Machine Learning, Physiological Signals, and Emotional Stress/Anxiety: Pitfalls and Challenges
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
- (“anxiety” [Title/Abstract]
- OR “blood pressure” [Title/Abstract]
- OR “EL” [Title/Abstract]
- OR “eye tracking” [Title/Abstract]
- OR “heart rate” [Title/Abstract]
- OR “skin conductance” [Title/Abstract]
- OR “stress” [Title/Abstract])
- AND (“classification” [Title/Abstract]
- OR “deep learning” [Title/Abstract]
- OR “machine learning” [Title/Abstract])
2.2. Inclusion and Exclusion Criteria
2.3. Screening Synthesis and Results
2.4. Study Quality Assessment
2.4.1. Assessment Framework and Evaluation Criteria
2.4.2. Quality Assessment Results
2.4.3. Assessment Limitations and Methodological Considerations
3. Results
3.1. Physiological Signals
3.1.1. EEG
3.1.2. Heart Rate (HR) and Heart Rate Variability (HRV)
3.1.3. Electrodermal Activity (EDA)
3.1.4. Eye Movement
3.1.5. Other Physiological Signals
3.2. Machine Learning Methods in Stress and Anxiety
3.2.1. ML Approaches for Emotional Stress and Anxiety Analysis Using Physiological Signals
3.2.2. Fusion Strategies of Multimodal Physiological Signals
3.2.3. ML Performance in Analyzing Physiological Signals
3.3. DL Approaches for Emotional Stress and Anxiety Analysis Using Physiological Signals
| Research | Signal | Method | Accuracy% | Structure | Dataset Details |
|---|---|---|---|---|---|
| [69] (2023) | EEG, pulse rate | CNN-TLSTM | 97.86 | CNN, LSTM | 19 subjects (15 M/4 F, 31 ± 14 years), 8 electrodes, 250 Hz sampling rate. Each participant yields 20 × 90 s EEG measurements, generating a 30 min EEG record per user. |
| [80] (2022) | EEG | DNN | 95.51 | - | 45 GAD patients (41.8 ± 9.4 years, 13 M/32 F); 36 HC (36.9 ± 11.3 years, 11 M/25 F). 16-channel EEG, 250 Hz. 10,273 GAD and 7773 HC samples. |
| [70] (2024) | EEG | GRU | 94.4 | LSTM | 24 healthy subjects; EEG acquired via ECL electrodes, filtered with a 4–400 Hz band-pass filter at a 256 Hz sampling rate. |
| [82] (2020) | ECG | CNN | 93.74 | CNN | - |
| [61] (2022) | EEG | MuLHiTA | 91.8 | LSTM | |
| [61] (2022) | EEG | CNN-LSTM | 87.57 | CNN, LSTM | |
| [83] (2019) | EEG | CNN | 87.5 | CNN | - |
| [61] (2022) | EEG | EEGNet | 84.66 | CNN | MIST: 20 males, 22.54 ± 1.53 years, 500 Hz, 24 electrodes. STEW: 45 males, 18–24 years, 128 Hz, 14 electrodes. DMAT: 25 subjects (20 F/5 M), 18.60 ± 0.87 years, 500 Hz, 23 electrodes. |
| [61] (2022) | EEG | BLSTM | 84.13 | LSTM | |
| [64] (2021) | ECG | 1D-CNN | 83.55 | CNN | |
| [64] (2021) | ECG | VGG | 83.09 | CNN | DriveDB: multiparameter recordings during driving; ECG, QRS, GSR. Arachnophobia: 80 spider-fearful individuals (18–40 years); 100 Hz, 10-bit resolution; ECG, GSR, respiration. |
| [81] (2023) | EEG | LConvNet | 97 | CNN, LSTM | TUEP v2.0.0: 49 epilepsy, 49 healthy sessions; ≥25 channels. |
| [81] (2023) | EEG | DeepConvNet | 96 | CNN | |
| [83] (2019) | HRV, EDA, EEG | CNN | 90 | CNN | - |
| [83] (2019) | HRV, EDA | CNN | 84 | CNN | - |
| [81] (2023) | EEG | ShallowConvNet | 78 | CNN |
3.4. Software and Hardware Platforms
4. Discussion
4.1. Comparison of the Advantages and Disadvantages of Different Models and Usage Scenarios
4.2. Pitfalls and Challenges
4.2.1. Pitfalls
4.2.2. Challenges
4.3. Future Opportunities
4.4. Methodological Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- (((“Anxiety/classification” [Mesh] OR “Anxiety/diagnosis” [Mesh] OR “Stress, Psychological/classification” [Mesh] OR “Stress, Psychological/diagnosis” [Mesh])
- AND (“Deep Learning” [Mesh] OR “Machine Learning” [Mesh] OR “Neural Networks, Computer” [Mesh]))
- AND (“Electroencephalography” [Mesh] OR “Eye-Tracking Technology” [Mesh]
- OR “Heart Rate” [Mesh] OR “Galvanic Skin Response” [Mesh] OR “Blood Pressure” [Mesh] OR “Oxygen Saturation” [Mesh]
- OR “Biomarkers” [Mesh]))
- OR
- (((((Angst [Title/Abstract]) OR (Nervousness [Title/Abstract]) OR (Hypervigilance [Title/Abstract]) OR (Social Anxiety [Title/Abstract]) OR (Anxieties [Title/Abstract])
- OR (Anxiety [Title/Abstract]) OR (Social Anxieties [Title/Abstract]) OR (Anxiousness [Title/Abstract]) OR (Psychological Stresses [Title/Abstract])
- OR (Stressor [Title/Abstract]) OR (Psychological Stressor [Title/Abstract]) OR (Psychological Stressors [Title/Abstract])
- OR (Psychological Stress [Title/Abstract]) OR (Stress [Title/Abstract]) OR (Psychologic Stress [Title/Abstract]) OR (Life Stress [Title/Abstract])
- OR (Life Stresses [Title/Abstract]) OR (Stress [Title/Abstract]) OR (Emotional Stress [Title/Abstract])
- OR (Stressful Conditions [Title/Abstract]) OR (Psychological Stressful Condition [Title/Abstract])
- OR (Psychological Stressful Conditions [Title/Abstract]) OR (Stressful Condition [Title/Abstract]) OR (Psychologically Stressful Conditions [Title/Abstract])
- OR (Psychologically Stressful Condition [Title/Abstract])
- OR (Stressful Condition [Title/Abstract]) OR (Stress Experience [Title/Abstract]) OR (Psychological Stress Experience [Title/Abstract])
- OR (Psychological Stress Experiences [Title/Abstract]) OR (Stress Experiences [Title/Abstract])
- OR (Individual Stressors [Title/Abstract]) OR (Individual Stressor [Title/Abstract]) OR (Cumulative Stress [Title/Abstract])
- OR (Cumulative Stresses [Title/Abstract]) OR (Psychological Cumulative Stresses [Title/Abstract])
- OR (Psychological Cumulative Stress [Title/Abstract]) OR (Stress Overload [Title/Abstract]) OR (Psychological Stress Overload [Title/Abstract])
- OR (Psychological Stress Overloads [Title/Abstract]) OR (Stress Measurement [Title/Abstract])
- OR (Psychological Stress Measurement [Title/Abstract]) OR (Psychological Stress Measurements [Title/Abstract])
- OR (Stress Processes [Title/Abstract]) OR (Psychological Stress Processe [Title/Abstract]) OR (Psychological Stress Processes [Title/Abstract])
- OR (Stress Processe [Title/Abstract]))
- AND ((classif * [Title/Abstract]) OR (diagnos * [Title/Abstract]) OR (assess * [Title/Abstract]) OR (predict * [Title/Abstract])))
- AND ((Deep Learning [Title/Abstract]) OR (Hierarchical Learning [Title/Abstract]) OR (Machine Learning [Title/Abstract]) OR (Computer Neural Network [Title/Abstract])
- OR (Computer Neural Networks [Title/Abstract])
- OR (Neural Network [Title/Abstract]) OR (Deep learning
- Model [Title/Abstract]) OR (Model [Title/Abstract]) OR (Network Model [Title/Abstract])
- OR (Network Models [Title/Abstract]) OR (Neural Network Model [Title/Abstract]) OR (Neural Network Models [Title/Abstract]) OR
- (Connectionist Models [Title/Abstract])
- OR (Connectionist Model [Title/Abstract]) OR (Perceptrons [Title/Abstract])
- OR (Perceptron [Title/Abstract]) OR (Computational Neural Networks [Title/Abstract]) OR (Computational Neural Network [Title/Abstract])
- OR (Neural Network [Title/Abstract])
- AND ((EEG [Title/Abstract]) OR (Electroencephalogram [Title/Abstract])
- OR (Electroencephalograms [Title/Abstract]) OR (Eye-Tracking Technologies [Title/Abstract]) OR (Eye Tracking Technology [Title/Abstract])
- OR (Eyetracking Technology [Title/Abstract]) OR (Eyetracking Technologies [Title/Abstract]) OR (Gaze-Tracking Technology [Title/Abstract])
- OR (Gaze-Tracking Technologies [Title/Abstract])
- OR (Gaze Tracking Technology [Title/Abstract]) OR (Gaze-Tracking System [Title/Abstract]) OR (Gaze Tracking System [Title/Abstract])
- OR (Gaze-Tracking Systems [Title/Abstract])
- OR (Gazetracking System [Title/Abstract]) OR (Gazetracking Systems [Title/Abstract]) OR (Eye-Tracking System [Title/Abstract])
- OR (Eye Tracking System [Title/Abstract])
- OR (Eye-Tracking Systems [Title/Abstract]) OR (Eyetracking System [Title/Abstract]) OR (Eyetracking Systems [Title/Abstract]) OR (Eye-Tracking [Title/Abstract])
- OR (Heart Rates [Title/Abstract]) OR (Cardiac Rate [Title/Abstract]) OR (Cardiac Rates [Title/Abstract])
- OR (Pulse Rate [Title/Abstract]) OR (Pulse Rates [Title/Abstract]) OR (Heartbeat [Title/Abstract]) OR (Heartbeats [Title/Abstract])
- OR (Cardiac Chronotropism [Title/Abstract]) OR (Heart Rate Control [Title/Abstract])
- OR (Cardiac Chronotropy [Title/Abstract]) OR (Galvanic Skin Responses [Title/Abstract])
- OR (Psychogalvanic Reflex [Title/Abstract]) OR (Skin Electric Conductance [Title/Abstract])
- OR (Electrodermal Response [Title/Abstract]) OR (Electrodermal Responses [Title/Abstract])
- OR (Pulse Pressure [Title/Abstract]) OR (Diastolic Pressure [Title/Abstract])
- OR (Systolic Pressure [Title/Abstract])
- OR (Saturation of Peripheral Oxygen [Title/Abstract])
- OR (Peripheral Oxygen Saturation [Title/Abstract]) OR (SpO2 [Title/Abstract])))
References
- Newlove-Delgado, T.; Marcheselli, F.; Williams, T.; Mandalia, D.; Davis, J.; McManus, S.; Savic, M.; Treloar, W.; Ford, T. Mental Health of Children and Young People in England 2022—Wave 3 Follow up to the 2017 Survey; NHS Digital: London, UK, 2022. [Google Scholar]
- World Health Organization. Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact: Scientific Brief, 2 March 2022. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Mental_health-2022.1 (accessed on 4 November 2024).
- American Psychiatric Association. Mental Health Disparities: Women’s Mental Health. 2017. Available online: https://www.psychiatry.org (accessed on 4 November 2024).
- Bienertova-Vasku, J.; Lenart, P.; Scheringer, M. Eustress and Distress: Neither Good Nor Bad, but Rather the Same? BioEssays 2020, 42, e1900238. [Google Scholar] [CrossRef]
- de la Fuente, J.; Paoloni, P.V.; Vera-Martínez, M.M.; Garzón-Umerenkova, A. Effect of Levels of Self-Regulation and Situational Stress on Achievement Emotions in Undergraduate Students: Class, Study and Testing. Int. J. Environ. Res. Public Health 2020, 17, 4293. [Google Scholar] [CrossRef]
- Roberts, B.L.; Karatsoreos, I.N. Brain-body responses to chronic stress: A brief review. Fac. Rev. 2021, 10, 83. [Google Scholar] [CrossRef]
- Bui, T.; Zackula, R.; Dugan, K.; Ablah, E. Workplace Stress and Productivity: A Cross-Sectional Study. Kans. J. Med. 2021, 14, 42. [Google Scholar] [CrossRef]
- Lau, K.K.H.; Randall, A.K.; Duran, N.D.; Tao, C. Examining the Effects of Couples’ Real-Time Stress and Coping Processes on Interaction Quality: Language Use as a Mediator. Front. Psychol. 2019, 9, 2598. [Google Scholar] [CrossRef]
- Ross, R.A.; Foster, S.L.; Ionescu, D.F. The Role of Chronic Stress in Anxious Depression. Chronic Stress. 2017, 1, 2470547016689472. [Google Scholar] [CrossRef]
- Satyjeet, F.; Naz, S.; Kumar, V.; Aung, N.H.; Bansari, K.; Irfan, S.; Rizwan, A. Psychological Stress as a Risk Factor for Cardiovascular Disease: A Case-Control Study. Cureus 2020, 12, e10757. [Google Scholar] [CrossRef]
- Sharma, L.D.; Bohat, V.K.; Habib, M.; Al-Zoubi, A.M.; Faris, H.; Aljarah, I. Evolutionary inspired approach for mental stress detection using EEG signal. Expert Syst. Appl. 2022, 197, 116634. [Google Scholar] [CrossRef]
- Seiler, A.; Fagundes, C.P.; Christian, L.M. The Impact of Everyday Stressors on the Immune System and Health. In Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–92. [Google Scholar] [CrossRef]
- König, H.; König, H.-H.; Gallinat, J.; Lambert, M.; Karow, A.; Peth, J.; Schulz, H.; Konnopka, A. Excess costs of mental disorders by level of severity. Soc. Psychiatry Psychiatr. Epidemiol. 2023, 58, 973–985. [Google Scholar] [CrossRef]
- Müller, G.; Bombana, M.; Heinzel-Gutenbrenner, M.; Kleindienst, N.; Bohus, M.; Lyssenko, L.; Vonderlin, R. Socio-economic consequences of mental distress: Quantifying the impact of self-reported mental distress on the days of incapacity to work and medical costs in a two-year period: A longitudinal study in Germany. BMC Public Health 2021, 21, 625. [Google Scholar] [CrossRef]
- Smith, J.P.; Book, S.W. Anxiety and Substance Use Disorders: A Review. Psychiatr. Times 2008, 25, 19. [Google Scholar]
- Lazarou, E.; Exarchos, T.P. Predicting stress levels using physiological data: Real-time stress prediction models utilizing wearable devices. AIMS Neurosci. 2024, 11, 76. [Google Scholar] [CrossRef]
- Vos, G.; Trinh, K.; Sarnyai, Z.; Azghadi, M.R. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Int. J. Med. Inform. 2023, 173, 105026. [Google Scholar] [CrossRef]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef]
- Tadiri, C.P.; Raparelli, V.; Abrahamowicz, M.; Kautzy-Willer, A.; Kublickiene, K.; Herrero, M.-T.; Norris, C.M.; Pilote, L. Methods for prospectively incorporating gender into health sciences research. J. Clin. Epidemiol. 2021, 129, 191–197. [Google Scholar] [CrossRef]
- Raparelli, V.; Norris, C.M.; Bender, U.; Herrero, M.T.; Kautzky-Willer, A.; Kublickiene, K.; El Emam, K.; Pilote, L. Identification and inclusion of gender factors in retrospective cohort studies: The GOING-FWD framework. BMJ Glob. Health 2021, 6, e005413. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Al-Jebrni, A.H.; Chwyl, B.; Wang, X.Y.; Wong, A.; Saab, B.J. AI-enabled remote and objective quantification of stress at scale. Biomed. Signal Process. Control 2020, 59, 101929. [Google Scholar] [CrossRef]
- Kumar, M.; Zhang, W.; Weippert, M.; Freudenthaler, B. An Explainable Fuzzy Theoretic Nonparametric Deep Model for Stress Assessment Using Heartbeat Intervals Analysis. IEEE Trans. Fuzzy Syst. 2021, 29, 3873–3886. [Google Scholar] [CrossRef]
- Lee, S.; Bin Hwang, H.; Park, S.; Kim, S.; Ha, J.H.; Jang, Y.; Hwang, S.; Park, H.-K.; Lee, J.; Kim, I.Y. Mental Stress Assessment Using Ultra Short Term HRV Analysis Based on Non-Linear Method. Biosensors 2022, 12, 465. [Google Scholar] [CrossRef]
- Jiao, Y.; Sun, Z.; Fu, L.; Yu, X.; Jiang, C.; Zhang, X.; Liu, K.; Chen, X. Physiological responses and stress levels of high-speed rail train drivers under various operating conditions—A simulator study in China. Int. J. Rail Transp. 2023, 11, 449–464. [Google Scholar] [CrossRef]
- Barua, S.; Begum, S.; Ahmed, M.U. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals. Stud. Health Technol. Inform. 2015, 211, 241–248. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.A.; Jeunet, C.; Pelissolo, A.; Ros, T. EEG Neurofeedback for Anxiety Disorders and Post-Traumatic Stress Disorders: A Blueprint for a Promising Brain-Based Therapy. Curr. Psychiatry Rep. 2021, 23, 84. [Google Scholar] [CrossRef]
- Rao, R.P.N. Brain-Computer Interfacing: An Introduction; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage 2007, 34, 1600–1611. [Google Scholar] [CrossRef]
- Yen, C.; Lin, C.L.; Chiang, M.C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef]
- Murty, P.S.C.; Anuradha, C.; Naidu, P.A.; Balaswamy, C.; Nagalingam, R.; Jagatheesaperumal, S.K.; Ponnusamy, M. An intelligent wearable embedded architecture for stress detection and psychological behavior monitoring using heart rate variability. J. Intell. Fuzzy Syst. 2023, 45, 8203–8216. [Google Scholar] [CrossRef]
- Boonnithi, S.; Phongsuphap, S. Comparison of Heart Rate Variability Measures for Mental Stress Detect. 2011. Available online: https://mahidol.elsevierpure.com/en/publications/comparison-of-heart-rate-variability-measures-for-mental-stress-d (accessed on 5 November 2024).
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef]
- Kim, K.B.; Baek, H.J. Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions. Electronics 2023, 12, 2923. [Google Scholar] [CrossRef]
- Peng, R.C.; Zhou, X.L.; Lin, W.H.; Zhang, Y.T. Extraction of heart rate variability from smartphone photoplethysmograms. Comput. Math. Methods Med. 2015, 2015, 516826. [Google Scholar] [CrossRef]
- Schiweck, C.; Piette, D.; Berckmans, D.; Claes, S.; Vrieze, E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol. Med. 2019, 49, 200–211. [Google Scholar] [CrossRef]
- Li, X.; Zou, L.; Li, H. Multilayer Perceptron-Based Wearable Exercise-Related Heart Rate Variability Predicts Anxiety and Depression in College Students. Sensors 2024, 24, 4203. [Google Scholar] [CrossRef]
- Benchekroun, M.; Velmovitsky, P.E.; Istrate, D.; Zalc, V.; Morita, P.P.; Lenne, D. Cross Dataset Analysis for Generalizability of HRV-Based Stress Detection Models. Sensors 2023, 23, 1807. [Google Scholar] [CrossRef]
- Ihianle, I.K.; Machado, P.; Owa, K.; Adama, D.A.; Otuka, R.; Lotfi, A. Minimising redundancy, maximising relevance: HRV feature selection for stress classification. Expert Syst. Appl. 2024, 239, 122490. [Google Scholar] [CrossRef]
- Khomidov, M.; Lee, D.; Kim, C.H.; Lee, J.H. The Real-Time Image Sequences-Based Stress Assessment Vision System for Mental Health. Electronics 2024, 13, 2180. [Google Scholar] [CrossRef]
- Bahameish, M.; Stockman, T.; Carrión, J.R. Strategies for Reliable Stress Recognition: A Machine Learning Approach Using Heart Rate Variability Features. Sensors 2024, 24, 3210. [Google Scholar] [CrossRef]
- Markiewicz, R.; Markiewicz-Gospodarek, A.; Dobrowolska, B. Galvanic Skin Response Features in Psychiatry and Mental Disorders: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 13428. [Google Scholar] [CrossRef]
- Klimek, A.; Mannheim, I.; Schouten, G.; Wouters, E.J.; Peeters, M.W.H. Wearables measuring electrodermal activity to assess perceived stress in care: A scoping review. Acta Neuropsychiatr. 2023, 37, e19. [Google Scholar] [CrossRef]
- Campanella, S.; Altaleb, A.; Belli, A.; Pierleoni, P.; Palma, L. A Method for Stress Detection Using Empatica E4 Bracelet and Machine-Learning Techniques. Sensors 2023, 23, 3565. [Google Scholar] [CrossRef]
- Schumm, J.; Bächlin, M.; Setz, C.; Arnrich, B.; Roggen, D.; Tröster, G. Effect of movements on the electrodermal response after a startle event. Methods Inf. Med. 2008, 47, 186–191. [Google Scholar] [CrossRef]
- Bari, D.S.; Aldosky, H.Y.Y.; Tronstad, C.; Martinsen, Ø.G. The correlations among the skin conductance features responding to physiological stress stimuli. Skin Res. Technol. 2021, 27, 582–588. [Google Scholar] [CrossRef]
- van der Mee, D.J.; Gevonden, M.J.; Westerink, J.H.D.M.; de Geus, E.J.C. Validity of electrodermal activity-based measures of sympathetic nervous system activity from a wrist-worn device. Int. J. Psychophysiol. 2021, 168, 52–64. [Google Scholar] [CrossRef]
- Bornoiu, I.V.; Grigore, O. Kohonen neural network stress detection using only electrodermal activity features. Adv. Electr. Comput. Eng. 2014, 14, 71–78. [Google Scholar] [CrossRef]
- Sánchez-Reolid, R.; Martínez-Rodrigo, A.; López, M.T.; Fernández-Caballero, A. Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity. Int. J. Neural Syst. 2020, 30, 2050031. [Google Scholar] [CrossRef]
- Armstrong, T.; Olatunji, B.O. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin. Psychol. Rev. 2012, 32, 704–723. [Google Scholar] [CrossRef]
- Bar-Haim, Y.; Lamy, D.; Pergamin, L.; Bakermans-Kranenburg, M.J.; Van Ijzendoorn, M.H. Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychol. Bull. 2007, 133, 1–24. [Google Scholar] [CrossRef]
- Cisler, J.M.; Koster, E.H.W. Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clin. Psychol. Rev. 2010, 30, 203–216. [Google Scholar] [CrossRef]
- Rojas-Thomas, F.; Artigas, C.; Wainstein, G.; Morales, J.-P.; Arriagada, M.; Soto, D.; Dagnino-Subiabre, A.; Silva, J.; Lopez, V. Impact of acute psychosocial stress on attentional control in humans. A study of evoked potentials and pupillary response. Neurobiol. Stress 2023, 25, 100551. [Google Scholar] [CrossRef]
- Ahmadi, N.; Sasangohar, F.; Yang, J.; Yu, D.; Danesh, V.; Klahn, S.; Masud, F. Quantifying Workload and Stress in Intensive Care Unit Nurses: Preliminary Evaluation Using Continuous Eye-Tracking. Hum. Factors 2024, 66, 714–728. [Google Scholar] [CrossRef]
- Pedrotti, M.; Mirzaei, M.A.; Tedesco, A.; Chardonnet, J.-R.; Mérienne, F.; Benedetto, S.; Baccino, T. Automatic Stress Classification with Pupil Diameter Analysis. Int. J. Hum. Comput. Interact. 2014, 30, 220–236. [Google Scholar] [CrossRef]
- Rakhmatulin, I. A Review of the Low-Cost Eye-Tracking Systems for 2010–2020. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Yousefi, M.S.; Reisi, F.; Daliri, M.R.; Shalchyan, V. Stress Detection Using Eye Tracking Data: An Evaluation of Full Parameters. IEEE Access 2022, 10, 118941–118952. [Google Scholar] [CrossRef]
- Zanetti, M.; Mizumoto, T.; Faes, L.; Fornaser, A.; De Cecco, M.; Maule, L.; Valente, M.; Nollo, G. Multilevel assessment of mental stress via network physiology paradigm using consumer wearable devices. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4409–4418. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Sempionatto, J.R.; Solomon, S.A.; Yu, Y.; Nyein, H.Y.Y.; Tay, R.Y.; Li, J.; Heng, W.; Min, J.; et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 2024, 7, 168–179. [Google Scholar] [CrossRef]
- Xia, L.; Feng, Y.; Guo, Z.; Ding, J.; Li, Y.; Li, Y.; Ma, M.; Gan, G.; Xu, Y.; Luo, J.; et al. MuLHiTA: A Novel Multiclass Classification Framework with Multibranch LSTM and Hierarchical Temporal Attention for Early Detection of Mental Stress. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 9657–9670. [Google Scholar] [CrossRef]
- Saeed, S.M.U.; Anwar, S.M.; Majid, M.; Awais, M.; Alnowami, M. Selection of Neural Oscillatory Features for Human Stress Classification with Single Channel EEG Headset. Biomed. Res. Int. 2018, 2018, 1049257. [Google Scholar] [CrossRef]
- Udhayakumar, R.; Rahman, S.; Gopakumar, S.; Karmakar, C. Nonlinear Features from Multi-Modal Signals for Continuous Stress Monitoring. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, NSW, Australia, 24–27 July 2023. [Google Scholar] [CrossRef]
- Tzevelekakis, K.; Stefanidi, Z.; Margetis, G. Real-Time Stress Level Feedback from Raw Ecg Signals for Personalised, Context-Aware Applications Using Lightweight Convolutional Neural Network Architectures. Sensors 2021, 21, 7802. [Google Scholar] [CrossRef]
- Tutunji, R.; Kogias, N.; Kapteijns, B.; Krentz, M.; Krause, F.; Vassena, E.; Hermans, E.J. Detecting Prolonged Stress in Real Life Using Wearable Biosensors and Ecological Momentary Assessments: Naturalistic Experimental Study. J. Med Internet Res. 2023, 25, e39995. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Wu, S.K.; Yu, S.S.; Tsai, M.H. Analyzing Brain Waves of Table Tennis Players with Machine Learning for Stress Classification. Appl. Sci. 2022, 12, 8052. [Google Scholar] [CrossRef]
- Mohammadi, A.; Fakharzadeh, M.; Baraeinejad, B. An Integrated Human Stress Detection Sensor Using Supervised Algorithms. IEEE Sens. J. 2022, 22, 8216–8223. [Google Scholar] [CrossRef]
- Can, Y.S.; Chalabianloo, N.; Ekiz, D.; Fernandez-Alvarez, J.; Repetto, C.; Riva, G.; Iles-Smith, H.; Ersoy, C. Real-Life Stress Level Monitoring Using Smart Bands in the Light of Contextual Information. IEEE Sens. J. 2020, 20, 8721–8730. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, A.H. A deep learning-based approach for distinguishing different stress levels of human brain using EEG and pulse rate. Comput. Methods Biomech. Biomed. Eng. 2023, 27, 2303–2324. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, J.J.; Bernat, L.; Ramon, J.L.; Morell, V.; Ubeda, A. A Deep Learning Approach to Estimate Multi-Level Mental Stress from EEG Using Serious Games. IEEE J. Biomed. Health Inform. 2024, 28, 3965–3972. [Google Scholar] [CrossRef]
- Cui, J.; Wilke, M.; Logothetis, N.K.; Leopold, D.A.; Liang, H. Visibility states modulate microsaccade rate and direction. Vis. Res. 2009, 49, 228–236. [Google Scholar] [CrossRef]
- Cho, H.M.; Park, H.; Dong, S.Y.; Youn, I. Ambulatory and Laboratory Stress Detection Based on Raw Electrocardiogram Signals Using a Convolutional Neural Network. Sensors 2019, 19, 4408. [Google Scholar] [CrossRef]
- Rakhmatulin, I.; Dao, M.S.; Nassibi, A.; Mandic, D. Exploring Convolutional Neural Network Architectures for EEG Feature Extraction. Sensors 2024, 24, 877. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Murugappan, M.; Yaacob, S. Analysis of stroop colorword test-based human stress detection using electrocardiography and heart rate variability signals. Arab. J. Sci. Eng. 2012, 39, 1835–1847. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, B.; Fang, J.; Cherif-Riahi, Y.; Li, G.; Shen, X. Integrating EEG and Ensemble Learning for Accurate Grading and Quantification of Generalized Anxiety Disorder: A Novel Diagnostic Approach. Diagnostics 2024, 14, 1122. [Google Scholar] [CrossRef]
- Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Del Ry, S.; Cavallo, F. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biomed. Eng. 2018, 65, 1748–1758. [Google Scholar] [CrossRef]
- Tiwari, S.; Agarwal, S. A Shrewd Artificial Neural Network-Based Hybrid Model for Pervasive Stress Detection of Students Using Galvanic Skin Response and Electrocardiogram Signals. Big Data 2021, 9, 427–442. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Taskasaplidis, G.; Fotiadis, D.A.; Bamidis, P.D. Review of Stress Detection Methods Using Wearable Sensors. IEEE Access 2024, 12, 38219–38246. [Google Scholar] [CrossRef]
- Shen, Z.; Li, G.; Fang, J.; Zhong, H.; Wang, J.; Sun, Y.; Shen, X. Aberrated Multidimensional EEG Characteristics in Patients with Generalized Anxiety Disorder: A Machine-Learning Based Analysis Framework. Sensors 2022, 22, 5420. [Google Scholar] [CrossRef]
- Omar, S.M.; Kimwele, M.; Olowolayemo, A.; Kaburu, D.M. Enhancing EEG signals classification using LSTM-CNN architecture. Eng. Rep. 2024, 6, e12827. [Google Scholar] [CrossRef]
- Huang, J.; Luo, X.; Peng, X. A Novel Classification Method for a Driver’s Cognitive Stress Level by Transferring Interbeat Intervals of the ECG Signal to Pictures. Sensors 2020, 20, 1340. [Google Scholar] [CrossRef] [PubMed]
- Masood, K.; Alghamdi, M.A. Modeling Mental Stress Using a Deep Learning Framework. IEEE Access 2019, 7, 68446–68454. [Google Scholar] [CrossRef]
- Quitadamo, L.R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: A review. J. Neural Eng. 2017, 14, 011001. [Google Scholar] [CrossRef]
- Subhani, A.R.; Mumtaz, W.; Saad, M.N.B.M.; Kamel, N.; Malik, A.S. Machine learning framework for the detection of mental stress at multiple levels. IEEE Access 2017, 5, 13545–13556. [Google Scholar] [CrossRef]
- Perpetuini, D.; Chiarelli, A.M.; Cardone, D.; Filippini, C.; Rinella, S.; Massimino, S.; Bianco, F.; Bucciarelli, V.; Vinciguerra, V.; Fallica, P.; et al. Prediction of state anxiety by machine learning applied to photoplethysmography data. PeerJ 2021, 9, e10448. [Google Scholar] [CrossRef]
- Ströhle, A.; Gensichen, J.; Domschke, K. The Diagnosis and Treatment of Anxiety Disorders. Dtsch. Arztebl. Int. 2018, 155, 611–620. [Google Scholar] [CrossRef]
- Sun, M.; Cao, X. A Mental Stress Classification Method Based on Feature Fusion Using Physiological Signals. J. Circuits Syst. Comput. 2023, 33, 2450016. [Google Scholar] [CrossRef]
- Shishido, E.; Ogawa, S.; Miyata, S.; Yamamoto, M.; Inada, T.; Ozaki, N. Application of eye trackers for understanding mental disorders: Cases for schizophrenia and autism spectrum disorder. Neuropsychopharmacol. Rep. 2019, 39, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Salankar, N.; Koundal, D.; Qaisar, S.M. Stress Classification by Multimodal Physiological Signals Using Variational Mode Decomposition and Machine Learning. J. Healthc. Eng. 2021, 2021, 2146369. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.R.M.; Anishchenko, L. Mental stress detection using bioradar respiratory signals. Biomed. Signal Process. Control 2018, 43, 244–249. [Google Scholar] [CrossRef]
- Fang, J.; Li, G.; Xu, W.; Liu, W.; Chen, G.; Zhu, Y.; Luo, Y.; Luo, X.; Zhou, B. Exploring Abnormal Brain Functional Connectivity in Healthy Adults, Depressive Disorder, and Generalized Anxiety Disorder through EEG Signals: A Machine Learning Approach for Triple Classification. Brain Sci. 2024, 14, 245. [Google Scholar] [CrossRef]
- Elgendi, M.; Menon, C. Machine Learning Ranks ECG as an Optimal Wearable Biosignal for Assessing Driving Stress. IEEE Access 2020, 8, 34362–34374. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, L.; Zheng, J.; Wu, D.; Li, H.; Shao, Y.; Shi, G.; Fu, W. A Hybrid EEG-Based Stress State Classification Model Using Multi-Domain Transfer Entropy and PCANet. Brain Sci. 2024, 14, 595. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, J.; Zhang, X.; Yang, Z. Dynamic Tracking of State Anxiety via Multi-Modal Data and Machine Learning. Front. Psychiatry 2022, 13, 757961. [Google Scholar] [CrossRef]
- Díaz, H.M.; Cid, F.M.; Otárola, J.; Rojas, R.; Alarcón, O.; Cañete, L. EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Comput. Sci. 2019, 162, 974–981. [Google Scholar] [CrossRef]
- Dai, R.; Lu, C.; Yun, L.; Lenze, E.; Avidan, M.; Kannampallil, T. Comparing stress prediction models using smartwatch physiological signals and participant self-reports. Comput. Methods Programs Biomed. 2021, 208, 106207. [Google Scholar] [CrossRef]
- Dahal, K.; Bogue-Jimenez, B.; Doblas, A. Global Stress Detection Framework Combining a Reduced Set of HRV Features and Random Forest Model. Sensors 2023, 23, 5220. [Google Scholar] [CrossRef]
- Cho, D.; Ham, J.; Oh, J.; Park, J.; Kim, S.; Lee, N.-K.; Lee, B. Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors 2017, 17, 2435. [Google Scholar] [CrossRef] [PubMed]
- Chorlian, D.B.; Porjesz, B.; Cohen, H.L. Measuring Electrical Activity of the Brain ERP Mapping in Alcohol Research. Alcohol Health Res. World 1995, 19, 315–320. [Google Scholar] [PubMed]
- Can, Y.S.; Chalabianloo, N.; Ekiz, D.; Ersoy, C. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Sensors 2019, 19, 1849. [Google Scholar] [CrossRef] [PubMed]
- Budzynski, T.H.; Budzynski, H.K.; Evans, J.R.; Abarbanel, A. Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Brezinova, V.; Kendell, R.E. Smooth pursuit eye movements of schizophrenics and normal people under stress. Br. J. Psychiatry 1977, 130, 59–63. [Google Scholar] [CrossRef]
- Bhavani, T.; Vamseekrishna, P.; Chakraborty, C.; Dwivedi, P. Stress Classification and Vital Signs Forecasting for IoT-Health Monitoring. IEEE/ACM Trans. Comput. Biol. Bioinform. 2024, 21, 652–659. [Google Scholar] [CrossRef]
- Bevilacqua, F.; Engström, H.; Backlund, P. Game-Calibrated and User-Tailored Remote Detection of Stress and Boredom in Games. Sensors 2019, 19, 2877. [Google Scholar] [CrossRef]
- Battiti, R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Trans. Neural Netw. 1994, 5, 537–550. [Google Scholar] [CrossRef]
- Banoczi, W.R. How some drugs affect the electroencephalogram (EEG). Am. J. Electroneurodiagn. Technol. 2005, 45, 118–129. [Google Scholar] [CrossRef]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef]
- Ko, K.; Jones, A.; Francis, D.; Robidoux, S.; McArthur, G. Physiological correlates of anxiety in childhood and adolescence: A systematic review and meta-analysis. Stress Health 2024, 40, e3388. [Google Scholar] [CrossRef]
- Awada, M.; Gerber, B.B.; Lucas, G.M.; Roll, S.C. Stress appraisal in the workplace and its associations with productivity and mood: Insights from a multimodal machine learning analysis. PLoS ONE 2024, 19, e0296468. [Google Scholar] [CrossRef]
- Attaran, N.; Puranik, A.; Brooks, J.; Mohsenin, T. Embedded Low-Power Processor for Personalized Stress Detection. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 2032–2036. [Google Scholar] [CrossRef]
- Arpaia, P.; Moccaldi, N.; Prevete, R.; Sannino, I.; Tedesco, A. A Wearable EEG Instrument for Real-Time Frontal Asymmetry Monitoring in Worker Stress Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8335–8343. [Google Scholar] [CrossRef]
- AlShorman, O.; Masadeh, M.; Bin Heyat, B.; Akhtar, F.; Almahasneh, H.; Ashraf, G.M.; Alexiou, A. Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. J. Integr. Neurosci. 2022, 21, 20. [Google Scholar] [CrossRef]
- Al-Shargie, F.; Al-Ameri, S.; Al-Hammadi, A.; Vladimirovna, S.D.; Tariq, U.; Al-Nashash, H. Detection of Astronaut’s Stress Levels During 240-Day Confinement using EEG Signals and Machine Learning. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, NSW, Australia, 24–27 July 2023. [Google Scholar] [CrossRef]
- Al-shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018, 56, 125–136. [Google Scholar] [CrossRef]
- Al-Ezzi, A.; Al-Shargabi, A.A.; Al-Shargie, F.; Zahary, A.T. Complexity Analysis of EEG in Patients with Social Anxiety Disorder Using Fuzzy Entropy and Machine Learning Techniques. IEEE Access 2022, 10, 39926–39938. [Google Scholar] [CrossRef]
- Al-Ezzi, A.; Yahya, N.; Kamel, N.; Faye, I.; Alsaih, K.; Gunaseli, E. Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity. IEEE Access 2021, 9, 86899–86913. [Google Scholar] [CrossRef]
- Akella, A.; Singh, A.K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C.S.; Gustin, S.M.; Maharaj, S.; Lees, T.; et al. Classifying Multi-Level Stress Responses from Brain Cortical EEG in Nurses and Non-Health Professionals Using Machine Learning Auto Encoder. IEEE J. Transl. Eng. Health Med. 2021, 9, 2200109. [Google Scholar] [CrossRef]






| Indicators | Units | Formula |
|---|---|---|
| mRR 1 | ms | |
| mHR 2 | Bpm | |
| SDRR 3 | ms | |
| SDHR 4 | Bpm | |
| CVRR 5 | - | |
| RMSSD 6 | ms | |
| pRR20 7 | % | |
| pRR50 8 | % |
| Research | Signal | Method | Accuracy% | Dataset Details |
|---|---|---|---|---|
| [74] (2012) | ECG | KNN | 94.58 | 10 healthy females, ECG at 1 kHz. |
| [76] (2018) | ECG, EDA, EEG | SVM | 86 | 15 participants (12 usable data), mean age 40.8. 250 Hz, 51.2 Hz, 512 Hz. |
| [68] (2020) | HRV, EDA | MLP | 82.59 | 6 females, 9 males, avg. age 28. 8-day data collection. |
| [67] (2022) | ECG, EDA | KNN | 94.4 | 18 participants, 10 min of data (6 stress, 4 relaxation). 800 Hz, 4 Hz. |
| [45] (2023) | EDA, PPG | Random Forest | 76.5 | Initial 3 min baseline rest, five tasks (10 min, 5 min, 3 min, unlimited, 1 min), 2 min rest post-task. Data collected using Empatica E4. |
| [45] (2023) | EDA, PPG | SVM | 74.5 | |
| [45] (2023) | EDA, PPG | Logistic Regression | 76.4 | |
| [42] (2024) (stress vs. relax) | HRV | Random Forest | 89.2 | 38 participants, 5 min HRV (PPG). WESAD: 15 participants, 700 Hz. SWELL: 25 participants, 2048 Hz ECG. |
| [42] (2024) (stress vs. relax) | HRV | Logistic Regression | 87.2 | |
| [42] (2024) (stress vs. neutral) | HRV | Random Forest | 61.2 | |
| [42] (2024) (stress vs. neutral) | HRV | Decision Trees | 59.5 | |
| [75] (2024) | EEG | LightGBM | 96.5 | 119 participants (39 controls, 80 GAD patients), age 22–68, diagnosed per DSM-5. EEG: 10 min resting-state data, eyes closed, awake, relaxed. 16 electrodes, 250 Hz sampling. |
| [75] (2024) | EEG | XGboost | 95.7 | |
| [75] (2024) | EEG | Catboost | 97.2 | |
| [75] (2022) | EEG | Random Forest | 80.13 | 26 participants (12 males), mean age 20 ± 1.3 years. 40-channel EEG system, 1024 Hz sampling. 60 s resting state, 30 s test duration, 20 s between tests. |
| [75] (2022) | EEG | SVM | 78.64 | |
| [75] (2022) | EEG | XGboost | 86.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Palacio, M.-I.; Bikki, T.; Toledo, C.; Ouyang, Y.; Li, Z.; Wang, Z.; Toledo, F.; Zeng, H.; Herrero, M.-T. Machine Learning, Physiological Signals, and Emotional Stress/Anxiety: Pitfalls and Challenges. Appl. Sci. 2025, 15, 11777. https://doi.org/10.3390/app152111777
Liu Y, Palacio M-I, Bikki T, Toledo C, Ouyang Y, Li Z, Wang Z, Toledo F, Zeng H, Herrero M-T. Machine Learning, Physiological Signals, and Emotional Stress/Anxiety: Pitfalls and Challenges. Applied Sciences. 2025; 15(21):11777. https://doi.org/10.3390/app152111777
Chicago/Turabian StyleLiu, Yu, María-Itatí Palacio, Taha Bikki, Cesar Toledo, Yu Ouyang, Zhongzheng Li, Zhengyi Wang, Francisco Toledo, Hong Zeng, and María-Trinidad Herrero. 2025. "Machine Learning, Physiological Signals, and Emotional Stress/Anxiety: Pitfalls and Challenges" Applied Sciences 15, no. 21: 11777. https://doi.org/10.3390/app152111777
APA StyleLiu, Y., Palacio, M.-I., Bikki, T., Toledo, C., Ouyang, Y., Li, Z., Wang, Z., Toledo, F., Zeng, H., & Herrero, M.-T. (2025). Machine Learning, Physiological Signals, and Emotional Stress/Anxiety: Pitfalls and Challenges. Applied Sciences, 15(21), 11777. https://doi.org/10.3390/app152111777

