2025).
- Evaristo, A.B.; Grossi, J.A.S.; Carneiro, A.C.O.; Pimentel, L.D.; Motoike, S.Y.; Kuki, K.N. Actual and putative potentials of macauba palm as feedstock for solid biofuel production from residues. Biomass Bioenerg. 2016, 85, 18–24. [Google Scholar] [CrossRef]
- Duque, T.S.; Barroso, G.M.; Borges, C.E.; Mendes, D.S.; Silva, R.S.; Evaristo, A.B.; Santos, J.B. Current and future development of Acrocomia aculeata focused on biofuel potential and climate change challenges. Sci. Rep. 2025, 15, 8120. [Google Scholar] [CrossRef]
- Evaristo, A.B.; Grossi, J.A.S.; Pimentel, L.D.; Goulart, S.M.; Martins, A.D.; dos Santos, V.L.; Motoike, S. Harvest and post-harvest conditions influencing macauba (Acrocomia aculeata) oil quality attributes. Ind. Crops Prod. 2016, 85, 63–73. [Google Scholar] [CrossRef]
- Cardoso, A.; Laviola, B.G.; Santos, G.S.; Sousa, H.U.; Oliveira, H.B.; Veras, L.C.; Ciannella, R.; Favaro, S.P. Opportunities and challenges for sustainable production of Acrocomia aculeata through agroforestry systems. Ind. Crops Prod. 2017, 107, 573–580. [Google Scholar] [CrossRef]
- Benatti, G.S.S.; Buainain, A.M.; Cavalcante Filho, P.G.; Vargas-Carpintero, R.; Asveld, L.; Osseweijer, P. Macaw palm (Acrocomia spp.): An opportunity for including smallholders in Brazil’s biodiesel production. Clean. Circ. Bioecon. 2025, 10, 100134. [Google Scholar] [CrossRef]
- de Lima, N.E.; Carvalho, A.A.; Meerow, A.W.; Manfrin, M.H. A review of the palm genus Acrocomia: Neotropical green gold. Org. Divers. Evol. 2018, 18, 151–161. [Google Scholar] [CrossRef]
- Toledo e Silva, S.H.; Bader-Mittermaier, S.; Bataglia Silva, L.; Colombo, C.A.; Ferrari, R.A.; Eisner, P. Cell wall polysaccharides from macauba pulp (Acrocomia aculeata L.): Fractionation and characterization of their chemical and rheological properties. Int. J. Biol. Macromol. 2025, 298, 139890. [Google Scholar] [CrossRef]
- Gonçalves, T.O.; Filbido, G.S.; de Oliveira Pinheiro, A.P.; Piereti, P.D.P.; Dalla Villa, R.; de Oliveira, A.P. In vitro bioaccessibility of the Cu, Fe, Mn and Zn in the baru almond and bocaiúva pulp and macronutrients characterization. J. Food Compos. Anal. 2020, 86, 103356. [Google Scholar] [CrossRef]
- Aguilar-Aguilar, F.A.; Mena-Cervantes, V.Y.; Romero-Hernández, C.; Mederos-Nieto, F.S.; Ramírez-Estrada, A.; Hernández-Altamirano, R. Thermal, structural, and compositional evaluation of coyol shell pretreatments for enhanced lignocellulosic biomass utilization. Biomass Bioenerg. 2025, 193, 107518. [Google Scholar] [CrossRef]
- Ampese, L.C.; Buller, L.S.; Myers, J.; Timko, M.T.; Martins, G.; Forster-Carneiro, T. Valorization of macaúba husks from biodiesel production using subcritical water hydrolysis pretreatment followed by anaerobic digestion. J. Environ. Chem. Eng. 2021, 9, 105656. [Google Scholar] [CrossRef]
- Aguilar-Aguilar, F.A.; Mena-Cervantes, V.Y.; Mederos-Nieto, F.S.; Pineda-Flores, G.; Morales-García, S.S.; Hernández-Altamirano, R. Biochemical methane potential of coyol fruit as a substrate for biogas production through mixture design and kinetic modeling. Biomass Bioenerg. 2025, 193, 107571. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef]
- Ananthi, V.; Bora, A.; Ramesh, U.; Yuvakkumar, R.; Raja, K.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A review on the technologies for sustainable biohydrogen production. Process Saf. Environ. Prot. 2024, 186, 944–956. [Google Scholar] [CrossRef]
- Yue, P.; Hu, Y.; Tian, R.; Bian, J.; Peng, F. Hydrothermal pretreatment for the production of oligosaccharides: A review. Bioresour. Technol. 2022, 343, 126075. [Google Scholar] [CrossRef]
- Adamovic, T.; Zhu, X.; Perez, E.; Balakshin, M.; Cocero, M.J. Understanding sulfonated kraft lignin re-polymerization by ultrafast reactions in supercritical water. J. Supercrit. Fluids 2022, 191, 105768. [Google Scholar] [CrossRef]
- Abad-Fernández, N.; Pérez, E.; Martín, Á.; Cocero, M.J. Kraft lignin depolymerisation in sub- and supercritical water using ultrafast continuous reactors: Optimization and reaction kinetics. J. Supercrit. Fluids 2020, 165, 104940. [Google Scholar] [CrossRef]
- Pérez, E.; Abad-Fernández, N.; Lourençon, T.; Balakshin, M.; Sixta, H.; Cocero, M.J. Base-catalysed depolymerization of lignins in supercritical water: Influence of lignin nature and valorisation of pulping and biorefinery by-products. Biomass Bioenergy 2022, 163, 106536. [Google Scholar] [CrossRef]
- Nunes, A.A.; Favaro, S.P.; Galvani, F.; Miranda, C.H.B. Good practices of harvest and processing provide high quality macauba pulp oil. Eur. J. Lipid Sci. Technol. 2015, 117, 2032–2045. [Google Scholar] [CrossRef]
- Martínez-Mendoza, L.J.; Lebrero, R.; Muñoz, R.; García-Depraect, O. Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. Bioresour. Technol. 2022, 364, 128070. [Google Scholar] [CrossRef]
- Martínez, C.M.; Adamovic, T.; Cantero, D.A.; Cocero, M.J. Scaling up the production of sugars from agricultural biomass by ultrafast hydrolysis in supercritical water. J. Supercrit. Fluids 2019, 143, 242–250. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Buitrón, G.; Moreno-Andrade, I.; Tapia-Rodríguez, A.C.; Palomo-Briones, R.; Razo-Flores, E.; Aguilar-Juárez, O.; Arreola-Vargas, J.; Bernet, N.; Braga, A.F.M.; et al. Standardized protocol for determination of biohydrogen potential. MethodsX 2020, 7, 100754. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Laboratory Analytical Procedure; Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; Laboratory Analytical Procedure; Technical Report NREL/TP-510-42619; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Biomass and Total Dissolved Solids in Liquid Process Samples; Laboratory Analytical Procedure; Technical Report NREL/TP-510-42621; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; Laboratory Analytical Procedure; Technical Report NREL/TP-510-42622; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Hames, B.; Scarlata, C.; Sluiter, A. Determination of Protein Content in Biomass; Laboratory Analytical Procedure; Technical Report NREL/TP-510-42625; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- ASTM D5373-21; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- García-Depraect, O.; Martínez-Mendoza, L.J.; Diaz, I.; Muñoz, R. Two-stage anaerobic digestion of food waste: Enhanced bioenergy production rate by steering lactate-type fermentation during hydrolysis–acidogenesis. Bioresour. Technol. 2022, 358, 127358. [Google Scholar] [CrossRef]
- Martínez-Fraile, C.; Muñoz, R.; Simorte, M.T.; Sanz, I.; García-Depraect, O. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. Bioresour. Technol. 2024, 403, 130846. [Google Scholar] [CrossRef]
- García-Depraect, O.; León-Becerril, E. Use of a highly specialized biocatalyst to produce lactate or biohydrogen and butyrate from agro-industrial resources in a dual-phase dark fermentation. Fermentation 2023, 9, 787. [Google Scholar] [CrossRef]
- Duarte, S.; Monteiro, M.; Campuzano, P.A.; Giménez, N.; Penayo, M.C. Microcrystals and microfibers of cellulose from Acrocomia aculeata (Arecaceae) characterization. Biol. Life Sci. Forum 2023, 28, 8. [Google Scholar] [CrossRef]
- Alfaro-Solís, J.D.; Montoya-Arroyo, A.; Jiménez, V.M.; Arnáez-Serrano, E.; Pérez, J.; Vetter, W.; Frank, J.; Lewandowski, I. Acrocomia aculeata fruits from three regions in Costa Rica: An assessment of biometric parameters, oil content and oil fatty acid composition to evaluate industrial potential. Agrofor. Syst. 2020, 94, 1913–1927. [Google Scholar] [CrossRef]
- Favaro, S.P.; Smidt, M.A.; Miranda, C.H.B.; Leal, W.G.O.; Carvalho, F.B.P.; Rivaldi, J.D. Aqueous extraction to high yield and quality of Macauba (Acrocomia aculeata) pulp oil. Appl. Food Res. 2022, 2, 100060. [Google Scholar] [CrossRef]
- Tiegam Tagne, R.F.; Costa, P.; Casella, S.; Favaro, L. Optimization of biohydrogen production by dark fermentation of African food-processing waste streams. Int. J. Hydrogen Energy 2024, 49, 266–276. [Google Scholar] [CrossRef]
- Coimbra, M.C.; Jorge, N. Proximate composition of guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata) palm fruits. Food Res. Int. 2011, 44, 2139–2142. [Google Scholar] [CrossRef]
- Sarker, T.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K.; Meda, V.; Naik, S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 2021, 284, 131372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Basak, B.; Jeon, B.-H.; Kim, T.H.; Lee, J.-C.; Chatterjee, P.K.; Lim, H. Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies. Renew. Sustain. Energy Rev. 2020, 133, 110338. [Google Scholar] [CrossRef]
- Noguer, M.C.; Escudié, R.; Bernet, N.; Trably, E. Populational and metabolic shifts induced by acetate, butyrate and lactate in dark fermentation. Int. J. Hydrogen Energy 2022, 47, 28385–28398. [Google Scholar] [CrossRef]
- Andrade, A.C.; Marinho, J.F.U.; Souza, A.C.; Tavares, T.S.; Dias, D.R.; Schwan, R.F.; Nunes, C.A.; Bastos, S.C. Prebiotic potential of pulp and kernel cake from jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata) palm fruits. Food Res. Int. 2020, 136, 109595. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.R.; Azevedo, R.A.; Virginio Júnior, G.F.; Rodriguez, N.M.; Duarte, E.R.; Geraseev, L.C. Effects of macauba cake on profile of rumen protozoa of lambs. Rev. Bras. Zootec. 2017, 46, 251–256. [Google Scholar] [CrossRef]



| Parameters | Untreated Pulp | P-S150 | P-S200 | P-S250 |
|---|---|---|---|---|
| Total solids (g TS/Kg) | 897.01 ± 1.12 | 170.35 ± 1.37 | 153.73 ± 1.06 | 104.60 ± 1.02 |
| Volatile solids (g VS/kg) | 837.91 ± 1.23 | 166.15 ± 1.84 | 150.64 ± 1.03 | 103.25 ± 1.05 |
| VS/TS (%) | 93% | 97% | 98% | 99% |
| Insoluble lignin (g/100 g DM) | 21.02 ± 0.79 | 39.09 ± 0.05 | 43.36 ± 0.05 | 45.04 ± 0.02 |
| Soluble lignin (g/100 g DM) | 3.85 ± 0.12 | 3.63 ± 0.02 | 3.19 ± 0.03 | 2.54 ± 0.03 |
| Protein (g/100 g DM) | 6.67 ± 0.06 | 4.53 ± 0.02 | 4.22 ± 0.07 | 4.15 ± 0.05 |
| Parameter | P-L150 | P-L200 | P-L250 |
|---|---|---|---|
| Total organic carbon (g/L) | 4.20 ± 0.3 | 5.39 ± 0.4 | 5.86 ± 0.4 |
| Total nitrogen (g/L) | 0.05 ± 0.005 | 0.07 ± 0.006 | 0.10 ± 0.006 |
| Total COD (g O2/L) | 11.62 ± 0.233 | 15.19 ± 0.186 | 16.97 ± 0.646 |
| Soluble COD (g O2/L) | 11.03 ± 0.280 | 13.25 ± 0.062 | 14.24 ± 0.124 |
| pH | 6.58 ± 0.05 | 5.79 ± 0.05 | 5.17 ± 0.04 |
| Total sugars (g/L) | 3.297 ± 0.289 | 3.790 ± 0.260 | 5.429 ± 0.327 |
| Galacturonic acid (g/L) | 0.352 ± 0.032 | 0.472 ± 0.044 | 0.473 ± 0.041 |
| Acetic acid (g/L) | 0.035 ± 0.003 | 0.115 ± 0.002 | 0.248 ± 0.003 |
| Formic acid (g/L) | 0.038 ± 0.001 | 0.048 ± 0.002 | 0.085 ± 0.002 |
| 5-HMF (g/L) | 0.0010 ± 0.00 | 0.0011 ± 0.0002 | 0.0012 ± 0.0001 |
| Parameters | Untreated Pulp | P-S150 | P-S200 | P-S250 |
|---|---|---|---|---|
| BHP (NmL H2/g VSfed) | 125.13 ± 4.68 | 118.09 ± 3.35 | 71.64 ± 4.54 | 41.64 ± 3.34 |
| λ1 (h) | 2.23 ± 0.03 | 4.04 ± 0.01 | 4.43 ± 0.83 | 2.44 ± 0.09 |
| λ2 (h) | 23.43 ± 1.41 | 23.69 ± 1.32 | 23.02 ± 1.76 | 30.71 ± 0.35 |
| Hmax1 (NmL H2/L) | 101.07 ± 11.60 | 60.58 ± 0.99 | 39.09 ± 2.01 | 26.59 ± 0.48 |
| Hmax2 (NmL H2/L) | 521.98 ± 29.46 | 551.94 ± 2.92 | 330.07 ± 14.52 | 181.91 ± 3.72 |
| HmaxTotal (NmL H2/L) | 623.05 ± 19.3 | 612.52 ± 14.6 | 369.16 ± 16.1 | 208.50 ± 4.6 |
| Rmax1 (NmL H2/h) | 5.09 ± 0.44 | 5.88 ± 0.02 | 4.17 ± 0.15 | 0.65 ± 0.02 |
| Rmax2 (NmL H2/h) | 13.27 ± 1.37 | 7.04 ± 0.20 | 4.31 ± 0.23 | 5.40 ± 0.06 |
| R2 | 0.9995 | 0.9995 | 0.9992 | 0.9994 |
| VHPRmax1 (NmL H2/L -h) | 14.14 ± 1.21 | 16.34 ± 0.07 | 11.59 ± 0.43 | 1.79 ± 0.04 |
| VHPRmax2 (mL H2/L -h) | 36.87 ± 3.81 | 19.54 ± 0.57 | 11.98 ± 0.64 | 14.99 ± 0.18 |
| Parameters | Positive Control | P-L150 | P-L200 | P-L250 |
|---|---|---|---|---|
| BHP (NmL H2/g CODfed) | 110.76 ± 3.93 | 107.22 ± 4.06 | 79.41 ± 4.08 | 75.98 ± 4.03 |
| λ1 (h) | 3.38 ± 0.24 | 3.40 ± 0.19 | 5.00 ± 0.21 | 4.38 ± 0.34 |
| λ2 (h) | - | 20.41 ± 0.85 | 21.36 ± 0.69 | 24.08 ± 0.45 |
| Hmax1 (NmL H2/L) | 555.16 ± 12.30 | 87.77 ± 5.61 | 61.24 ± 10.25 | 49.64 ± 7.51 |
| Hmax2 (NmL H2/L) | - | 454.10 ± 19.31 | 337.55 ± 18.47 | 334.30 ± 5.77 |
| HmaxTotal (NmL H2/L) | 555.16 ± 12.30 | 541.87 ± 12.3 | 398.79 ± 15.6 | 383.93 ± 12.3 |
| Rmax1 (NmL H2/h) | 47.68 ± 1.87 | 3.91 ± 0.19 | 4.11 ± 0.94 | 1.39 ± 0.68 |
| Rmax2 (NmL H2/h) | - | 16.27 ± 0.09 | 15.28 ± 1.17 | 16.02 ± 1.10 |
| R2 | 0.9992 | 0.9993 | 0.9995 | 0.9990 |
| VHPRmax1 (NmL H2/L-h) | 132.45 ± 5.19 | 10.87 ± 0.54 | 11.42 ± 2.61 | 3.87 ± 1.90 |
| VHPRmax2 (NmL H2/L-h) | - | 45.19 ± 0.24 | 42.44 ± 3.24 | 44.50 ± 3.04 |
| Condition | %H2 (v/v) | Final pH | COD (g O2/L) | Residual Total Sugars (g/L) |
|---|---|---|---|---|
| Positive control | 41.20 ± 4.03 | 5.84 ± 0.01 | 7.72 ± 0.72 | 0.74 ± 0.05 |
| Negative control | 24.58 ± 2.16 | 6.32 ± 0.02 | 7.24 ± 0.56 | 0.51 ± 0.15 |
| Pulp | 56.80 ± 3.76 | 4.78 ± 0.02 | 9.95 ± 0.66 | 1.13 ± 0.10 |
| P-S150 | 52.92 ± 3.89 | 4.90 ± 0.01 | 10.01 ± 1.16 | 1.22 ± 0.10 |
| P-S200 | 47.90 ± 2.34 | 5.27 ± 0.01 | 11.05 ± 1.23 | 1.51 ± 0.26 |
| P-S250 | 40.91 ± 1.65 | 5.35 ± 0.01 | 11.11 ± 0.99 | 1.72 ± 0.10 |
| P-L150 | 50.24 ± 1.76 | 5.03 ± 0.02 | 7.96 ± 0.91 | 0.89 ± 0.01 |
| P-L200 | 49.94 ± 2.76 | 5.20 ± 0.02 | 8.93 ± 0.79 | 0.71 ± 0.01 |
| P-L250 | 44.94 ± 2.54 | 5.18 ± 0.02 | 9.15 ± 0.68 | 0.64 ± 0.01 |
| Scenarios | Reaction Conditions | H2 Production Yield (m3/ton) | H2 Energy Yield (MJ/ha-year) | Total Energy Yield of H2 (MJ/ha-year) |
|---|---|---|---|---|
| Scenario 1: Raw material | ||||
| Pulp | No reaction conditions applied | 104.84 ± 12.15 | 15,026.19 ± 335 | 15,026.19 ± 335 |
| Scenario 2: Subcritical water hydrolysis | ||||
| P-S150 | P = 170 bar; T = 150 °C; τ = 3.2 s. | 35.56 ± 2.71 | 5096.64 ± 197 | 14,513.09 ± 457 |
| P-L150 | 65.7 ± 3.87 | 9416.45 ± 412 | ||
| P-S200 | P = 170 bar; T = 200 °C; τ = 3.2 s. | 26.43 ± 1.98 | 3788.08 ± 385 | 10,016.98 ± 632 |
| P-L200 | 43.46 ± 3.86 | 6228.90 ± 501 | ||
| P-S250 | P = 170 bar; T = 250 °C; τ = 2.7 s | 7.86 ± 1.35 | 1126.53 ± 156 | 9136.97 ± 436 |
| P-L250 | 55.89 ± 4.78 | 8010.43 ± 407 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Quevedo, M.L.; Cantero, D.; Menalla, E.; Montoya-Rosales, J.d.J.; Frutos, O.D.; Muñoz, R.; García-Depraect, O. Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment. Appl. Sci. 2025, 15, 12523. https://doi.org/10.3390/app152312523
Correa-Quevedo ML, Cantero D, Menalla E, Montoya-Rosales JdJ, Frutos OD, Muñoz R, García-Depraect O. Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment. Applied Sciences. 2025; 15(23):12523. https://doi.org/10.3390/app152312523
Chicago/Turabian StyleCorrea-Quevedo, María Laura, Danilo Cantero, Enkeledo Menalla, José de Jesús Montoya-Rosales, Osvaldo D. Frutos, Raúl Muñoz, and Octavio García-Depraect. 2025. "Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment" Applied Sciences 15, no. 23: 12523. https://doi.org/10.3390/app152312523
APA StyleCorrea-Quevedo, M. L., Cantero, D., Menalla, E., Montoya-Rosales, J. d. J., Frutos, O. D., Muñoz, R., & García-Depraect, O. (2025). Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment. Applied Sciences, 15(23), 12523. https://doi.org/10.3390/app152312523

