Fermentative Profile, Chemical Composition and In Situ Rumen Degradability of Capiaçu Elephant Grass Silage Wilted or with Added Cornmeal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location, Design, and Treatments
2.2. Sample Collection, Processing, and Ensiling
2.3. Dry Matter Losses
2.4. pH, Organic Acids, and Chemical Composition
2.5. In Situ Rumen Degradability
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampaio, R.L.; de Resende, F.D.; Reis, R.A.; de Oliveira, I.M.; Custódio, L.; Fernandes, R.M.; Pazdiora, R.D.; Siqueira, G.R. The Nutritional Interrelationship between the Growing and Finishing Phases in Crossbred Cattle Raised in a Tropical System. Trop. Anim. Health Prod. 2017, 49, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Millen, D.D.; Pacheco, R.D.L.; Meyer, P.M.; Rodrigues, P.H.M.; De Beni Arrigoni, M. Current Outlook and Future Perspectives of Beef Production in Brazil. Anim. Front. 2011, 1, 46–52. [Google Scholar] [CrossRef]
- Kemboi, D.C.; Antonissen, G.; Ochieng, P.E.; Croubels, S.; Okoth, S.; Kangethe, E.K.; Faas, J.; Lindahl, J.F.; Gathumbi, J.K. A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins 2020, 12, 222. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.; Ramos, A.J.; Sanchis, V.; Marín, S. Mycotoxins Occurrence and Fungal Populations in Different Types of Silages for Dairy Cows in Spain. Fungal. Biol. 2021, 125, 103–114. [Google Scholar] [CrossRef]
- Aranega, J.P.R.B.; de Oliveira, C.A.F. Occurrence of Mycotoxins in Conserved Grass and Legume Forages—A Systematic Review. Ann. Anim. Sci. 2024, 24, 3–11. [Google Scholar] [CrossRef]
- Pereira, A.V.; José, F.; Ledo, S.; José, M.; Morenz, F.; Luiz, J.; Leite, B.; Magno, A.; Santos, B.D.; Martins, C.E.; et al. BRS Capiaçu: Cultivar de Capim-Elefante de Alto Rendimento Para Produção de Silagem. Embrapa Gado Leite. 2016. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1056288/brs-capiacu-cultivar-de-capim-elefante-de-alto-rendimento-para-producao-de-silagem (accessed on 9 November 2025).
- Nussio, L.G.; Paziani, S.D.F.; Nussio, C.M.B. Ensilagem de Capins Tropicais. In Embrapa Pecuária Sudeste. In Proceedings of the Reunião Anual Da Sociedade Brasileira De Zootecnia, Recife, Brazil, 29 July–1 August 2002; p. 39. [Google Scholar]
- Gomes, A.L.M.; Auerbach, H.U.; Lazzari, G.; Moraes, A.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Sodium Nitrite-Based Additives Improve the Conservation and the Nutritive Value of Guinea Grass Silage. Anim. Feed Sci. Technol. 2021, 279, 115033. [Google Scholar] [CrossRef]
- Moraes, A.; Auerbach, H.U.; Bragatto, J.M.; Piran Filho, F.A.; Silva, S.M.S.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Effect of Application Rate of Sodium Nitrite and Hexamine on the Fermentation and the Chemical Composition of Guinea Grass Silage Harvested at Different Stages of Maturity. Anim. Feed Sci. Technol. 2023, 302, 115667. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage Review: Recent Advances and Future Uses of Silage Additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Andrade, A.P.; de Quadros, D.G.; Bezerra, A.R.G.; Almeida, J.A.R.; Silva, P.H.S.; Araújo, J.A.M. Aspectos qualitativos da silagem de capim-elefante com fubá de milho e casca de soja. Semin. Ciências Agrárias 2012, 33, 1209–1218. [Google Scholar] [CrossRef]
- Bezerra, H.F.C.; Santos, E.M.; Oliveira, J.S.; Carvalho, G.G.P.; Pinho, R.M.A.; Silva, T.C.; Pereira, G.A.; Cassuce, M.R.; Zanine, A.M. Fermentation Characteristics and Chemical Composition of Elephant Grass Silage with Ground Maize and Fermented Juice of Epiphytic Lactic Acid Bacteria. South Afr. J. Anim. Sci. 2019, 49, 522–533. [Google Scholar] [CrossRef]
- Paula, P. Composição Bromatológica Da Silagem de Capim- Elefante BRS Capiaçu Com Inclusão Fubá de Milho. Pubvet 2020, 14, 148. [Google Scholar] [CrossRef]
- Barcelos, A.F.; de Carvalho, J.R.R.; Tavares, V.B.; Gonçalves, C.C. de M. Valor Nutritivo E Características Fermentativas da Silagem de Capim-Elefante Com Diferentes Proporções de Casca de Café. Ciência Anim. Bras. 2018, 19, e-27432. [Google Scholar] [CrossRef]
- Ribas, W.F.G.; Monção, F.P.; Júnior, V.R.R.; de Albuquerque Maranhão, C.M.; Ferreira, H.C.; dos Santos, A.S.; Gomes, V.M.; Rigueira, J.P.S. Effect of Wilting Time and Enzymatic-Bacterial Inoculant on the Fermentative Profile, Aerobic Stability, and Nutritional Value of BRS Capiaçu Grass Silage. Rev. Bras. Zootec. 2021, 50, e20200207. [Google Scholar] [CrossRef]
- MARSH, R. The Effects of Wilting on Fermentation in the Silo and on the Nutritive Value of Silage. Grass Forage Sci. 1979, 34, 1–10. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude-Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; Buxton, R.E., Muck, D.R., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003. [Google Scholar]
- Wilkinson, J.M.; Davies, D.R. The Aerobic Stability of Silage: Key Findings and Recent Developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.H. Effect of Compaction, Delayed Sealing and Aerobic Exposure on Maize Silage Quality and on Formation of Volatile Organic Compounds. Grass Forage Sci. 2018, 73, 53–66. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Das Geographische System Der Klimate. Handb. Der Klimatol. 1936, Band I, 7–30. [Google Scholar]
- Climate-Data.Org. Clima Viçosa: Temperatura, Tempo e Dados Climatológicos. 2022. Available online: https://pt.climate-data.org/america-do-sul/brasil/minas-gerais/vicosa-25021/ (accessed on 9 November 2025).
- INMET Boletim Agroclimatológico/Instituto Nacional de Meteorologia. Inst. Nac. Meteorol. 2022; pp. 1–17. Available online: https://portal.inmet.gov.br/uploads/boletinsAgroclimatologicos/BoletimAgro_2022-02-versaofinal.pdf (accessed on 9 November 2025).
- Penn State Particle Separator. Available online: https://extension.psu.edu/penn-state-particle-separator (accessed on 30 September 2025).
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Liu, J.; Hao, J.; Zhao, M.; Yan, X.; Jia, Y.; Wang, Z.; Ge, G. Effects of Different Temperature and Density on Quality and Microbial Population of Wilted Alfalfa Silage. BMC Microbiol. 2024, 24, 380. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, R.; Rückemann, H.; Stumpf, G. Method for the Determination of Organic Acids in Silage by High Performance Liquid Chromatography. Landwirtsch. Forsch. 1984, 37, 298–304. [Google Scholar]
- Detmann, E.; Silva, L.F.C.; Rocha, G.C.; Palma, M.N.N.; Rodrigues, J.P.P. Métodos Para Análise de Alimentos—INCT—Ciência Animal; Produção Independente: São Paulo, Brazil, 2021. [Google Scholar]
- Hall, M.B.; Hoover, W.H.; Jennings, J.P.; Webster, T.K.M. A Method for Partitioning Neutral Detergent-Soluble Carbohydrates. J. Sci. Food Agric. 1999, 79, 2079–2086. [Google Scholar] [CrossRef]
- Machado, M.G.; Detmann, E.; Mantovani, H.C.; Valadares Filho, S.C.; Bento, C.B.P.; Marcondes, M.I.; Assunção, A.S. Evaluation of the Length of Adaptation Period for Changeover and Crossover Nutritional Experiments with Cattle Fed Tropical Forage-Based Diets. Anim. Feed Sci. Technol. 2016, 222, 132–148. [Google Scholar] [CrossRef]
- Nocek, J.E. In Situ and Other Methods to Estimate Ruminal Protein and Energy Digestibility: A Review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Menezes, A.C.B.; Valadares Filho, S.C.; Carneiro Pacheco, M.V.; Pucetti, P.; Pereira, J.M.V.; Rotta, P.P.; Zanetti, D.; Silva, B.C.; Costa E Silva, L.F.; Detmann, E.; et al. Single Point Ruminal Incubation Times Necessary to Estimate Rumen Degradable Protein Content in Concentrate Feeds. Trans. Anim. Sci 2019, 3, 1686–1690. [Google Scholar] [CrossRef] [PubMed]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in Situ Techniques for Ruminant Feedstuff Evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- Silva, B.C.; Pacheco, M.V.C.; Godoi, L.A.; Silva, F.a.S.; Zanetti, D.; Menezes, A.C.B.; Pucetti, P.; Santos, S.A.; Paulino, M.F.; Filho, S.C.V. In Situ and in Vitro Techniques for Estimating Degradation Parameters and Digestibility of Diets Based on Maize or Sorghum. J. Agric. Sci. 2020, 158, 150–158. [Google Scholar] [CrossRef]
- Orskov, E.R.; Mcdonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS On Demand for Academics [Software]; SAS Institute Inc.: Cary, NC, USA, 2024. [Google Scholar]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 30 September 2025).
- Batista, J.S.S.; Alves, D.D.; Rigueira, J.P.S.; Backes, A.A.; Silva, J.T.E.; de Jesus Silva, É.T.; Santos, G.C.R.V.; Fernandes, L.D.L.; Vasconcelos, A.M.; Monção, F.P. Elephant Grass Cv. BRS Capiaçu Silage with Inclusion of Different Proportions of Silk Cotton. Semin.Cienc. Agrar. 2022, 43, 179–196. [Google Scholar] [CrossRef]
- Tavares, V.B.; Pinto, J.C.; Evangelista, A.R.; César, H.; Figueiredo, H.C.P.; Ávila, C.L.S.; Lima, R.F. Efeitos Da Compactação, Da Inclusão de Aditivo Absorvente e Do Emurchecimento Na Composição Bromatológica de Silagens de Capim-Tanzânia. Rev. Bras. De Zootec. 2009, 38, 40–49. [Google Scholar] [CrossRef][Green Version]
- González-Jartín, J.M.; Ferreiroa, V.; Rodríguez-Cañás, I.; Alfonso, A.; Sainz, M.J.; Aguín, O.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Occurrence of Mycotoxins and Mycotoxigenic Fungi in Silage from the North of Portugal at Feed-Out. Int. J. Food Microbiol. 2022, 365, 109556. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.C.; Carvalho, B.F.; Costa, D.M.; Morenz, M.J.F.; Schwan, R.F.; Ávila, C.L. da S. Novel Lactic Acid Bacteria Strains Enhance the Conservation of Elephant Grass Silage Cv. BRS Capiaçu. Anim. Feed Sci. Technol. 2020, 264, 114472. [Google Scholar] [CrossRef]
- Bates, D.B.; Kunkle, W.E.; Chambliss, C.G.; Cromwell, R.P. Effect of Dry Matter and Additives on Bermudagrass and Rhizoma Peanut Round Bale Silage. J. Prod. Agric. 1989, 2, 91–96. [Google Scholar] [CrossRef]
- Widyastuti, Y. Fermentasi Silase Dan Manfaat Probiotik Silase Bagi Ruminansia. Media Peternak. 2008, 31, 225–232. [Google Scholar]
- Silva, T.C.; Silva, M.V.B.; Ferreira, E.G.; Pereira, O.G.; Ferreira, C.L.L.F. Papel Da Fermentação Lática Na Produção de Silagem. Pubvet 2011, 5, Art-992. [Google Scholar] [CrossRef][Green Version]
- Piltz, J.W.; Meyer, R.G.; Brennan, M.A.; Boschma, S.P. Fermentation Quality of Silages Produced from Wilted Sown Tropical Perennial Grass Pastures with or without a Bacterial Inoculant. Agronomy 2022, 12, 1721. [Google Scholar] [CrossRef]
- Muck, R.E.; Moser, L.E.; Pitt, R.E. Postharvest Factors Affecting Ensiling. Silage Sci. Technol. 2003, 42, 251–304. [Google Scholar] [CrossRef]
- Umaña, R.; Staples, C.R.; Bates, D.B.; Wilcox, C.J.; Mahanna, W.C. Effects of a Microbial Inoculant and(or) Sugarcane Molasses on the Fermentation, Aerobic Stability, and Digestibility of Bermudagrass Ensiled at Two Moisture Contents2. J. Anim. Sci. 1991, 69, 4588–4601. [Google Scholar] [CrossRef]
- Santos, E.M.; Zanine, A.M.; Ferreira, D.J.; Oliveira, J.S.; Penteado, D.C.S.; Pereira, O.G. Inoculante Ativado Melhora a Silagem de Capim-Tanzania (“Panicum Maximum”). Arch. Zootec. 2008, 57, 35–72. [Google Scholar]
- Ferreira, D.d.J.; Lana, R.d.P.; Zanine, A.d.M.; Santos, E.M.; Veloso, C.M.; Ribeiro, G.A. Silage Fermentation and Chemical Composition of Elephant Grass Inoculated with Rumen Strains of Streptococcus Bovis. Anim. Feed Sci. Technol. 2013, 183, 22–28. [Google Scholar] [CrossRef]
- Ferrari Júnior, E.; Lavezzo, W. Qualidade Da Silagem de Capim-Elefante (Pennisetum Purpureum Schum.) Emurchecido Ou Acrescido de Farelo de Mandioca. Rev. Bras. Zootec. 2001, 30, 1424–1431. [Google Scholar] [CrossRef]
- Alencar, A.M.S.; Júnior, V.R.R.; Monção, F.P.; Cordeiro, M.W.S.; Santos, A.S.; Caldeira, L.A.; Oliveira, L.I.S.; Ananias, J.V.A.; Costa, M.D.; Souza, A.S.; et al. Quality of Mixed Silages of Sorghum, BRS Capiaçu Grass, and Cactus Pear in a Semiarid Region of Brazil. J. Appl. Anim. Res. 2023, 51, 719–728. [Google Scholar] [CrossRef]
- Mota, Á.D.S.; Rocha Júnior, V.R.; de Souza, A.S.; dos Reis, S.T.; Tomich, T.R.; Caldeira, L.A.; Menezes, G.C.d.C.; da Costa, M.D. Perfil de Fermentação e Perdas Na Ensilagem de Diferentes Frações Da Parte Aérea de Quatro Variedades de Mandioca. Rev. Bras. Zootec. 2011, 40, 1466–1473. [Google Scholar] [CrossRef][Green Version]
- Arriola, K.G.; Kim, S.C.; Adesogan, A.T. Effect of Applying Inoculants with Heterolactic or Homolactic and Heterolactic Bacteria on the Fermentation and Quality of Corn Silage. J. Dairy Sci. 2011, 94, 1511–1516. [Google Scholar] [CrossRef]
- Heinritz, S.N.; Martens, S.D.; Avila, P.; Hoedtke, S. The Effect of Inoculant and Sucrose Addition on the Silage Quality of Tropical Forage Legumes with Varying Ensilability. Anim. Feed Sci. Technol. 2012, 174, 201–210. [Google Scholar] [CrossRef]
- Jobim, C.C.; Junior, C.M.; Júnior, V.H.B.; Oliveira, F.C.L. Semina: Ciências Agrárias. Semin. Ciências Agrárias 2010, 31, 773–782. [Google Scholar] [CrossRef][Green Version]
- Zanine, A.M.; Santos, E.M.; Ferreira, D.J.; Pereira, O.G.; Carlos, J.; Almeida, J.C.C. Efeito Do Farelo de Trigo Sobre as Perdas, Recuperação Da Matéria Seca e Composição Bromatológica de Silagem de Capim-Mombaça. Braz. J. Vet. Res. Anim. Sci. 2006, 43, 803–809. [Google Scholar] [CrossRef][Green Version]
- Henderson, N. Silage Additives. Anim. Feed. Sci. Technol. 1993, 45, 35–56. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.Y.; Tremblay, G.F.; Petit, H.V.; Michaud, R.; Bélanger, G. Fatty Acids in Forages. I. Factors Affecting Concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.F.; Scollan, N.D. Increasing the Concentrations of Beneficial Polyunsaturated Fatty Acids in Milk Produced by Dairy Cows in High-Forage Systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Van Ranst, G.; Fievez, V.; De Riek, J.; Van Bockstaele, E. Influence of Ensiling Forages at Different Dry Matters and Silage Additives on Lipid Metabolism and Fatty Acid Composition. Anim. Feed Sci. Technol. 2009, 150, 62–74. [Google Scholar] [CrossRef]
- Mills, J.A.; Kung, L. The Effect of Delayed Ensiling and Application of a Propionic Acid-Based Additive on the Fermentation of Barley Silage. J. Dairy Sci. 2002, 85, 1969–1975. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant. Choice Rev. Online 1995, 32, 32–4505. [Google Scholar] [CrossRef]
- Gomes, R.d.S.; Almeida, J.C.d.C.; Carneiro, J.d.C.; Azevedo, F.H.V.; Lista, F.N.; Elyas, A.C.W.; de Oliveira, T.S. Impacts of Citrus Pulp Addition and Wilting on Elephant Grass Silage Quality. Biosci. J. (Online) 2017, 33, 675–684. [Google Scholar] [CrossRef][Green Version]
- de Carvalho, G.G.P.; Garcia, R.; Pires, A.J.V.; Pereira, O.G.; Azevêdo, J.A.G.; de Carvalho, B.M.A.; Cavali, J. Valor nutritivo de silagens de capim-elefante emurchecido ou com adição de farelo de cacau. R. Bras. Zootec. 2007, 36, 1495–1501. [Google Scholar] [CrossRef][Green Version]
- Wilson, J.R. Cell Wall Characteristics in Relation to Forage Digestion by Ruminants. J. Agric. Sci. 1994, 122, 173–182. [Google Scholar] [CrossRef]
- Zailan, M.Z.; Yaakub, H.; Jusoh, S. Yield and Nutritive Value of Four Napier (Pennisetum purpureum) Cultivars at Different Harvesting Ages. Agric. Biol. J. N. Am. 2016, 7, 213–219. [Google Scholar] [CrossRef]
- Bezerra, H.F.C.; Santos, E.M.; de Oliveira, J.S.; de Carvalho, G.G.P.; Cassuce, M.R.; Perazzo, A.F.; Freitas, D.d.S.S.; Santos, V.d.S. Degradabilidade ruminal in situ de silagens de capim-elefante aditivadas com farelo de milho e inoculante da microbiota autóctone. Rev. Bras. Saúde Prod. Anim. 2015, 16, 265–277. [Google Scholar] [CrossRef]
- Ridla, M.; Albarki, H.R.; Risyahadi, S.T.; Sukarman, S. Effects of Wilting on Silage Quality: A Meta-Analysis. Anim. Biosci. 2024, 37, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R. Kinetics of Cell Wall Digestion and Passage in Ruminants. In Forage Cell Wall Structure and Digestibility; John Wiley & Sons: Hoboken, NJ, USA, 1993; pp. 535–570. [Google Scholar] [CrossRef]
- Passini, R.; Borgatti, L.M.O.; Ferreira, F.A.; Rodrigues, P.H.M. Degradabilidade no rúmen bovino de grãos de milho processados de diferentes formas. Pesq. Agropec. Bras. 2004, 39, 271–276. [Google Scholar] [CrossRef]
| Days | Activity Performed | Max. Temperature (°C) | Min. Temperature (°C) | Air Humidity (%) | Precipitation (mm) |
|---|---|---|---|---|---|
| 1 | Harvesting of all treatments; Beginning of wilting of WI3 and WI5; Grinding and ensiling of grass from CON and SGC treatments | 22.9 | 8.8 | 81.0 | 0 |
| 2 | Wilting of grass in treatments WI3 and WI5 | 23.6 | 8.7 | 80.6 | 0.2 |
| 3 | Wilting of grass in treatments WI3 and WI5 | 24.4 | 11.9 | 81.1 | 0 |
| 4 | Grinding and ensiling of grass from WI3 treatment and wilting from WI5 | 24.2 | 12.9 | 79.0 | 0 |
| 5 | Wilting of grass in treatments WI5 | 23.6 | 12.4 | 77.8 | 0 |
| 6 | Grinding and ensiling of grass from the WI5 treatment | 22.7 | 10 | 84.9 | 0.2 |
| Sieves | Treatments 1 | |||
|---|---|---|---|---|
| CON | SGC | WI3 | WI5 | |
| 19 mm (%) | 9.45 | 5.04 | 11.81 | 8.27 |
| 8 mm (%) | 56.24 | 57.92 | 54.20 | 48.10 |
| 4 mm (%) | 29.50 | 28.78 | 27.43 | 32.97 |
| Pan (%) | 4.81 | 8.26 | 6.56 | 10.66 |
| Parameters | Treatments 1 | SEM 2 | p-Value | |||
|---|---|---|---|---|---|---|
| CON | SGC | WI3 | WI5 | |||
| pH | 5.07 a | 4.55 c | 4.52 c | 4.95 b | 0.073 | <0.01 |
| DM Loss (%) | 3.16 a | 1.69 b | 1.64 b | 2.90 a | 0.217 | <0.01 |
| Lactic Acid (% DM) | 0.83 c | 2.32 a | 1.57 b | 1.65 b | 0.161 | <0.01 |
| Acetic Acid (% DM) | 0.44 b | 0.75 a | 0.88 a | 0.82 a | 0.056 | <0.01 |
| Butyric Acid (% DM) | 1.20 a | 0.27 c | 0.33 c | 0.54 b | 0.113 | <0.01 |
| Items (g/kg) 1 | Treatments 2 | SEM 3 | p-Value | |||
|---|---|---|---|---|---|---|
| CON | SGC | WI3 | WI5 | |||
| Dry Matter | 223.1 c | 257.2 b | 318.3 a | 305.4 a | 4.50 | <0.01 |
| Ash | 80.2 b | 80.5 b | 90.6 a | 85.5 ab | 1.59 | <0.01 |
| Crude Protein | 58.4 a | 63.8 a | 58.5 a | 51.4 b | 1.35 | <0.01 |
| Ether Extract | 16.7 a | 16.7 a | 9.9 b | 7.5 b | 1.05 | <0.01 |
| NDF | 792.7 ab | 700.2 c | 765.8 b | 798.2 a | 6.45 | <0.01 |
| ADF | 523.2 ab | 453.3 c | 504.0 b | 540.5 a | 7.26 | <0.01 |
| Lignin | 97.4 ab | 82.1 c | 88.4 bc | 101.1 a | 2.08 | <0.01 |
| NFC | 51.7 b | 138.6 a | 74.9 b | 57.2 b | 6.36 | <0.01 |
| NDFi | 420.4 a | 355.0 b | 394.5 a | 414.9 a | 7.49 | <0.01 |
| Items | Treatments 1 | SEM 2 | p-Value | |||
|---|---|---|---|---|---|---|
| CON | SGC | WI3 | WI5 | |||
| DM parameters | ||||||
| a, g/kg | 209 c | 289 a | 240 b | 234 b | 4.95 | < 0.01 |
| b, g/kg | 336 | 330 | 332 | 314 | 26.7 | 0.93 |
| c, %/h | 2.03 | 2.27 | 1.85 | 1.76 | 0.21 | 0.39 |
| NDF parameters | ||||||
| a, g/kg | 149 | 162 | 160 | 173 | 7.63 | 0.27 |
| b, g/kg | 370 | 382 | 368 | 347 | 30.6 | 0.88 |
| c, %/h | 1.87 | 2.11 | 1.80 | 1.77 | 0.19 | 0.63 |
| Potential degradation of DM, g/kg | 545 | 619 | 572 | 548 | 25.6 | 0.22 |
| Potential degradation of NDF, g/kg | 519 | 544 | 528 | 520 | 31.6 | 0.93 |
| Items | Treatments 1 | SEM 2 | p-Value | |||
|---|---|---|---|---|---|---|
| CON | SGC | WI3 | WI5 | |||
| Effective degradability of DM (g/kg) | ||||||
| Kp = 2%/h | 379 B | 465 A | 400 AB | 381 B | 20.7 | 0.06 |
| Kp = 5%/h | 307 b | 393 a | 330 b | 316 b | 13.6 | 0.01 |
| Kp = 8%/h | 278 b | 362 a | 303 b | 291 b | 10.2 | 0.01 |
| Effective degradability of NDF (g/kg) | ||||||
| Kp = 2%/h | 329 | 359 | 335 | 336 | 25.1 | 0.85 |
| Kp = 5%/h | 251 | 276 | 258 | 264 | 17.3 | 0.77 |
| Kp = 8%/h | 221 | 243 | 228 | 236 | 13.8 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.I.M.; da Silva, B.B.; Vieira, J.V.F.; Bittencourt, C.d.S.; Rodrigues, J.V.C.; Amorim, W.P.F.; Ribeiro, A.C.O.; Rotta, P.P.; Homem, B.G.C.; Silva, A.L.d. Fermentative Profile, Chemical Composition and In Situ Rumen Degradability of Capiaçu Elephant Grass Silage Wilted or with Added Cornmeal. Appl. Sci. 2025, 15, 12001. https://doi.org/10.3390/app152212001
Silva MIM, da Silva BB, Vieira JVF, Bittencourt CdS, Rodrigues JVC, Amorim WPF, Ribeiro ACO, Rotta PP, Homem BGC, Silva ALd. Fermentative Profile, Chemical Composition and In Situ Rumen Degradability of Capiaçu Elephant Grass Silage Wilted or with Added Cornmeal. Applied Sciences. 2025; 15(22):12001. https://doi.org/10.3390/app152212001
Chicago/Turabian StyleSilva, Maria Isabela Moreira, Bruno Barboza da Silva, Jaimison Vinícius Ferreira Vieira, Carina da Silva Bittencourt, João Vitor Coelho Rodrigues, Wellington Paulo Fernandes Amorim, Ana Carolina Oliveira Ribeiro, Polyana Pizzi Rotta, Bruno Grossi Costa Homem, and Alex Lopes da Silva. 2025. "Fermentative Profile, Chemical Composition and In Situ Rumen Degradability of Capiaçu Elephant Grass Silage Wilted or with Added Cornmeal" Applied Sciences 15, no. 22: 12001. https://doi.org/10.3390/app152212001
APA StyleSilva, M. I. M., da Silva, B. B., Vieira, J. V. F., Bittencourt, C. d. S., Rodrigues, J. V. C., Amorim, W. P. F., Ribeiro, A. C. O., Rotta, P. P., Homem, B. G. C., & Silva, A. L. d. (2025). Fermentative Profile, Chemical Composition and In Situ Rumen Degradability of Capiaçu Elephant Grass Silage Wilted or with Added Cornmeal. Applied Sciences, 15(22), 12001. https://doi.org/10.3390/app152212001

