Implementation of Pulsed Electric Field in Virgin Olive Oil Production: Impact on Oil Yield, Quality and Volatile Profile
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Virgin Olive Oil Production
2.4. Determination of Oil Yield
2.5. Determination of Basic Quality Parameters
2.6. Determination of Lipoxygenase Activity
Protein Determination
2.7. Determination of Volatile Components
2.8. Statistical Analysis
3. Results and Discussion
3.1. Oil Yield
3.2. Lipoxygenase Activity and Composition of Volatile Compounds in Croatian Virgin Olive Oils
3.3. Effect of Pulsed Electric Field on Oil Yield and Quality Parameters
3.4. Effect of Pulsed Electric Field on Lipoxygenase Activity and Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VOO | Virgin olive oil |
| PEF | Pulsed electric field |
| PV | Peroxide value |
| VOC | Volatile organic compounds |
| LOX | Lipoxygenase |
| HPOT | Hydroperoxy-octadecatrienoic acid |
| ADH | Alcohol dehydrogenase |
| AAT | Alcohol acetyl transferase (AAT) |
| OX | Non-enzymatic oxidation of fatty acids |
| MBA | Microbiological activity |
| DAD | Diode array detector |
| ALA | α-linolenic acid |
References
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The Application of PEF Technology in Food Processing and Human Nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Yan, B.; Li, J.; Liang, Q.C.; Huang, Y.; Cao, S.L.; Wang, L.H.; Zeng, X.A. From Laboratory to Industry: The Evolution and Impact of Pulsed Electric Field Technology in Food Processing. Food Rev. Int. 2024, 41, 373–398. [Google Scholar] [CrossRef]
- Ohshima, T.; Tanino, T.; Guionet, A.; Takahashi, K.; Takaki, K. Mechanism of Pulsed Electric Field Enzyme Activity Change and Pulsed Discharge Permeabilization of Agricultural Products. Jpn. J. Appl. Phys. 2021, 60, 060501. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, R.B.; Wang, L.M.; Chen, J.; Guan, Z.C. Conformation Changes of Polyphenol Oxidase and Lipoxygenase Induced by PEF Treatment. J. Appl. Electrochem. 2010, 40, 295–301. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Sobrino-López, Á.; Soliva-Fortuny, R.; Martín-Belloso, O. Influence of High-Intensity Pulsed Electric Field Processing on Lipoxygenase and β-Glucosidase Activities in Strawberry Juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 455–462. [Google Scholar] [CrossRef]
- Kraljić, K.; Balbino, S.; Filipan, K.; Herceg, Z.; Stuparević, I.; Ivanov, M.; Vukušić Pavičić, T.; Jakoliš, N.; Škevin, D. Innovative Approaches to Enhance Activity of Endogenous Olive Enzymes—A Model System Experiment: Part II—Non-Thermal Technique. Processes 2023, 11, 3283. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef] [PubMed]
- Clodoveo, M.L.; Hachicha Hbaieb, R. Beyond the Traditional Virgin Olive Oil Extraction Systems: Searching Innovative and Sustainable Plant Engineering Solutions. Food Res. Int. 2013, 54, 1926–1933. [Google Scholar] [CrossRef]
- Aguilera, M.P.; Beltran, G.; Sanchez-Villasclaras, S.; Uceda, M.; Jimenez, A. Kneading Olive Paste from Unripe ‘Picual’ Fruits: I. Effect on Oil Process Yield. J. Food Eng. 2010, 97, 533–538. [Google Scholar] [CrossRef]
- Leone, A.; Tamborrino, A.; Esposto, S.; Berardi, A.; Servili, M. Investigation on the Effects of a Pulsed Electric Field (PEF) Continuous System Implemented in an Industrial Olive Oil Plant. Foods 2022, 11, 2758. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Ruiz-Méndez, M.V.; Sanz, C.; Martínez, M.; Rego, D.; Pérez, A.G. Application of Pulsed Electric Fields to Pilot and Industrial Scale Virgin Olive Oil Extraction: Impact on Organoleptic and Functional Quality. Foods 2022, 11, 2022. [Google Scholar] [CrossRef] [PubMed]
- Tamborrino, A.; Urbani, S.; Servili, M.; Romaniello, R.; Perone, C.; Leone, A. Pulsed Electric Fields for the Treatment of Olive Pastes in the Oil Extraction Process. Appl. Sci. 2020, 10, 114. [Google Scholar] [CrossRef]
- Puértolas, E.; de Marañón, I.M. Olive Oil Pilot-Production Assisted by Pulsed Electric Field: Impact on Extraction Yield, Chemical Parameters and Sensory Properties. Food Chem. 2015, 167, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Sordini, B.; Lorefice, A.; Daidone, L.; Pagano, M.; Tomasone, R.; Servili, M. Extra-Virgin Olive Oil Extracted Using Pulsed Electric Field Technology: Cultivar Impact on Oil Yield and Quality. Front. Nutr. 2019, 6, 134. [Google Scholar] [CrossRef]
- Lukić, I.; Lukić, M.; Žanetić, M.; Krapac, M.; Godena, S.; Bubola, K.B. Inter-Varietal Diversity of Typical Volatile and Phenolic Profiles of Croatian Extra Virgin Olive Oils as Revealed by GC-IT-MS and UPLC-DAD Analysis. Foods 2019, 8, 565. [Google Scholar] [CrossRef]
- Dias, S.; Pino-Hernández, E.; Gonçalves, D.; Rego, D.; Redondo, L.; Alves, M. Challenges and Opportunities for Pilot Scaling-Up Extraction of Olive Oil Assisted by Pulsed Electric Fields: Process, Product, and Economic Evaluation. Appl. Sci. 2024, 14, 3638. [Google Scholar] [CrossRef]
- COI/OH/Doc. No 1 2011; Guide for the Determination of the Characteristics of Oil-Olives; International Olive Council: Madrid, Spain, 2011; Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OH-Doc.-1-2011-Eng.pdf (accessed on 5 December 2023).
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Laboratory-scale Optimization of Olive Oil Extraction: Simultaneous Addition of Enzymes and Microtalc Improves the Yield. Eur. J. Lipid Sci. Technol. 2014, 116, 1054–1062. [Google Scholar] [CrossRef]
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/71268.html (accessed on 4 December 2023).
- COI/T.20/Doc. No 34/Rev. 1 2017; Method Determination of Free Fatty Acids, Cold Method; International Olive Council: Madrid, Spain, 2017; Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-34-Rev.-1-2017.pdf (accessed on 5 December 2023).
- COI/T.20/Doc. No 19/Rev. 5 2019; Method of Analysis Spectrophotometric Investigation in the Ultraviolet; International Olive Council: Madrid, Spain, 2019; Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-19-Rev.-5-2019-2.pdf (accessed on 4 December 2023).
- Luaces, P.; Sanz, C.; Pérez, A.G. Thermal Stability of Lipoxygenase and Hydroperoxide Lyase from Olive Fruit and Repercussion on Olive Oil Aroma Biosynthesis. J. Agric. Food Chem. 2007, 55, 6309–6313. [Google Scholar] [CrossRef]
- Soldo, B.; Šprung, M.; Mušac, G.; Pavela-Vrančić, M.; Ljubenkov, I. Evaluation of Olive Fruit Lipoxygenase Extraction Protocols on 9- and 13-Z,E-HPODE Formation. Molecules 2016, 21, 506. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Lukić, M.; Novoselić, A.; Krapac, M.; Lukić, I. Olive Fruit Refrigeration during Prolonged Storage Preserves the Quality of Virgin Olive Oil Extracted Therefrom. Foods 2020, 9, 1445. [Google Scholar] [CrossRef]
- Marcelić, Š.; Vidović, N.; Pasković, I.; Lukić, M.; Špika, M.J.; Palčić, I.; Lukić, I.; Petek, M.; Pecina, M.; Herak Ćustić, M.; et al. Combined Sulfur and Nitrogen Foliar Application Increases Extra Virgin Olive Oil Quantity without Affecting Its Nutritional Quality. Horticulturae 2022, 8, 203. [Google Scholar] [CrossRef]
- Majetić Germek, V.; Butinar, B.; Pizzale, L.; Bučar-Miklavčič, M.; Conte, L.S.; Koprivnjak, O. Phenols and Volatiles of Istarska Bjelica and Leccino Virgin Olive Oils Produced with Talc, NaCl and KCl as Processing Aids. J. Am. Oil Chem. Soc. 2016, 93, 1365–1372. [Google Scholar] [CrossRef]
- Škevin, D.; Balbino, S.; Žanetić, M.; Jukić Špika, M.; Koprivnjak, O.; Filipan, K.; Obranović, M.; Žanetić, K.; Smajić, E.; Radić, M.; et al. Improvement of Oxidative Stability and Antioxidative Capacity of Virgin Olive Oil by Flash Thermal Pretreatment—Optimization Process. Foods 2025, 14, 2564. [Google Scholar] [CrossRef] [PubMed]
- Product-Specification-EXTRA-VIRGIN-OLIVE-OIL-OF-HERZEGOVINA. Available online: https://fsa.gov.ba/wp-content/uploads/2025/06/Product-specification-EXTRA-VIRGIN-OLIVE-OIL-OF-HERZEGOVINA.pdf (accessed on 20 May 2025).
- Žanetić, M.; Jukić Špika, M.; Ožić, M.M.; Brkić Bubola, K. Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants 2021, 10, 1995. [Google Scholar] [CrossRef]
- Jukić Špika, M.; Žanetić, M.; Kraljić, K.; Pasković, I.; Škevin, D. Changes in Olive Fruit Characteristics and Oil Accumulation in ‘Oblica’ and ‘Leccino’ during Ripening. Acta Hortic. 2018, 1199, 543–548. [Google Scholar] [CrossRef]
- Nissim, Y.; Shloberg, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Zemach, H.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, G. High Temperature Environment Reduces Olive Oil Yield and Quality. PLoS ONE 2020, 15, e0231956. [Google Scholar] [CrossRef]
- Strikic, F.; Bandelj Mavsar, D.; Perica, S.; Cmelik, Z.; Satovic, Z.; Javornik, B. The Main Croatian Olive Cultivar, ‘Oblica’, Shows High Morphological but Low Molecular Diversity. J. Hortic. Sci. Biotechnol. 2009, 84, 345–349. [Google Scholar] [CrossRef]
- Žanetić, M.; Cerretani, L.; Del Carlo, M. Preliminary Characterisation of Monovarietal Extra-Virgin Olive Oils Obtained from Different Cultivars in Croatia. J. Commod. Sci. Technol. Qual. 2007, 46, 79–94. [Google Scholar]
- Sánchez-Ortiz, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Synthesis of Volatile Compounds of Virgin Olive Oil Is Limited by the Lipoxygenase Activity Load during the Oil Extraction Process. J. Agric. Food Chem. 2012, 60, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.J.; Williams, M.; Harwood, J.L.; Sánchez, J. Lipoxygenase Activity in Olive (Olea europaea) Fruit. J. Am. Oil Chem. Soc. 1999, 76, 1163–1168. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Priego-Capote, F. Cultivar Influence on the Volatile Components of Olive Oil Formed in the Lipoxygenase Pathway. LWT-Food Sci. Technol. 2021, 147, 111485. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 Varietal Virgin Olive Oils by Their Volatile Compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- García-Vico, L.; Belaj, A.; Sánchez-Ortiz, A.; Martínez-Rivas, J.M.; Pérez, A.G.; Sanz, C. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [PubMed]
- Kesen, S.; Kelebek, H.; Selli, S. Characterization of the Key Aroma Compounds in Turkish Olive Oils from Different Geographic Origins by Application of Aroma Extract Dilution Analysis (AEDA). J. Agric. Food Chem. 2014, 62, 391–401. [Google Scholar] [CrossRef]
- Soldo, B.; Jukić Špika, M.; Pasković, I.; Vuko, E.; Polić Pasković, M.; Ljubenkov, I. The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars. Molecules 2024, 29, 1696. [Google Scholar] [CrossRef]
- Tura, D.; Failla, O.; Bassi, D.; Attilio, C.; Serraiocco, A. Regional and Cultivar Comparison of Italian Single Cultivar Olive Oils According to Flavor Profiling. Eur. J. Lipid Sci. Technol. 2013, 115, 196–210. [Google Scholar] [CrossRef]
- Padilla, M.N.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Stress-Dependent Regulation of 13-Lipoxygenases and 13-Hydroperoxide Lyase in Olive Fruit Mesocarp. Phytochemistry 2014, 102, 80–88. [Google Scholar] [CrossRef]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of Agroclimatic Parameters on Phenolic and Volatile Compounds of Chilean Virgin Olive Oils and Characterization Based on Geographical Origin, Cultivar and Ripening Stage. J. Sci. Food Agric. 2016, 96, 583–592. [Google Scholar] [CrossRef]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. Factors Affecting Extra-Virgin Olive Oil Composition. In Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 38, pp. 83–147. [Google Scholar]
- Šarolić, M.; Gugić, M.; Friganović, E.; Tuberoso, C.I.G.; Jerković, I. Phytochemicals and Other Characteristics of Croatian Monovarietal Extra Virgin Olive Oils from Oblica, Lastovka and Levantinka Varieties. Molecules 2015, 20, 4395–4409. [Google Scholar] [CrossRef]
- Angerosa, F.; Lanza, B.; Marsilio, V. Biogenesis of “fusty” defect in virgin olive oil. Grasas Aceites 1996, 47, 142–150. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.; Li, G.; Li, C.; Li, W.; Bi, Y.; Wei, J. Pulsed Electric Field Treatment Improves the Oil Yield, Quality, and Antioxidant Activity of Virgin Olive Oil. Food Chem. X 2024, 22, 101372. [Google Scholar] [CrossRef]
- Martínez-Beamonte, R.; Ripalda, M.; Herrero-Continente, T.; Barranquero, C.; Dávalos, A.; de las Hazas, M.C.L.; Álvarez-Lanzarote, I.; Sánchez-Gimeno, A.C.; Raso, J.; Arnal, C.; et al. Pulsed Electric Field Increases the Extraction Yield of Extra Virgin Olive Oil without Loss of Its Biological Properties. Front. Nutr. 2022, 9, 1065543. [Google Scholar] [CrossRef] [PubMed]
- Abenoza, M.; Benito, M.; Saldaña, G.; Álvarez, I.; Raso, J.; Sánchez-Gimeno, A.C. Effects of Pulsed Electric Field on Yield Extraction and Quality of Olive Oil. Food Bioproc. Technol. 2013, 6, 1367–1373. [Google Scholar] [CrossRef]
- Grgić, T.; Bleha, R.; Smrčkova, P.; Stulić, V.; Pavičić, T.V.; Synytsya, A.; Iveković, D.; Novotni, D. Pulsed Electric Field Treatment of Oat and Barley Flour: Influence on Enzymes, Non-Starch Polysaccharides, Dough Rheological Properties, and Application in Flat Bread. Food Bioproc. Technol. 2024, 17, 4303–4324. [Google Scholar] [CrossRef]
- Töpfl, S. Pulsed Electric Fields (PEF) for Permeabilization of Cell Membranes in Food-and Bioprocessing: Applications, Process and Equipment Design and Cost Analysis. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 22 September 2006. [Google Scholar]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef]
- Commission Delegated Regulation Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. 2022. Official Journal of the European Union 2022, L 282, 1–52.
- Fakas, S.; Kefalogianni, I.; Makri, A.; Tsoumpeli, G.; Rouni, G.; Gardeli, C.; Papanikolaou, S.; Aggelis, G. Characterization of Olive Fruit Microflora and Its Effect on Olive Oil Volatile Compounds Biogenesis. Eur. J. Lipid Sci. Technol. 2010, 112, 1024–1032. [Google Scholar] [CrossRef]
- Saldaña, G.; Álvarez, I.; Condón, S.; Raso, J. Microbiological Aspects Related to the Feasibility of PEF Technology for Food Pasteurization. Crit. Rev. Food Sci. Nutr. 2014, 54, 1415–1426. [Google Scholar] [CrossRef]
- Martínez, J.M.; Delso, C.; Álvarez, I.; Raso, J. Pulsed Electric Field-Assisted Extraction of Valuable Compounds from Microorganisms. Compr. Rev. Food Sci. Food. Saf. 2020, 19, 530–552. [Google Scholar] [CrossRef] [PubMed]






| Sample | Electric Filed Strength (kV/cm) | Treatment Time (s) | Specific Energy (kJ/kg) |
|---|---|---|---|
| Control | 0 | 0 | 0 |
| 2 | 1 | 60 | 0.018 |
| 3 | 2 | 30 | 0.036 |
| 4 | 2 | 90 | 0.108 |
| 5 | 4.5 | 18 | 0.063 |
| 6 | 4.5 | 60 | 0.210 |
| 7 | 4.5 | 102 | 0.358 |
| 8 | 7 | 30 | 0.236 |
| 9 | 7 | 90 | 0.708 |
| 10 | 8 | 60 | 0.540 |
| Parameter | p-Value | Variety | ||||
|---|---|---|---|---|---|---|
| Istarska Bjelica | Rosulja | Levantinka | Oblica | |||
| LOX Activity (µmol HPOT */mg protein) | p ≤ 0.001 | 15.48 + 0.61 b | 23.46 + 0.67 a | 2.42 + 0.36 d | 9.88 + 0.48 c | |
| Volatile compound (mg/kg) | RID ** | |||||
| from LOX path | ||||||
| 2-pentenal | A | p ≤ 0.001 | 0.68 ± 0.07 a | 0.10 ± 0.09 b | nd *** b | nd b |
| 2-methyl-4-pentenal + 3-hexenal | B B | p ≤ 0.001 | 16.91 ± 1.01 a | 4.50 ± 0.88 b | 0.34 ± 0.18 c | 4.38 ± 0.68 b |
| 2-hexenal | A | p ≤ 0.001 | 39.39 ± 6.56 a | 40.34 ± 2.79 a | 2.29 ± 2.53 b | 1.35 ± 0.49 b |
| 1-penten-3-ol | A | p ≤ 0.01 | 0.87 ± 0.09 ab | 0.64 ± 0.15 b | 0.97 ± 0.10 a | 0.59 ± 0.09 b |
| (E)-2-penten-1-ol | B | p = 0.441 | nd | nd | 0.07 ± 0.12 | nd |
| (Z)-2-penten-1-ol | B | p ≤ 0.001 | 2.29 ± 0.32 a | 1.12 ± 0.17 b | 1.23 ± 0.10 b | 0.76 ± 0.09 b |
| hexan-1-ol | B | p ≤ 0.001 | 0.33 ± 0.10 b | 0.99 ± 1.25 b | 3.42 ± 2.49 b | 9.94 ± 0.98 a |
| 2-hexen-1-ol | A | p = 0.363 | 0.64 ± 0.32 | 10.25 ± 5.93 | 12.48 ± 1.56 | 8.50 ± 2.06 |
| (E)-3-hexen-1-ol | A | p ≤ 0.001 | nd b | nd b | 0.50 ± 0.44 b | 1.29 ± 0.19 a |
| (Z)-3-hexen-1-ol | A | p ≤ 0.001 | 9.78 ± 1.55 b | 6.83 ± 2.63 b | 7.59 ± 0.97 b | 19.48 ± 0.69 a |
| 1-penten-3-one | A | p ≤ 0.001 | 4.48 ± 0.52 a | 1.08 ± 0.57 b | 1.07 ± 0.63 b | 0.51 ± 0.11 b |
| pentan-3-one | B | p = 0.441 | nd | 0.25 ± 0.43 | nd | nd |
| hexyl acetate | B | p ≤ 0.001 | nd b | nd b | 1.47 ± 0.20 a | nd b |
| 3-hexenyl acetate | A | p ≤ 0.001 | nd b | 0.38 ± 0.12 b | 2.11 ± 0.38 a | nd b |
| Total | p ≤ 0.01 | 75.37 ± 7.84 a | 66.48 ± 16.76 ab | 33.54 ± 5.08 c | 46.8 ± 3.61 bc | |
| from OX | ||||||
| pentanal | A | p ≤ 0.001 | 0.43 ± 0.09 b | 0.21 ± 0.2 b | 1.32 ± 0.06 a | 1.06 ± 0.15 a |
| 2,4-hexadienal | A | p ≤ 0.001 | 2.99 ± 0.92 a | 0.77 ± 0.2 b | 0.11 ± 0.04 b | 0.10 ± 0.05 b |
| 4-oxohex-2-enal | B | p ≤ 0.001 | 4.94 ± 0.38 a | 0.91 ± 0.26 b | 0.19 ± 0.19 c | 0.03 ± 0.05 c |
| nonanal | B | p = 0.07 | 0.18 ± 0.08 | 0.27 ± 0.07 | 0.14 ± 0.03 | 0.15 ± 0.02 |
| Total | p ≤ 0.001 | 8.53 ± 1.16 a | 2.16 ± 0.56 b | 1.77 ± 0.25 b | 1.33 ± 0.1 b | |
| from MBA | ||||||
| 2-methylbutanal | C | p ≤ 0.001 | 0.53 ± 0.21 a | 0.06 ± 0.05 b | nd b | 0.01 ± 0.02 b |
| 3-methylbutanal | B | p ≤ 0.001 | 0.35 ± 0.10 a | nd b | nd b | nd b |
| pentan-1-ol | B | p ≤ 0.05 | nd b | 0.06 ± 0.10 b | 0.24 ± 0.07 ab | 0.43 ± 0.23 a |
| Total | p ≤ 0.05 | 0.89 ± 0.32 a | 0.12 ± 0.14 b | 0.24 ± 0.07 b | 0.45 ± 0.26 ab | |
| Variety | El. Field Strength (kV/cm) | Time (s) | Acidity (% Oleic Fatty Acid) | PV (meq O2/kg) | K-Values | ||
|---|---|---|---|---|---|---|---|
| K232 | K268 | ΔK | |||||
| Istarska Bjelica | p ≤ 0.01 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.05 | p ≤ 0.01 | ||
| Control | 0.29 ± 0.02 ab | 4.7 ± 1.4 abc | 1.77 ± 0.01 d | 0.13 ± 0.02 b | 0.00 ± 0.00 a | ||
| 1 | 60 | 0.33 ± 0.02 a | 2.8 ± 0.3 c | 1.90 ± 0.01 a−d | 0.16 ± 0.00 a | 0.00 ± 0.00 a | |
| 2 | 30 | 0.30 ± 0.01 ab | 3.3 ± 0.1 bc | 1.81 ± 0.01 bcd | 0.15 ± 0.01 ab | 0.00 ± 0.00 a | |
| 2 | 90 | 0.30 ± 0.00 ab | 2.8 ± 0.4 c | 1.80 ± 0.01 cd | 0.15 ± 0.02 ab | 0.00 ± 0.00 a | |
| 4.5 | 18 | 0.28 ± 0.01 b | 3.0 ± 0.5 c | 1.88 ± 0.01 a−d | 0.15 ± 0.01 ab | −0.01 ± 0.00 a | |
| 4.5 | 60 | 0.29 ± 0.01 ab | 3.2 ± 0.6 bc | 1.86 ± 0.03 a−d | 0.16 ± 0.02 ab | −0.01 ± 0.00 a | |
| 4.5 | 102 | 0.27 ± 0.01 b | 4.3 ± 0.1 abc | 1.90 ± 0.01 a−d | 0.16 ± 0.01 ab | −0.01 ± 0.00 a | |
| 7 | 30 | 0.27 ± 0.02 b | 4.8 ± 0.2 abc | 1.94 ± 0.01 abc | 0.15 ± 0.01 ab | −0.01 ± 0.00 a | |
| 7 | 90 | 0.27 ± 0.01 b | 5.6 ± 0.3 a | 1.95 ± 0.01 ab | 0.14 ± 0.01 b | −0.01 ± 0.00 a | |
| 8 | 60 | 0.27 ± 0.04 b | 5.2 ± 0.3 ab | 1.97 ± 0.01 a | 0.19 ± 0.01 a | −0.01 ± 0.01 a | |
| Rosulja | p ≤ 0.001 | p ≤ 0.001 | p = 0.058 | p ≤ 0.001 | p ≤ 0.05 | ||
| Control | 0.37 ± 0.01 a | 4.3 ± 0.2 abc | 1.93 ± 0.03 | 0.17 ± 0.01 bc | −0.01 ± 0.01 a | ||
| 1 | 60 | 0.41 ± 0.01 a | 3.3 ± 0.1 de | 1.81 ± 0.01 | 0.18 ± 0.01 b | −0.03 ± 0.01 b | |
| 2 | 30 | 0.41 ± 0.03 a | 3.1 ± 0.1 e | 1.87 ± 0.03 | 0.18 ± 0.01 b | −0.01 ± 0.01 a | |
| 2 | 90 | 0.37 ± 0.01 a | 4.0 ± 0.3 abc | 1.87 ± 0.01 | 0.17 ± 0.03 b | −0.01 ± 0.01 a | |
| 4.5 | 18 | 0.37 ± 0.01 a | 4.8 ± 0.5 a | 1.88 ± 0.02 | 0.15 ± 0.02 c | 0.00 ± 0.00 a | |
| 4.5 | 60 | 0.40 ± 0.02 a | 3.7 ± 0.3 cde | 1.82 ± 0.04 | 0.14 ± 0.01 c | −0.01 ± 0.01 a | |
| 4.5 | 102 | 0.40 ± 0.01 a | 4.4 ± 0.3 ab | 1.91 ± 0.01 | 0.17 ± 0.01 bc | −0.01 ± 0.01 a | |
| 7 | 30 | 0.37 ± 0.04 a | 3.9 ± 0.1 bcd | 1.81 ± 0.01 | 0.19 ± 0.01 ac | −0.01 ± 0.01 a | |
| 7 | 90 | 0.37 ± 0.01 a | 3.4 ± 0.1 de | 1.72 ± 0.04 | 0.15 ± 0.01 c | 0.00 ± 0.00 a | |
| 8 | 60 | 0.39 ± 0.01 a | 3.1 ± 0.1e | 1.84 ± 0.01 | 0.21 ± 0.01 a | −0.01 ± 0.00 ab | |
| Levantinka | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.05 | p = 0.304 | ||
| Control | 0.31 ± 0 01 ab | 2.7 ± 0.2 ab | 1.42 ± 0.03 bc | 0.11 ± 0.03 ab | −0.01 ± 0.01 | ||
| 1 | 60 | 0.33 ± 0.01 ab | 2.6 ± 0.3 ab | 1.49 ± 0.01 b | 0.14 ± 0.00 ab | −0.01 ± 0.01 | |
| 2 | 30 | 0.34 ± 0.03 a | 2.0 ± 0.2 c | 1.34 ± 0.01 d | 0.11 ± 0.01 b | 0.00 ± 0.00 | |
| 2 | 90 | 0.27 ± 0.03 c | 1.0 ± 0.1 d | 1.35 ± 0.00 d | 0.12 ± 0.00 ab | −0.01 ± 0.00 | |
| 4.5 | 18 | 0.27 ± 0.02 c | 2.8 ± 0.3 a | 1.49 ± 0.01 bc | 0.14 ± 0.01 ab | −0.01 ± 0.01 | |
| 4.5 | 60 | 0.30 ± 0.04 b | 2.7 ± 0.1 ab | 1.45 ± 0.04 bc | 0.15 ± 0.02 ab | 0.00 ± 0.00 | |
| 4.5 | 102 | 0.27 ± 0.01 c | 2.8 ± 0.0 a | 1.47 ± 0.01 bc | 0.14 ± 0.01 ab | −0.01 ± 0.01 | |
| 7 | 30 | 0.27 ± 0.01 c | 2.9 ± 0.1 a | 1.44 ± 0.01 bc | 0.13 ± 0.02 ab | 0.00 ± 0.00 | |
| 7 | 90 | 0.27 ± 0.02 c | 2.8 ± 0.3 a | 1.39 ± 0.02 c | 0.12 ± 0.00 ab | −0.01 ± 0.01 | |
| 8 | 60 | 0.33 ± 0.01 ab | 2.4 ± 0.2 b | 1.60 ± 0.01 a | 0.17 ± 0.00 a | −0.01 ± 0.01 | |
| Oblica | p ≤ 0.05 | p ≤ 0.01 | p = 0.074 | p ≤ 0.001 | * | ||
| Control | 0.20 ± 0.01 b | 4.4 ± 0.4 b | 1.49 ± 0.04 | 0.07 ± 0.01 d | 0.00 ± 0.00 | ||
| 1 | 60 | 0.22 ± 0.01 ab | 4.9 ± 0.1 ab | 1.58 ± 0.01 | 0.10 ± 0.01 bcd | 0.00 ± 0.00 | |
| 2 | 30 | 0.23 ± 0.01 a | 5.2 ± 0.4 ab | 1.59 ± 0.01 | 0.09 ± 0.02 bcd | 0.00 ± 0.00 | |
| 2 | 90 | 0.21 ± 0.01 ab | 5.7 ± 0.1 ab | 1.64 ± 0.01 | 0.09 ± 0.01 cd | 0.00 ± 0.00 | |
| 4.5 | 18 | 0.22 ± 0.00 ab | 5.7 ± 0.1 ab | 1.67 ± 0.01 | 0.13 ± 0.01 ab | 0.00 ± 0.00 | |
| 4.5 | 60 | 0.21 ± 0.01 ab | 4.8 ± 0.7 ab | 1.54 ± 0.06 | 0.10 ± 0.01 a–d | 0.00 ± 0.00 | |
| 4.5 | 102 | 0.22 ± 0.01 ab | 5.7 ± 0.1 ab | 1.62 ± 0.02 | 0.14 ± 0.01 a | 0.00 ± 0.00 | |
| 7 | 30 | 0.22 ± 0.01 ab | 6.1 ± 0.1 a | 1.62 ± 0.02 | 0.09 ± 0.01 cd | 0.00 ± 0.00 | |
| 7 | 90 | 0.22 ± 0.02 ab | 5.6 ± 0.4 ab | 1.55 ± 0.03 | 0.09 ± 0.01 cd | 0.00 ± 0.00 | |
| 8 | 60 | 0.22 ± 0.01 ab | 5.6 ± 0.3 ab | 1.64 ± 0.01 | 0.11 ± 0.00 abc | 0.00 ± 0.00 | |
| Volatile Compound | RID * | p-Value | Field Strength (kV/cm)/Time (s) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1/60 | 2/30 | 2/90 | 4.5/18 | 4.5/60 | 4.5/102 | 7/30 | 7/90 | 8/60 | |||
| from LOX path | |||||||||||
| 2-pentenal | A | p ≤ 0.001 | −0.23 ± 0.10 a | −0.23 ± 0.07 a | −0.26 ± 0.04 a | −0.27 ± 0.07 a | −0.19 ± 0.08 a | −0.19 ± 0.12 a | −0.26 ± 0.14 a | −0.68 ± 0.00 b | −0.68 ± 0.00 b |
| 2-methyl-4-pentenal + 3-hexenal | B B | p = 0.129 | −7.54 ± 0.85 | −6.24 ± 0.71 | −6.17 ± 0.78 | −9.16 ± 1.17 | −9.64 ± 5.05 | −2.12 ± 4.08 | −4.88 ± 3.94 | −8.33 ± 0.23 | −14.51 ± 0.09 |
| 2-hexenal | A | p ≤ 0.001 | 45.82 ± 5.33 a | 47.44 ± 7.31 a | 45.22 ± 6.2 a | 39.08 ± 11.11 a | 24.77 ± 12.32 ab | −2.63 ± 9.54 bc | −5.58 ± 11.11 c | −25.91 ± 0.31 c | −37.61 ± 0.41 c |
| 1-penten-3-ol | A | p ≤ 0.01 | −0.07 ± 0.04 b | −0.07 ± 0.07 b | −0.02 ± 0.08 ab | −0.18 ± 0.07 b | −0.02 ± 0.15 ab | −0.04 ± 0.23 ab | −0.11 ± 0.24 b | 0.26 ± 0.05 ab | 0.40 ± 0.02 a |
| (E)-2-penten-1-ol | B | ** | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.32 ± 0.01 | 0.00 ± 0.00 |
| (Z)-2-penten-1-ol | B | p = 0.473 | −0.20 ± 0.09 | −0.22 ± 0.23 | −0.17 ± 0.17 | −0.57 ± 0.30 | −0.18 ± 0.35 | −0.27 ± 0.57 | −0.49 ± 0.56 | −0.06 ± 0.05 | 0.23 ± 0.12 |
| hexan-1-ol | B | p ≤ 0.001 | 0.18 ± 0.13 c | 0.06 ± 0.02 c | 0.03 ± 0.01 c | −0.04 ± 0.05 c | 0.04 ± 0.12 c | −0.17 ± 0.03 c | −0.16 ± 0.05 c | 2.91 ± 0.39 b | 5.56 ± 0.09 a |
| 2-hexen-1-ol | A | p ≤ 0.001 | 0.73 ± 0.12 c | 0.62 ± 0.11 cd | 0.52 ± 0.11 cd | 0.34 ± 0.14 cd | 0.36 ± 0.28 cd | −0.33 ± 0.08 d | −0.27 ± 0.12 cd | 21.18 ± 0.92 a | 18.97 ± 0.23 b |
| (Z)-3-hexen-1-ol | A | p ≤ 0.001 | −1.47 ± 0.75 b | −1.06 ± 0.72 b | −1.02 ± 0.49 b | −2.33 ± 1.18 b | −1.32 ± 1.36 b | −1.96 ± 1.96 b | −2.65 ± 2.36 b | 20.44 ± 0.94 a | 26.16 ± 4.21 a |
| 1-penten-3-one | A | p ≤ 0.001 | −1.38 ± 0.18 b | −1.14 ± 0.21 b | −1.14 ± 0.17 bc | −1.67 ± 0.30 b | −1.56 ± 0.46 b | −0.78 ± 0.86 b | −1.52 ± 1.05 b | −3.13 ± 0.09 c | 0.96 ± 0.03 a |
| from OX | |||||||||||
| pentanal | A | p ≤ 0.001 | −0.08 ± 0.13 b | −0.07 ± 0.02 b | −0.08 ± 0.01 b | −0.11 ± 0.04 b | −0.06 ± 0.13 b | −0.12 ± 0.01 b | −0.14 ± 0.14 b | 0.92 ± 0.05 a | 1.13 ± 0.05 a |
| 2,4-heksadienal | A | p ≤ 0.05 | −1.10 ± 0.96 ab | −0.12 ± 0.26 a | −0.09 ± 0.27 a | −1.59 ± 0.82 ab | −0.87 ± 0.81 ab | −0.94 ± 0.47 ab | −1.7 ± 0.27 ab | −1.84 ± 0.65 ab | −2.77 ± 0.03 b |
| 4-oxohex-2-enal | B | p ≤ 0.05 | −1.74 ± 0.85 a | −1.18 ± 0.07 a | −1.46 ± 0.38 a | −1.41 ± 0.72 a | −2.49 ± 1.48 a | −0.52 ± 1.43 a | −0.93 ± 1.34 a | −3.58 ± 0.18 a | −4.59 ± 0.05 a |
| nonanal | B | p = 0.109 | −0.05 ± 0.12 | 0.03 ± 0.01 | −0.18 ± 0.00 | 0.06 ± 0.03 | −0.07 ± 0.11 | −0.18 ± 0.00 | −0.13 ± 0.07 | −0.18 ± 0.00 | −0.09 ± 0.12 |
| from MBA | |||||||||||
| 2-methylbutanal | C | p ≤ 0.01 | 0.01 ± 0.07 abc | 0.07 ± 0.04 abc | 0.12 ± 0.07 ab | −0.23 ± 0.04 abc | 0.13 ± 0.19a | 0.02 ± 0.13 abc | −0.03 ± 0.19 abc | −0.28 ± 0.00 bc | −0.43 ± 0.01 c |
| 3-methylbutanal | B | p ≤ 0.01 | −0.02 ± 0.06 ab | −0.03 ± 0.01 ab | 0.02 ± 0.03 ab | −0.16 ± 0.03 abc | 0.04 ± 0.11 a | −0.02 ± 0.08 ab | −0.07 ± 0.10 abc | −0.19 ± 0.01 bc | −0.35 ± 0.00 c |
| Volatile Compound | RID * | p-Value | Field Strength (kV/cm)/Time (s) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1/60 | 2/30 | 2/90 | 4.5/18 | 4.5/60 | 4.5/102 | 7/30 | 7/90 | 8/60 | |||
| from LOX path | |||||||||||
| 2-pentenal | A | p ≤ 0.01 | 0.07 ± 0.06 a | −0.10 ± 0.00 b | −0.01 ± 0.01 ab | 0.04 ± 0.02 ab | −0.02 ± 0.05 ab | 0.14 ± 0.01 a | 0.04 ± 0.01 ab | −0.04 ± 0.08 ab | 0.01 ± 0.00 ab |
| 2-methyl-4-pentenal + 3-hexenal | B B | p = 0.614 | 0.48 ± 0.25 | −1.25 ± 0.25 | −3.03 ± 0.18 | 0.46 ± 0.84 | −1.82 ± 2.46 | −2.40 ± 0.06 | 0.30 ± 0.86 | −3.20 ± 0.02 | −1.27 ± 0.15 |
| 2-hexenal | A | p = 0.096 | 20.09 ± 2.19 | −22.81 ± 2.18 | −29.38 ± 1.29 | 17.4 ± 6.26 | −14.85 ± 23.63 | 22.06 ± 1.40 | 18.36 ± 12.51 | −28.59 ± 0.10 | −18.71 ± 1.62 |
| 1-penten-3-ol | A | p = 0.554 | −0.04 ± 0.02 | 0.21 ± 0.03 | 0.29 ± 0.15 | 0.10 ± 0.05 | 0.20 ± 0.21 | 0.17 ± 0.03 | 0.02 ± 0.10 | 0.24 ± 0.00 | 0.23 ± 0.06 |
| (Z)-2-penten-1-ol | B | p = 0.101 | 0.10 ± 0.05 | 0.19 ± 0.12 | 0.32 ± 0.23 | 0.19 ± 0.16 | 0.11 ± 0.15 | 0.27 ± 0.04 | 0.19 ± 0.21 | 0.37 ± 0.02 | 0.37 ± 0.09 |
| hexan-1-ol | B | p ≤ 0.001 | −0.65 ± 0.01 b | 7.18 ± 0.67 a | 7.66 ± 1.13 a | −0.68 ± 0.00 b | 0.27 ± 1.34 b | −0.64 ± 0.07 b | −0.68 ± 0.06 b | 0.09 ± 1.37 b | 6.25 ± 0.36 a |
| 2-hexen-1-ol | A | p = 0.109 | −9.47 ± 0.03 | 19.95 ± 2.85 | 27.72 ± 4.97 | −9.16 ± 0.07 | 7.83 ± 16.68 | −8.95 ± 0.19 | −9.11 ± 0.24 | 31.14 ± 11.40 | 15.32 ± 1.72 |
| (Z)-3-hexen-1-ol | A | p ≤ 0.01 | −0.08 ± 0.74 abc | 8.80 ± 1.52 a | 7.76 ± 1.57 ab | −1.08 ± 0.45 bc | 1.39 ± 3.51 abc | −1.41 ± 0.14 bc | −1.17 ± 1.22 c | 3.73 ± 0.16 abc | 5.20 ± 0.75 abc |
| 1-penten-3-one | A | p = 0.153 | 0.43 ± 0.08 | −0.04 ± 0.17 | 0.11 ± 0.16 | 0.34 ± 0.06 | −0.52 ± 0.64 | 0.31 ± 0.08 | 0.17 ± 0.21 | −0.44 ± 0.00 | 0.24 ± 0.02 |
| pentan-3-on | B | p ≤ 0.01 | −0.08 ± 0.24 a | 0.67 ± 0.01 a | 0.93 ± 0.18 a | −0.25 ± 0.00 a | 0.28 ± 0.34 a | −0.25 ± 0.00 a | −0.25 ± 0.00 a | 0.92 ± 0.04 a | 0.95 ± 0.19 a |
| hexyl acetate | B | p ≤ 0.01 | 0.12 ± 0.01 a | 0.04 ± 0.06 ab | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.01 ± 0.03 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
| 3-hexenyl acetate | A | p ≤ 0.001 | 0.52 ± 0.15 a | 0.32 ± 0.14 a | −0.12 ± 0.06 bc | −0.26 ± 0.01 c | −0.26 ± 0.13 c | −0.26 ± 0.01 c | −0.13 ± 0.07 bc | −0.11 ± 0.02 bc | 0.19 ± 0.03 ab |
| from OX | |||||||||||
| pentanal | A | p = 0.149 | −0.03 ± 0.27 | −0.22 ± 0.00 | −0.22 ± 0.00 | 0.09 ± 0.31 | −0.16 ± 0.13 | 0.15 ± 0.01 | 0.16 ± 0.06 | −0.22 ± 0.00 | −0.22 ± 0.00 |
| 2,4-heksadienal | A | p = 0.778 | 0.46 ± 0.26 | −0.09 ± 0.27 | −0.36 ± 0.24 | 0.09 ± 0.22 | −0.21 ± 0.59 | 0.03 ± 0.08 | 0.19 ± 0.32 | −0.49 ± 0.01 | −0.29 ± 0.06 |
| 4-oxohex-2-enal | B | p = 0.077 | 0.52 ± 0.20 | −0.55 ± 0.17 | −0.79 ± 0.00 | −0.15 ± 0.14 | −0.51 ± 0.46 | −0.78 ± 0.00 | −0.08 ± 0.32 | −0.76 ± 0.06 | −0.68 ± 0.03 |
| nonanal | B | p ≤ 0.001 | 0.11 ± 0.01 a | 0.08 ± 0.05 ab | 0.01 ± 0.03 abc | 0.02 ± 0.02 abc | −0.11 ± 0.04 d | −0.02 ± 0.02 bcd | −0.04 ± 0.07 cd | −0.01 ± 0.02 abc | 0.04 ± 0.03 abc |
| from MBA | |||||||||||
| 2-methylbutanal | C | p ≤ 0.01 | 0.02 ± 0.00 ab | −0.06 ± 0.00 b | 0.00 ± 0.01 ab | 0.16 ± 0.03 a | 0.00 ± 0.00 b | 0.16 ± 0.00 a | 0.10 ± 0.03 ab | −0.03 ± 0.04 ab | 0.02 ± 0.00 ab |
| 3-methylbutanal | B | p ≤ 0.001 | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.12 ± 0.00 a | 0.09 ± 0.02 ab | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
| pentan-1-ol | B | p = 0.172 | −0.06 ± 0.00 | 0.43 ± 0.04 | 0.54 ± 0.08 | −0.06 ± 0.00 | 0.24 ± 0.32 | −0.06 ± 0.00 | −0.06 ± 0.00 | 0.51 ± 0.01 | 0.40 ± 0.04 |
| Volatile Compound | RID * | p-Value | Field Strength (kV/cm)/Time (s) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1/60 | 2/30 | 2/90 | 4.5/18 | 4.5/60 | 4.5/102 | 7/30 | 7/90 | 8/60 | |||
| from LOX path | |||||||||||
| 2-pentenal | A | ** | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.21 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
| 2-methyl-4-pentenal + 3-hexenal | B B | p ≤ 0.001 | 0.07 ± 0.01 b | 0.23 ± 0.07 b | 2.14 ± 0.21 a | 0.05 ± 0.01 b | 0.20 ± 0.34 b | −0.14 ± 0.01 b | −0.22 ± 0.02 b | 0.08 ± 0.04 b | 1.49 ± 0.15 a |
| 2-hexenal | A | p ≤ 0.001 | −1.32 ± 0.19 c | −1.82 ± 0.07 c | 20.27 ± 2.10 a | −0.17 ± 0.45 c | 1.40 ± 2.64 c | −1.98 ± 0.02 c | −2.18 ± 0.01 c | 0.42 ± 0.29 c | 13.62 ± 0.95 b |
| 1-penten-3-ol | A | p = 0.079 | 0.04 ± 0.11 | 0.00 ± 0.12 | −0.09 ± 0.07 | −0.09 ± 0.01 | 0.10 ± 0.17 | 0.20 ± 0.06 | 0.24 ± 0.09 | 0.20 ± 0.13 | 0.00 ± 0.06 |
| (E)-2-penten-1-ol | B | p ≤ 0.01 | 0.19 ± 0.05 a | 0.10 ± 0.00 ab | −0.07 ± 0.00 b | 0.01 ± 0.11 ab | −0.03 ± 0.08 ab | 0.03 ± 0.09 ab | 0.16 ± 0.02 ab | 0.16 ± 0.03 ab | 0.00 ± 0.11 ab |
| (Z)-2-penten-1-ol | B | p = 0.079 | 0.20 ± 0.21 | 0.01 ± 0.07 | 0.17 ± 0.11 | −0.05 ± 0.03 | 0.01 ± 0.09 | −0.09 ± 0.05 | 0.03 ± 0.07 | 0.04 ± 0.16 | 0.11 ± 0.04 |
| hexan-1-ol | B | p ≤ 0.01 | −1.12 ± 0.61 ab | −0.16 ± 0.59 ab | −2.93 ± 0.04 b | −1.60 ± 0.00 ab | 1.88 ± 2.24 a | −1.21 ± 0.19 ab | −1.05 ± 0.10 ab | −1.89 ± 0.26 ab | 1.10 ± 0.33 ab |
| 2-hexen-1-ol | A | p ≤ 0.001 | 3.92 ± 2.80 a | −0.16 ± 1.47 a | −11.62 ± 0.01 b | −2.53 ± 0.02 a | −1.58 ± 2.80 a | 3.11 ± 1.29 a | 0.94 ± 0.76 a | −0.92 ± 1.31 a | −2.75 ± 0.67 a |
| (E)-3-hexen-1-ol | A | p ≤ 0.05 | 0.27 ± 0.08 a | 0.11 ± 0.09 a | −0.50 ± 0.00 a | −0.16 ± 0.49 a | −0.20 ± 0.34 a | 0.19 ± 0.07 a | 0.09 ± 0.04 a | −0.50 ± 0.00 a | −0.50 ± 0.00 a |
| (Z)-3-hexen-1-ol | A | p ≤ 0.001 | 1.37 ± 1.47 a | 0.16 ± 1.05 ab | −4.09 ± 0.28 d | −1.44 ± 0.05 bc | 0.78 ± 0.82 ab | 1.17 ± 0.65 a | 0.82 ± 0.41 ab | −2.5 ± 0.67 cd | 0.30 ± 0.44 ab |
| 1-penten-3-one | A | p ≤ 0.01 | −0.64 ± 0.01 a | 0.07 ± 0.11 a | 1.00 ± 0.14 a | 0.30 ± 0.05 a | 0.69 ± 0.88 a | −0.65 ± 0.01 a | −0.76 ± 0.04 a | −0.70 ± 0.07 a | 0.62 ± 0.07 a |
| hexyl acetate | B | p = 0.052 | 0.25 ± 0.37 | −0.02 ± 0.16 | 0.48 ± 0.18 | −0.13 ± 0.08 | 0.02 ± 0.24 | 0.44 ± 0.19 | 0.25 ± 0.16 | 0.15 ± 0.13 | 0.29 ± 0.15 |
| 3-hexenyl acetate | A | p ≤ 0.01 | 1.02 ± 0.58 abc | 0.52 ± 0.27 abc | 1.88 ± 0.44 a | 0.47 ± 0.04 abc | 0.08 ± 0.59 c | 1.19 ± 0.28 ab | 0.77 ± 0.13 abc | 0.84 ± 0.32 abc | 0.25 ± 0.16 bc |
| from OX | |||||||||||
| pentanal | A | p ≤ 0.001 | −0.1 ± 0.12 ab | −0.17 ± 0.13 ab | −0.91 ± 0.03 c | −0.29 ± 0.03 ab | −0.22 ± 0.09 ab | −0.03 ± 0.04 a | −0.02 ± 0.09 a | −0.08 ± 0.14 ab | −0.35 ± 0.13 b |
| 2,4-heksadienal | A | p ≤ 0.001 | −0.11 ± 0.00 c | −0.11 ± 0.00 c | 0.23 ± 0.11 a | −0.11 ± 0.00 c | −0.11 ± 0.00 c | −0.11 ± 0.00 c | −0.11 ± 0.00 c | −0.11 ± 0.00 c | 0.04 ± 0.00 b |
| 4-oxohex-2-enal | B | p ≤ 0.001 | −0.19 ± 0.00 c | −0.19 ± 0.00 c | 0.25 ± 0.14 a | −0.19 ± 0.00 c | −0.18 ± 0.03 c | −0.19 ± 0.00 c | −0.19 ± 0.00 c | −0.19 ± 0.00 c | 0.04 ± 0.01 b |
| nonanal | B | p = 757 | 0.02 ± 0.06 | 0.02 ± 0.02 | 0.04 ± 0.02 | 0.01 ± 0.01 | 0.04 ± 0.03 | 0.02 ± 0.02 | 0.04 ± 0.01 | 0.04 ± 0.02 | 0.05 ± 0.04 |
| from MBA | |||||||||||
| 2-methylbutanal | C | p ≤ 0.001 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.09 ± 0.00 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.06 ± 0.00 b | 0.00 ± 0.00 c |
| pentan-1-ol | B | p ≤ 0.001 | −0.03 ± 0.03 a | 0.02 ± 0.04 a | −0.24 ± 0.00 b | −0.07 ± 0.00 ab | 0.03 ± 0.08 | −0.04 ± 0.01 a | 0.01 ± 0.02 a | −0.10 ± 0.02 ab | −0.09 ± 0.01 ab |
| Volatile Compound | RID * | p-Value | Field Strength (kV/cm)/Time (s) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1/60 | 2/30 | 2/90 | 4.5/18 | 4.5/60 | 4.5/102 | 7/30 | 7/90 | 8/60 | |||
| from LOX path | |||||||||||
| 2-methyl-4-pentenal + 3-hexenal | B B | p = 0.370 | −0.09 ± 1.23 | −2.17 ± 1.23 | −1.4 ± 1.97 | 1.71 ± 0.76 | −1.89 ± 2.14 | −3.27 ± 1.34 | −1.21 ± 1.45 | −1.03 ± 2.92 | −2.06 ± 1.43 |
| 2-hexenal | A | p ≤ 0.001 | 0.19 ± 0.04 b | −0.36 ± 0.00 bc | 0.24 ± 0.20 b | 2.51 ± 0.14 a | 0.14 ± 0.31 b | −0.10 ± 0.10 bc | 0.13 ± 0.11 b | −0.33 ± 0.15 bc | −0.78 ± 0.01 c |
| 1-penten-3-ol | A | p = 0.688 | 0.01 ± 0.06 | 0.02 ± 0.01 | −0.05 ± 0.06 | −0.08 ± 0.16 | −0.06 ± 0.08 | −0.02 ± 0.05 | −0.10 ± 0.03 | 0.00 ± 0.07 | 0.00 ± 0.04 |
| (E)-2-penten-1-ol | B | p = 0.724 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.08 ± 0.11 | 0.02 ± 0.04 | 0.08 ± 0.11 | 0.06 ± 0.08 | 0.05 ± 0.07 | 0.07 ± 0.09 |
| (Z)-2-penten-1-ol | B | p = 0.463 | 0.03 ± 0.05 | 0.07 ± 0.05 | −0.03 ± 0.12 | −0.10 ± 0.18 | −0.06 ± 0.16 | −0.15 ± 0.15 | −0.13 ± 0.04 | −0.01 ± 0.00 | −0.22 ± 0.01 |
| hexan-1-ol | B | p = 0.581 | 3.86 ± 0.84 | 3.75 ± 0.12 | 4.52 ± 1.07 | 3.85 ± 4.34 | −1.55 ± 7.33 | 1.53 ± 1.19 | 2.27 ± 1.17 | 5.07 ± 2.18 | −2.43 ± 0.46 |
| 2-hexen-1-ol | A | p = 0.997 | 6.37 ± 0.31 | 8.10 ± 0.20 | 3.53 ± 0.96 | 6.57 ± 4.80 | 7.65 ± 10.65 | 10.1 ± 1.60 | 7.73 ± 1.48 | 6.13 ± 2.40 | 5.88 ± 0.43 |
| (E)-3-hexen-1-ol | A | p = 0.550 | −0.94 ± 0.18 | 0.03 ± 0.01 | 0.13 ± 0.00 | −0.31 ± 1.39 | −0.28 ± 0.60 | 0.17 ± 0.13 | −0.15 ± 0.12 | 0.24 ± 0.20 | −0.10 ± 0.03 |
| (Z)-3-hexen-1-ol | A | p ≤ 0.05 | 1.52 ± 0.53 a | −0.52 ± 0.37 a | −0.19 ± 1.59 a | −2.91 ± 4.98 a | 3.33 ± 5.37 a | −4.59 ± 1.00 a | −6.97 ± 1.04 a | −1.54 ± 2.61 a | −7.73 ± 0.37 a |
| 1-penten-3-one | A | p = 0.179 | 0.48 ± 0.09 | 0.48 ± 0.02 | 0.45 ± 0.04 | 0.25 ± 0.24 | 0.35 ± 0.36 | 0.11 ± 0.02 | 0.13 ± 0.01 | 0.67 ± 0.16 | −0.10 ± 0.06 |
| from OX | |||||||||||
| pentanal | A | p = 0.415 | 0.14 ± 0.07 | 0.14 ± 0.04 | −0.08 ± 0.06 | 0.02 ± 0.34 | −0.10 ± 0.18 | 0.01 ± 0.07 | −0.13 ± 0.05 | −0.02 ± 0.12 | 0.09 ± 0.04 |
| 2,4-heksadienal | A | p ≤ 0.001 | −0.01 ± 0.01 a | −0.10 ± 0.00 c | −0.10 ± 0.00 c | −0.05 ± 0.02 b | −0.10 ± 0.00 c | −0.10 ± 0.01 c | −0.10 ± 0.02 c | −0.10 ± 0.03 c | −0.10 ± 0.04 c |
| nonanal | B | p = 0.893 | 0.03 ± 0.01 | 0.03 ± 0.02 | −0.01 ± 0.00 | 0.00 ± 0.04 | −0.02 ± 0.06 | −0.01 ± 0.01 | 0.00 ± 0.01 | 0.00 ± 0.02 | −0.03 ± 0.00 |
| from MBA | |||||||||||
| pentan-1-ol | B | p ≤ 0.01 | −0.16 ± 0.04 abc | −0.02 ± 0.02 a | −0.11 ± 0.08 ab | −0.26 ± 0.10 bc | −0.20 ± 0.07 abc | −0.25 ± 0.03 bc | −0.22 ± 0.03 abc | −0.18 ± 0.02 abc | −0.35 ± 0.00 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraljić, K.; Filipan, K.; Balbino, S.; Obranović, M.; Vukušić Pavičić, T.; Jukić Špika, M.; Stulić, V.; Ivanov, M.; Herceg, Z.; Stuparević, I.; et al. Implementation of Pulsed Electric Field in Virgin Olive Oil Production: Impact on Oil Yield, Quality and Volatile Profile. Appl. Sci. 2025, 15, 12139. https://doi.org/10.3390/app152212139
Kraljić K, Filipan K, Balbino S, Obranović M, Vukušić Pavičić T, Jukić Špika M, Stulić V, Ivanov M, Herceg Z, Stuparević I, et al. Implementation of Pulsed Electric Field in Virgin Olive Oil Production: Impact on Oil Yield, Quality and Volatile Profile. Applied Sciences. 2025; 15(22):12139. https://doi.org/10.3390/app152212139
Chicago/Turabian StyleKraljić, Klara, Katarina Filipan, Sandra Balbino, Marko Obranović, Tomislava Vukušić Pavičić, Maja Jukić Špika, Višnja Stulić, Mia Ivanov, Zoran Herceg, Igor Stuparević, and et al. 2025. "Implementation of Pulsed Electric Field in Virgin Olive Oil Production: Impact on Oil Yield, Quality and Volatile Profile" Applied Sciences 15, no. 22: 12139. https://doi.org/10.3390/app152212139
APA StyleKraljić, K., Filipan, K., Balbino, S., Obranović, M., Vukušić Pavičić, T., Jukić Špika, M., Stulić, V., Ivanov, M., Herceg, Z., Stuparević, I., Tokić, M., Belavić, M., & Škevin, D. (2025). Implementation of Pulsed Electric Field in Virgin Olive Oil Production: Impact on Oil Yield, Quality and Volatile Profile. Applied Sciences, 15(22), 12139. https://doi.org/10.3390/app152212139

