Gait-Induced Myoelectric EEG Artifact Removal Validation from Conventional and Tripolar Concentric Ring Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Protocol
2.3. Electroencephalography Processing
2.4. Source Signal Recovery Evaluation
3. Results
3.1. Spectral Power Peak Detection
3.2. Spectral Power Scalp Map Localization
4. Discussion
4.1. Tripolar Concentric Ring Electrodes Improved Artificial Neural Signal Recovery
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EEG | Electroencephalography |
| FOOOF | Fitting Oscillations and One Over F |
References
- Biondi, A.; Santoro, V.; Viana, P.F.; Laiou, P.; Pal, D.K.; Bruno, E.; Richardson, M.P. Noninvasive Mobile EEG as a Tool for Seizure Monitoring and Management: A Systematic Review. Epilepsia 2022, 63, 1041–1063. [Google Scholar] [CrossRef] [PubMed]
- Lau-Zhu, A.; Lau, M.P.H.; McLoughlin, G. Mobile EEG in Research on Neurodevelopmental Disorders: Opportunities and Challenges. Dev. Cogn. Neurosci. 2019, 36, 100635. [Google Scholar] [CrossRef] [PubMed]
- Buskila, Y.; Bellot-Saez, A.; Morley, J.W. Generating Brain Waves, the Power of Astrocytes. Front. Neurosci. 2019, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- Schlink, B.R.; Nordin, A.D.; Ferris, D.P. Comparison of Signal Processing Methods for Reducing Motion Artifacts in High-Density Electromyography During Human Locomotion. IEEE Open J. Eng. Med. Biol. 2020, 1, 156–165. [Google Scholar] [CrossRef]
- Urigüen, J.A.; Garcia-Zapirain, B. EEG Artifact Removal—State-of-the-Art and Guidelines. J. Neural Eng. 2015, 12, 031001. [Google Scholar] [CrossRef]
- Gwin, J.T.; Gramann, K.; Makeig, S.; Ferris, D.P. Electrocortical Activity Is Coupled to Gait Cycle Phase during Treadmill Walking. NeuroImage 2011, 54, 1289–1296. [Google Scholar] [CrossRef]
- Song, S.; Nordin, A.D. Mobile Electroencephalography for Studying Neural Control of Human Locomotion. Front. Hum. Neurosci. 2021, 15, 749017. [Google Scholar] [CrossRef]
- Goncharova, I.I.; McFarland, D.J.; Vaughan, T.M.; Wolpaw, J.R. EMG Contamination of EEG: Spectral and Topographical Characteristics. Clin. Neurophysiol. 2003, 114, 1580–1593. [Google Scholar] [CrossRef]
- Butkeviciute, E.; Bikulciene, L.; Sidekerskiene, T.; Blazauskas, T.; Maskeliunas, R.; Damasevicius, R.; Wei, W. Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises. IEEE Access 2019, 7, 7206–7217. [Google Scholar] [CrossRef]
- Kline, J.E.; Huang, H.J.; Snyder, K.L.; Ferris, D.P. Isolating Gait-Related Movement Artifacts in Electroencephalography during Human Walking. J. Neural Eng. 2015, 12, 046022. [Google Scholar] [CrossRef]
- Thompson, T.; Steffert, T.; Ros, T.; Leach, J.; Gruzelier, J. EEG Applications for Sport and Performance. Methods 2008, 45, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Kristeva-Feige, R.; Fritsch, C.; Timmer, J.; Lücking, C.-H. Effects of Attention and Precision of Exerted Force on Beta Range EEG-EMG Synchronization during a Maintained Motor Contraction Task. Clin. Neurophysiol. 2002, 113, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.M.R.; Hebenstreit, F.; Gabsteiger, F.; Von Tscharner, V.; Lochmann, M. Methodological Aspects of EEG and Body Dynamics Measurements during Motion. Front. Hum. Neurosci. 2014, 8, 156. [Google Scholar] [CrossRef]
- Miyakoshi, M. Artifact Subspace Reconstruction: A Candidate for a Dream Solution for EEG Studies, Sleep or Awake. Sleep 2023, 46, zsad241. [Google Scholar] [CrossRef]
- Kim, H.; Chang, C.-Y.; Kothe, C.; Iversen, J.R.; Miyakoshi, M. Juggler’s ASR: Unpacking the Principles of Artifact Subspace Reconstruction for Revision toward Extreme MoBI. J. Neurosci. Methods 2025, 420, 110465. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Hsu, S.-H.; Pion-Tonachini, L.; Jung, T.-P. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef]
- Mavros, P.; Wälti, M.J.; Nazemi, M.; Ong, C.H.; Hölscher, C. A Mobile EEG Study on the Psychophysiological Effects of Walking and Crowding in Indoor and Outdoor Urban Environments. Sci. Rep. 2022, 12, 18476. [Google Scholar] [CrossRef]
- Jacobsen, N.S.J.; Blum, S.; Witt, K.; Debener, S. A Walk in the Park? Characterizing Gait-related Artifacts in Mobile EEG Recordings. Eur. J. Neurosci. 2021, 54, 8421–8440. [Google Scholar] [CrossRef]
- Ledwidge, P.S.; McPherson, C.N.; Faulkenberg, L.; Morgan, A.; Baylis, G.C. A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running. Sensors 2025, 25, 4810. [Google Scholar] [CrossRef]
- Downey, R.J.; Ferris, D.P. iCanClean Removes Motion, Muscle, Eye, and Line-Noise Artifacts from Phantom EEG. Sensors 2023, 23, 8214. [Google Scholar] [CrossRef]
- Gonsisko, C.B.; Ferris, D.P.; Downey, R.J. iCanClean Improves Independent Component Analysis of Mobile Brain Imaging with EEG. Sensors 2023, 23, 928. [Google Scholar] [CrossRef]
- Salminen, J.; Liu, C.; Pliner, E.M.; Tenerowicz, M.; Roy, A.; Richer, N.; Hwang, J.; Hass, C.J.; Clark, D.J.; Seidler, R.D.; et al. Gait speed-related changes in electrocortical activity in younger and older adults. J. Neurophysiol. 2025, 133, 1761–1794. [Google Scholar] [CrossRef]
- Arpaia, P.; De Luca, M.; Di Marino, L.; Duran, D.; Gargiulo, L.; Lanteri, P.; Moccaldi, N.; Nalin, M.; Picciafuoco, M.; Robbio, R.; et al. A Systematic Review of Techniques for Artifact Detection and Artifact Category Identification in Electroencephalography from Wearable Devices. Sensors 2025, 25, 5770. [Google Scholar] [CrossRef]
- Raj, V.A.; Parupudi, T.; Thalengala, A.; Nayak, S.G. A Comprehensive Review of Deep Learning Models for Denoising EEG Signals: Challenges, Advances, and Future Directions. Discov. Appl. Sci. 2025, 7, 1268. [Google Scholar] [CrossRef]
- Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Dual-Electrode Motion Artifact Cancellation for Mobile Electroencephalography. J. Neural Eng. 2018, 15, 056024. [Google Scholar] [CrossRef]
- Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Human Electrocortical Dynamics While Stepping over Obstacles. Sci. Rep. 2019, 9, 4693. [Google Scholar] [CrossRef] [PubMed]
- Besio, W.G.; Cao, H.; Zhou, P. Application of Tripolar Concentric Electrodes and Prefeature Selection Algorithm for Brain–Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Stuart, N.; Manners, J.; Kemps, E.; Nguyen, P.; Lechat, B.; Catcheside, P.; Scott, H. Tripolar Concentric Ring Electrodes for Capturing Localised Electroencephalography Signals during Sleep. J. Sleep Res. 2024, 33, e14203. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.V.; Caplovitz, G.P.; Foster, G.; Crognale, M.A. Comparison of Tripolar and Traditional EEG Recording of the Visual Evoked Potential. Vis. Res. 2025, 230, 108594. [Google Scholar] [CrossRef]
- Besio, G.; Koka, K.; Aakula, R.; Dai, W. Tri-Polar Concentric Ring Electrode Development for Laplacian Electroencephalography. IEEE Trans. Biomed. Eng. 2006, 53, 926–933. [Google Scholar] [CrossRef]
- Richer, N.; Downey, R.J.; Hairston, W.D.; Ferris, D.P.; Nordin, A.D. Motion and Muscle Artifact Removal Validation Using an Electrical Head Phantom, Robotic Motion Platform, and Dual Layer Mobile EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1825–1835. [Google Scholar] [CrossRef]
- Hairston, W.D.; Slipher, G.A.; Yu, A.B. Ballistic Gelatin as a Putative Substrate for EEG Phantom Devices. arXiv 2016, arXiv:1609.07691. [Google Scholar] [CrossRef]
- Richer, N.; Downey, R.J.; Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Adding Neck Muscle Activity to a Head Phantom Device to Validate Mobile EEG Muscle and Motion Artifact Removal. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; IEEE: New York, NY, USA; pp. 275–278. [Google Scholar]
- Symeonidou, E.-R.; Nordin, A.; Hairston, W.; Ferris, D. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion. Sensors 2018, 18, 1073. [Google Scholar] [CrossRef]
- Yu, A.; Hairston, W. Open EEG Phantom. 2019. Available online: https://doi.org/10.17605/OSF.IO/QRKA2. (accessed on 12 November 2025). [CrossRef]
- Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Faster Gait Speeds Reduce Alpha and Beta EEG Spectral Power From Human Sensorimotor Cortex. IEEE Trans. Biomed. Eng. 2020, 67, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Schlink, B.R.; Ferris, D.P. A Lower Limb Phantom for Simulation and Assessment of Electromyography Technology. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gerster, M.; Waterstraat, G.; Litvak, V.; Lehnertz, K.; Schnitzler, A.; Florin, E.; Curio, G.; Nikulin, V. Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations. Neuroinformatics 2022, 20, 991–1012. [Google Scholar] [CrossRef]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Sebastian, P.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing Neural Power Spectra into Periodic and Aperiodic Components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef]
- Pathania, A.; Schreiber, M.; Miller, M.W.; Euler, M.J.; Lohse, K.R. Exploring the Reliability and Sensitivity of the EEG Power Spectrum as a Biomarker. Int. J. Psychophysiol. 2021, 160, 18–27. [Google Scholar] [CrossRef]
- Levin, A.R.; Naples, A.J.; Scheffler, A.W.; Webb, S.J.; Shic, F.; Sugar, C.A.; Murias, M.; Bernier, R.A.; Chawarska, K.; Dawson, G.; et al. Day-to-Day Test-Retest Reliability of EEG Profiles in Children With Autism Spectrum Disorder and Typical Development. Front. Integr. Neurosci. 2020, 14, 21. [Google Scholar] [CrossRef]
- Schlink, B.R.; Nordin, A.D.; Ferris, D.P. Human Myoelectric Spatial Patterns Differ among Lower Limb Muscles and Locomotion Speeds. Physiol. Rep. 2020, 8, e14652. [Google Scholar] [CrossRef] [PubMed]
- Koka, K.; Besio, W.G. Improvement of Spatial Selectivity and Decrease of Mutual Information of Tri-Polar Concentric Ring Electrodes. J. Neurosci. Methods 2007, 165, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Aghaei-Lasboo, A.; Inoyama, K.; Fogarty, A.S.; Kuo, J.; Meador, K.J.; Walter, J.J.; Le, S.T.; Graber, K.D.; Razavi, B.; Fisher, R.S. Tripolar Concentric EEG Electrodes Reduce Noise. Clin. Neurophysiol. 2020, 131, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Makeyev, O.; Besio, W. Improved Spatial Resolution of Electroencephalogram Using Tripolar Concentric Ring Electrode Sensors. J. Sens. 2020, 2020, 6269394. [Google Scholar] [CrossRef]
- Melnik, A.; Legkov, P.; Izdebski, K.; Kärcher, S.M.; Hairston, W.D.; Ferris, D.P.; König, P. Systems, Subjects, Sessions: To What Extent Do These Factors Influence EEG Data? Front. Hum. Neurosci. 2017, 11, 150. [Google Scholar] [CrossRef]
- Delorme, A. EEG Is Better Left Alone. Sci. Rep. 2023, 13, 2372. [Google Scholar] [CrossRef]
- Klug, M.; Berg, T.; Gramann, K. Optimizing EEG ICA Decomposition with Data Cleaning in Stationary and Mobile Experiments. Sci. Rep. 2024, 14, 14119. [Google Scholar] [CrossRef]
- Klug, M.; Gramann, K. Identifying Key Factors for Improving ICA-based Decomposition of EEG Data in Mobile and Stationary Experiments. Eur. J. Neurosci. 2021, 54, 8406–8420. [Google Scholar] [CrossRef]
- Mathewson, K.E.; Harrison, T.J.L.; Kizuk, S.A.D. High and Dry? Comparing Active Dry EEG Electrodes to Active and Passive Wet Electrodes. Psychophysiology 2017, 54, 74–82. [Google Scholar] [CrossRef]
- Ng, M.C.; Jing, J.; Westover, M.B. A Primer on EEG Spectrograms. J. Clin. Neurophysiol. 2022, 39, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Pani, S.M.; Saba, L.; Fraschini, M. Clinical Applications of EEG Power Spectra Aperiodic Component Analysis: A Mini-Review. Clin. Neurophysiol. 2022, 143, 1–13. [Google Scholar] [CrossRef]
- Melman, T.; Victor, J.D. Robust Power Spectral Estimation for EEG Data. J. Neurosci. Methods 2016, 268, 14–22. [Google Scholar] [CrossRef][Green Version]
- Toole, C.; Martinez-Juárez, I.E.; Gaitanis, J.N.; Blum, A.; Sunderam, S.; Ding, L.; DiCecco, J.; Besio, W.G. Source Localization of High-Frequency Activity in Tripolar Electroencephalography of Patients with Epilepsy. Epilepsy Behav. 2019, 101, 106519. [Google Scholar] [CrossRef]
- He, B. Brain Electric Source Imaging: Scalp Laplacian Mapping and Cortical Imaging. Crit. Rev. Biomed. Eng. 1999, 27, 149–188. [Google Scholar]









| Anatomic Location | Frequency (Hz) |
|---|---|
| Left Occipital Lobe | 5 |
| Left Cerebellar Hemisphere | 7 |
| Left Sensorimotor Cortex | 11 |
| Frontal Lobe | 13 |
| Premotor Cortex | 17 |
| Parietal Lobe | 19 |
| Right Sensorimotor Cortex | 23 |
| Right Cerebellar Hemisphere | 29 |
| Right Occipital Lobe | 31 |
| Anterior Cingulate Gyrus | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, S.; Nordin, A.D. Gait-Induced Myoelectric EEG Artifact Removal Validation from Conventional and Tripolar Concentric Ring Electrodes. Appl. Sci. 2025, 15, 12103. https://doi.org/10.3390/app152212103
Phillips S, Nordin AD. Gait-Induced Myoelectric EEG Artifact Removal Validation from Conventional and Tripolar Concentric Ring Electrodes. Applied Sciences. 2025; 15(22):12103. https://doi.org/10.3390/app152212103
Chicago/Turabian StylePhillips, Scott, and Andrew D. Nordin. 2025. "Gait-Induced Myoelectric EEG Artifact Removal Validation from Conventional and Tripolar Concentric Ring Electrodes" Applied Sciences 15, no. 22: 12103. https://doi.org/10.3390/app152212103
APA StylePhillips, S., & Nordin, A. D. (2025). Gait-Induced Myoelectric EEG Artifact Removal Validation from Conventional and Tripolar Concentric Ring Electrodes. Applied Sciences, 15(22), 12103. https://doi.org/10.3390/app152212103

