Effects of Salicornia Extract on the Quality, Shelf-Life, and Functional Properties of Beef Patties During Refrigerated Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Salicornia Extract
2.3. Preparation of Beef Patties
2.4. pH and Water Activity
2.5. Antioxidant Activity
2.6. Lipid Oxidation and Microbial Quality
2.7. Color Stability (CIE L*a*b*)
2.8. Statistical Analysis
3. Results and Discussion
3.1. pH and Water Activity of Salicornia Extract-Enriched Beef Patties
3.2. Lipid Oxidation (TBARS and Peroxide Value) in Salicornia-Enriched Beef Patties
3.3. Antioxidant Capacity (TPC and DPPH) of Salicornia-Enriched Beef Patties
3.4. Microbiological Stability of Salicornia-Enriched Beef Patties
3.5. Color Stability (CIE L*a*b*) of Salicornia-Enriched Beef Patties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2019, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. Food Sci. Technol. 2010, 169, 114003. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2022, 98, 21–33. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Sebranek, J.G.; Sewalt, V.J.H.; Robbins, K.L.; Houser, T.A. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef]
- Carpenter, R.; O’Grady, M.N.; O’Callaghan, Y.C.; O’Brien, N.M.; Kerry, J.P. Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci. 2007, 76, 604–610. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Gullón, B.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants 2020, 9, 815. [Google Scholar] [CrossRef]
- Cao, Y.; Miao, L. Consumer perception of clean food labels. Br. Food J. 2022, 125, 433–448. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants 2021, 11, 60. [Google Scholar] [CrossRef]
- Lim, D.-G.; Choi, K.-S.; Kim, J.-J.; Nam, K.-C. Effects of Salicornia herbacea Powder on Quality Traits of Sun-Dried Hanwoo Beef Jerky during Storage. Korean J. Food Sci. Anim. Resour. 2013, 33, 205–213. [Google Scholar] [CrossRef]
- Kaisarova, A.A.; Shingisov, A.U.; Baranenko, D.A. Use of the Salicornia plant as a substitute for salt in the recipe for manufacturing meat chips. J. Almaty Technol. Univ. 2024, 145, 39–48. [Google Scholar] [CrossRef]
- Seong, P.-N.; Seo, H.-W.; Cho, S.-H.; Kim, Y.-S.; Kang, S.-M.; Kim, J.-H.; Kang, G.-H.; Park, B.-Y.; Moon, S.-S.; Hoa, V.-B. Potential use of glasswort powder as a salt replacer for production of healthier dry-cured ham products. Czech J. Food Sci. 2017, 35, 149–159. [Google Scholar] [CrossRef]
- Schilling, M.W.; Pham, A.J.; Dhowlaghar, N.; Campbell, Y.L.; Williams, J.B.; Xiong, Y.; Perez, S.M.; Kin, S. Effects of Rosemary (Rosmarinus officinalis L.) and Green Tea (Camellia sinensis L.) Extracts on Sensory Properties and Shelf-Life of Fresh Pork Sausage during Long-Term Frozen Storage and Subsequent Retail Display. Meat Muscle Biol. 2018, 2, 375–390. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Wenjiao, F.; Yunchuan, C.; Junxiu, S.; Yongkui, Z. Effects of tea polyphenol on quality and shelf life of pork sausages. J. Food Sci. Technol. 2013, 51, 191–195. [Google Scholar] [CrossRef]
- Tang, S.Z.; Ou, S.Y.; Huang, X.S.; Li, W.; Kerry, J.P.; Buckley, D.J. Effects of added tea catechins on colour stability and lipid oxidation in minced beef patties held under aerobic and modified atmospheric packaging conditions. J. Food Eng. 2006, 77, 248–253. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability. In Innovative Technologies for Food Preservation; Elsevier: Abingdon, UK, 2018; pp. 53–107. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Jo, H.-G.; Chilakala, R.; Kim, M.-J.; Sin, Y.-S.; Lee, K.-S.; Cheong, S.-H. Assessment of the Effects of Salt and Salicornia herbacea L. on Physiochemical, Nutritional, and Quality Parameters for Extending the Shelf-Life of Semi-Dried Mullets (Chelon haematocheilus). Foods 2022, 11, 597. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Mastrocola, D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods 2021, 10, 1833. [Google Scholar] [CrossRef]
- Dilek, N.M. Utilization of Spent Coffee Grounds as an Antioxidant Dietary Fiber in Beef Patties: Oxidative Stability, Texture Properties, and Molecular Docking. Food Sci. Nutr. 2025, 13, e70919. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Caro, I.; Mateo, J.; Kasaiyan, A.; Leite, A.; Vasconcelos, L.; Rodrigues, S.; Teixeira, A. Quality changes due to refrigerated storage in a traditional dry-cured pork belly salted with Salicornia herbaceaor KCl as partial substitutes for NaCl. J. Sci. Food Agric. 2024, 104, 8748–8755. [Google Scholar] [CrossRef]
- Jin, S.-K.; Cheng, H.; Kim, G.-D. Evaluating the feasibility of using Salicornia herbacea powder as a salt substitute in sausage production. Food Sci. Anim. Resour. 2024, 45, 1478–1490. [Google Scholar] [CrossRef]
- ISO 14502-1:2005; Determination of Substances Characteristic of Green and Black Tea—Part 1: Content of Total Polyphenols in Tea—Colorimetric Method Using Folin-Ciocalteu Reagent. International Organization for Standardization: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/31356.html (accessed on 3 August 2025).
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Association of Official Analytical Collaboration. Peroxide value of oils and fats 965.33. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Collaboration: Rockville, MD, USA, 2000; Available online: https://pdfcoffee.com/aoac-96533-peroxide-value-pdf-free.html (accessed on 4 August 2025).
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/71268.html (accessed on 4 August 2025).
- AOAC. AOAC 970.51-1974, Thiobarbituric Acid Value of Fats and Oils. In Official Methods of Analysis of AOAC International 2019, 21st ed.; Association of Official Analytical Collaboration International: Rockville, MD, USA, 1974; Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=350 (accessed on 5 August 2025).
- American Public Health Association. Compendium of Methods for the Microbiological Examination of Foods, 5th ed.; American Public Health Association: Washington, DC, USA, 2015; Available online: https://ajph.aphapublications.org/doi/book/10.2105/MBEF.0222 (accessed on 5 August 2025).
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 5 August 2025).
- ISO 17410:2019; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Psychrotrophic Microorganisms. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/67437.html (accessed on 7 August 2025).
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Products with Water Activity Greater Than 0.95. International Organization for Standardization: Geneva, Switzerland, 2008. Available online: https://webstore.ansi.org/standards/iso/ISO215272008?ad_acct=0000&gad_source=1&gad_campaignid=1041630464&gbraid=0AAAAAD_gXFVj1SPeG9TLG0OGDpM8wZCdy&gclid=CjwKCAjwmNLHBhA4EiwA3ts3mXfW_sdATgrvGQaMX9VDjkLWf1pfEKGMDJQ517lA1eumi6YzD3BZ-hoCbeUQAvD_BwE (accessed on 7 August 2025).
- Fairchild, F. CIE 15:2018 Colorimetry, 4th ed.; International Commission on Illumination: Vienna, Austria, 2013; Available online: https://www.semanticscholar.org/paper/CIE-015%3A2018-Colorimetry%2C-4th-Edition.-The-on-2019.-Fairchild/30ac68ced1770e6939edebb6255e19ff605c5f6f (accessed on 7 August 2025).
- Jiao, Y.; Hosseindoust, A.; Zhang, W.-L.; Kim, I.-H. Effects of Salicornia herbacea on Growth Performance, Meat Quality, Excreta Microbial Populations, and Noxious Gas Emissions in Broiler Chicks. J. Poult. Sci. 2019, 56, 44–51. [Google Scholar] [CrossRef]
- Tang, S.Z.; Kerry, J.P.; Sheehan, D.; Buckley, D.J.; Morrissey, P.A. Antioxidative effect of dietary tea catechins on lipid oxidation of long-term frozen stored chicken meat. Meat Sci. 2001, 57, 331–336. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Elsebaie, E.M.; Elsanat, S.Y.A.; Gouda, M.S.; Elnemr, K.M. Studies on antimicrobial and antioxidant efficiency of Salicornia herbacea (Salicornia fruticosa) herb juice and methanolic extract in minced beed. Int. J. Mod. Agric. 2013, 2, 72–80. [Google Scholar]
- Woo, S.-H.; Park, M.K.; Kang, M.-C.; Kim, T.-K.; Kim, Y.-J.; Shin, D.-M.; Ku, S.-K.; Park, H.; Lee, H.; Sung, J.-M.; et al. Effects of Natural Extract Mixtures on the Quality Characteristics of Sausages during Refrigerated Storage. Food Sci. Anim. Resour. 2024, 44, 146–164. [Google Scholar] [CrossRef]
- Ferreira, I.; Leite, A.; Vasconcelos, L.; Rodrigues, S.; Mateo, J.; Munekata, P.E.S.; Teixeira, A. Sodium Reduction in Traditional Dry-Cured Pork Belly Using Salicornia herbacea Powder (Salicornia herbacea) as a Partial NaCl Replacer. Foods 2022, 11, 3816. [Google Scholar] [CrossRef]
- Limongelli, F.; Crupi, P.; Clodoveo, M.L.; Corbo, F.; Muraglia, M. Overview of the Polyphenols in Salicornia: From Recovery to Health-Promoting Effect. Molecules 2022, 27, 7954. [Google Scholar] [CrossRef]
- Alfheeaid, H.A.; Raheem, D.; Ahmed, F.; Alhodieb, F.S.; Alsharari, Z.D.; Alhaji, J.H.; BinMowyna, M.N.; Saraiva, A.; Raposo, A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022, 11, 3402. [Google Scholar] [CrossRef]
- Labuza, T.P.; Altunakar, L. Water Activity Prediction and Moisture Sorption Isotherms. In Water Activity in Foods; Wiley: Hoboken, NJ, USA, 2007; pp. 109–154. [Google Scholar] [CrossRef]
- Rahman, M.S. Food Stability Beyond Water Activity and Glass Transtion: Macro-Micro Region Concept in the State Diagram. Int. J. Food Prop. 2009, 12, 726–740. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Švarc-Gajić, J.; Elhadef, K.; Ben Saad, R.; Brini, F.; Mnif, W.; Smaoui, S.; Ben Hsouna, A. The Essential Oil of Tunisian Halophyte Lobularia maritima: A Natural Food Preservative Agent of Ground Beef Meat. Life 2022, 12, 1571. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Garzoli, S.; Ben Saad, R.; Brini, F.; Mnif, W.; Kačániová, M.; Ben Hsouna, A. Biopreservative Effect of the Tunisian Halophyte Lobularia maritima Flavonoid Fraction, Used Alone and in Combination with Linalool in Stored Minced Beef Meat. Metabolites 2023, 13, 371. [Google Scholar] [CrossRef]
- Xia, C.; Wen, P.; Yuan, Y.; Yu, X.; Chen, Y.; Xu, H.; Cui, G.; Wang, J. Effect of roasting temperature on lipid and protein oxidation and amino acid residue side chain modification of beef patties. RSC Adv. 2021, 11, 21629–21641. [Google Scholar] [CrossRef]
- Yang, X.; Xu, B.; Lei, H.; Luo, X.; Zhu, L.; Zhang, Y.; Mao, Y.; Liang, R. Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging. J. Integr. Agric. 2022, 21, 2445–2455. [Google Scholar] [CrossRef]
- Zahid Md, A.; Seo, J.; Parvin, R.; Ko, J.; Park, J.-Y.; Yang, H.-S. Assessment of the Stability of Fresh Beef Patties with the Addition of Clove Extract during Frozen Storage. Food Sci. Anim. Resour. 2020, 40, 601–612. [Google Scholar] [CrossRef]
- Karaca, E.; Kılıç, B. Effects of rosemary and grape seed extracts, ascorbic acid and their combinations on oxidative stability and residual nitrite level in thermally processed ground beef during storage. J. Food Saf. Food Qual. 2023, 74, 158–164. [Google Scholar] [CrossRef]
- Pelaes Vital, A.C.; Guerrero, A.; Guarnido, P.; Cordeiro Severino, I.; Olleta, J.L.; Blasco, M.; Nunes do Prado, I.; Maggi, F.; Campo, M.; del Mar Campo, M. Effect of Active-Edible Coating and Essential Oils on Lamb Patties Oxidation during Display. Foods 2021, 10, 263. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Bhat, H.F.; Manzoor, M.; Abdi, G.; Aadil, R.M.; Hassoun, A.; Aït-Kaddour, A. Enhancing the lipid stability of foods of animal origin using edible packaging systems. Food Chem. X 2024, 21, 101185. [Google Scholar] [CrossRef]
- Pereira, A.; Lee, H.C.; Lammert, R., Jr.; Wolberg, C., Jr.; Ma, D.; Immoos, C.; Casassa, F.; Kang, I. Effects of red-wine grape pomace on the quality and sensory attributes of beef hamburger patty. Int. J. Food Sci. Technol. 2022, 57, 1814–1823. [Google Scholar] [CrossRef]
- Bayındır, H.; Kılıç, B.; Yıldız, M. In Vitro Antioxidant Potential of Various Plant Extracts and Application of the Extracts with the Highest Antioxidant Activity in Ground Beef for Enhancing the Quality and Shelf Life. Food Sci. Nutr. 2025, 13, e70709. [Google Scholar] [CrossRef] [PubMed]
- Harlina, P.W.; Nawaz, A.; Sabrina, S.A.; Nur’isma, E.A.; Geng, F.; Shahzad, R.; Rafi, M.; Maritha, V.; Yudhistira, B.; Al-Baarri, A.N.; et al. Lipidomics analysis of phospholipid profiles and oxidative stability in pan-fried beef patties incorporating sacha inchi leaf extracts. Sci. Rep. 2025, 15, 28233. [Google Scholar] [CrossRef]
- Angeletti, B.; Trinh, D.T.; Dia, V.; Burns, S.; Chester, M.A.; Bergee, R.E.; Wang, T. Hempseed Hydrolysates Exhibit Antioxidant Activity in Meat Systems. Foods 2025, 14, 1728. [Google Scholar] [CrossRef]
- Karan, S.; Turan, C.; Sangun, M.K.; Eliuz, E.A.E. Bioactive Compounds and Antimicrobial Activity of Salicornia herbacea. Indian J. Pharm. Sci. 2021, 83, 229–237. [Google Scholar] [CrossRef]
- Castagna, A.; Mariottini, G.; Gabriele, M.; Longo, V.; Souid, A.; Dauvergne, X.; Magné, C.; Foggi, G.; Conte, G.; Santin, M.; et al. Nutritional Composition and Bioactivity of Salicornia europaea L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils. Horticulturae 2022, 8, 828. [Google Scholar] [CrossRef]
- Rashidaie Abandansarie, S.S.; Ariaii, P.; Charmchian Langerodi, M. Effects of encapsulated rosemary extract on oxidative and microbiological stability of beef meat during refrigerated storage. Food Sci. Nutr. 2019, 7, 3969–3978. [Google Scholar] [CrossRef]
- Yoder, L.; VanOverbeke, D.L.; Ramanathan, R.; Mafi, G.G. Effects of Rosemary and Green Tea Antioxidants on Ground Beef Patties in Traditional and Modified Atmosphere Packaging. Meat Muscle Biol. 2021, 5, 25. [Google Scholar] [CrossRef]
- Mizi, L.; Cofrades, S.; Bou, R.; Pintado, T.; López-Caballero, M.E.; Zaidi, F.; Jiménez-Colmenero, F. Antimicrobial and antioxidant effects of combined high pressure processing and sage in beef burgers during prolonged chilled storage. Innov. Food Sci. Emerg. Technol. 2019, 51, 32–40. [Google Scholar] [CrossRef]
- Fredsgaard, M.; Kaniki, S.E.K.; Antonopoulou, I.; Chaturvedi, T.; Thomsen, M.H. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1 2023, HBV, HCV, and HIV: A Review. Molecules 2023, 28, 5312. [Google Scholar] [CrossRef]
- Michalak, I.; Tiwari, R.; Dhawan, M.; Alagawany, M.; Farag, M.R.; Sharun, K.; Emran, T.B.; Dhama, K. Antioxidant effects of seaweeds and their active compounds on animal health and production—A review. Vet. Q. 2022, 42, 48–67. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, P.L.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- Mrázková, M.; Sumczynski, D.; Orsavová, J. Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements. Antioxidants 2023, 12, 962. [Google Scholar] [CrossRef]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Xu, Q.-D.; Yu, Z.-L.; He, Q.; Zeng, W.-C. Migration of phenolic compounds in meat during marinating process: Action rule, mass transfer and mechanism. Food Sci. Technol. 2023, 185, 115192. [Google Scholar] [CrossRef]
- Günal-Köroğlu, D.; Turan, S.; Capanoglu, E. Protein-phenolic interactions in lentil and wheat crackers with onion skin phenolics: Effects of processing and in vitro gastrointestinal digestion. Food Funct. 2023, 14, 3538–3551. [Google Scholar] [CrossRef]
- Masoumi, B.; Tabibiazar, M.; Golchinfar, Z.; Mohammadifar, M.; Hamishehkar, H. A review of protein-phenolic acid interaction: Reaction mechanisms and applications. Crit. Rev. Food Sci. Nutr. 2022, 64, 3539–3555. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Muzolf-Panek, M. Predictive Modeling of Changes in TBARS in the Intramuscular Lipid Fraction of Raw Ground Beef Enriched with Plant Extracts. Antioxidants 2021, 10, 736. [Google Scholar] [CrossRef]
- Paglarini, C.S.; Vidal, V.A.S.; Neri-Numa, I.A.; Pastore, G.M.; Pollonio, M.A.R. Effect of commercial plant extracts on the oxidative stability of mechanically deboned poultry meat during chilled storage. Food Res. Int. 2023, 164, 112358. [Google Scholar] [CrossRef] [PubMed]
- Muzolf-Panek, M.; Zaworska-Zakrzewska, A.; Czech, A.; Lisiak, D.; Kasprowicz-Potocka, M. Antioxidative Status and Meat Quality Traits as Affected by Dietary Supplementation of Finishing Pigs with Natural Phenolics. Antioxidants 2024, 13, 1362. [Google Scholar] [CrossRef]
- Quitral, V.; Jofré, M.J.; Rojas, N.; Romero, N.; Valdés, I. Algas marinas como ingrediente funcional en productos cárnicos. Rev. Chil. Nutr. 2019, 46, 181–189. [Google Scholar] [CrossRef]
- Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Lim, Y.-B.; Ham, Y.-K.; Yeo, E.-J.; Chang, S.-J.; Choi, Y.-S.; Kim, C.-J. Effect of Salicornia herbacea (Salicornia herbacea L.) on the texture of frankfurters. Meat Sci. 2014, 97, 513–517. [Google Scholar] [CrossRef]
- Matos, J.; Cardoso, C.; Serralheiro, M.L.; Bandarra, N.M.; Afonso, C. Seaweed bioactives potential as nutraceuticals and functional ingredients: A review. J. Food Compos. Anal. 2024, 133, 106453. [Google Scholar] [CrossRef]
- del Nobile, M.A.; Conte, A.; Cannarsi, M.; Sinigaglia, M. Strategies for prolonging the shelf life of minced beef patties. J. Food Saf. 2009, 29, 14–25. [Google Scholar] [CrossRef]
- Parafati, L.; Palmeri, R.; Trippa, D.; Restuccia, C.; Fallico, B. Quality Maintenance of Beef Burger Patties by Direct Addiction or Encapsulation of a Prickly Pear Fruit Extract. Front. Microbiol. 2019, 10, 1760. [Google Scholar] [CrossRef]
- Sallam, K.; Samejima, K. Microbiological and chemical quality of ground beef treated with sodium lactate and sodium chloride during refrigerated storage. LWT-Food Sci. Technol. 2004, 37, 865–871. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J. Psychrotrophic Bacteria Threatening the Safety of Animal-Derived Foods: Characteristics, Contamination, and Control Strategies. Food Sci. Anim. Resour. 2024, 44, 1011–1027. [Google Scholar] [CrossRef]
- Ercolini, D.; Russo, F.; Nasi, A.; Ferranti, P.; Villani, F. Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef. Appl. Environ. Microbiol. 2009, 75, 1990–2001. [Google Scholar] [CrossRef]
- Rysová, J.; Šmídová, Z. Effect of Salt Content Reduction on Food Processing Technology. Foods 2021, 10, 2237. [Google Scholar] [CrossRef]
- Pérez, M.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Cabral, E.M.; Oliveira, M.; Mondala, J.R.M.; Curtin, J.; Tiwari, B.K.; Garcia-Vaquero, M. Antimicrobials from Seaweeds for Food Applications. Mar. Drugs 2021, 19, 211. [Google Scholar] [CrossRef]
- Lim, Y.-B.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Jang, S.-J.; Lee, C.-H.; He, F.-Y.; Choi, Y.-S.; et al. Effects of Salicornia herbacea (Salicornia herbacea L.) Hydrates on Quality Characteristics of Reduced-salt, Reduced-fat Frankfurters. Korean J. Food Sci. Anim. Resour. 2015, 35, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Yeo, I.-J.; Jeong, T.-J.; Choi, Y.-S.; Kim, C.-J. Effects of Red and Green Glassworts (Salicornia herbacea L.) on Physicochemical and Textural Properties of Reduced-salt Cooked Sausages. Korean J. Food Sci. Anim. Resour. 2014, 34, 378–386. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Cofrades, S.; López-López, I.; Solas, M.T.; Bravo, L.; Jiménez-Colmenero, F. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci. 2008, 79, 767–776. [Google Scholar] [CrossRef]
- ISO 11664-4:2019; Colorimetry—Part 4: CIE 1976 Lab* Colour Space. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://webstore.ansi.org/standards/iso/isociefdis116642022-2468876?ad_acct=0000&gad_source=1&gad_campaignid=1041630464&gbraid=0AAAAAD_gXFVj1SPeG9TLG0OGDpM8wZCdy&gclid=CjwKCAjwmNLHBhA4EiwA3ts3mbWxVW2clUZNangQIcjg-z8T_r8e2bH12wl-PuNs-q5MKx_k4PJ_7BoCYtIQAvD_BwE (accessed on 9 August 2025).
- Melo, G.; Paiva, J.; Gonçalves, C.; Saraiva, S.; Faria, M.; Silva-Santos, T.; Moura-Alves, M.; García-Díez, J.; de Almeida, J.M.M.M.; Rocha, H.; et al. Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat. Resources 2025, 14, 153. [Google Scholar] [CrossRef]
| Ingredient (%) | T0 (Control) | T1 | T2 | T3 |
|---|---|---|---|---|
| Beef | 75.4 | 74.9 | 74.4 | 73.9 |
| Onion | 10.0 | 10.0 | 10.0 | 10.0 |
| Carrot | 10.0 | 10.0 | 10.0 | 10.0 |
| Mustard | 2.0 | 2.0 | 2.0 | 2.0 |
| Starch | 2.0 | 2.0 | 2.0 | 2.0 |
| Curing mix | 0.6 | 0.6 | 0.6 | 0.6 |
| Salicornia extract | 0.0 | 0.5 | 1.0 | 1.5 |
| Total | 100.0 | 100.0 | 100.0 | 100.0 |
| Group | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
|---|---|---|---|---|---|---|
| pH | ||||||
| T0 | 6.22 ± 0.03 Ba | 6.17 ± 0.03 Bb | 6.10 ± 0.04 Cc | 6.03 ± 0.03 Cd | 5.95 ± 0.04 Ce | 5.86 ± 0.03 Cf |
| T1 | 6.24 ± 0.03 Ba | 6.22 ± 0.02 ABa | 6.19 ± 0.03 Bb | 6.14 ± 0.03 Bc | 6.08 ± 0.03 Bd | 6.02 ± 0.04 Be |
| T2 | 6.28 ± 0.03 Aa | 6.27 ± 0.03 Aa | 6.25 ± 0.02 Aa | 6.21 ± 0.03 Ab | 6.17 ± 0.03 Ac | 6.12 ± 0.03 Ad |
| T3 | 6.32 ± 0.02 Aa | 6.31 ± 0.02 Aa | 6.29 ± 0.02 Aa | 6.25 ± 0.02 Ab | 6.21 ± 0.02 Ac | 6.16 ± 0.02 Ad |
| a.w | ||||||
| T0 | 0.878 ± 0.003 Aa | 0.867 ± 0.003 Ab | 0.856 ± 0.003 Bc | 0.846 ± 0.003 Cd | 0.836 ± 0.004 Ce | 0.828 ± 0.003 Cf |
| T1 | 0.876 ± 0.003 Aa | 0.870 ± 0.003 Aab | 0.860 ± 0.003ABbc | 0.850 ± 0.003 Bcd | 0.842 ± 0.003 Bde | 0.835 ± 0.003 Be |
| T2 | 0.878 ± 0.003 Aa | 0.874 ± 0.003 Aa | 0.866 ± 0.003 Ab | 0.858 ± 0.003 Ac | 0.850 ± 0.003 Ad | 0.843 ± 0.003 Ae |
| T3 | 0.876 ± 0.002 Aa | 0.876 ± 0.002 Aa | 0.870 ± 0.002 Ab | 0.862 ± 0.002 Ac | 0.855 ± 0.002 Ad | 0.847 ± 0.002 Ae |
| Group | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
|---|---|---|---|---|---|---|
| TBARS (mg MDA/kg) | ||||||
| T0 | 0.47 ± 0.02 Ca | 0.71 ± 0.03 Cb | 0.98 ± 0.04 Cc | 1.27 ± 0.05 Cd | 1.60 ± 0.06 Ce | 1.98 ± 0.06 Cf |
| T1 | 0.46 ± 0.02 Ca | 0.63 ± 0.03 BCb | 0.84 ± 0.04 BCc | 1.07 ± 0.04 BCd | 1.31 ± 0.05 BCe | 1.56 ± 0.05 BCf |
| T2 | 0.45 ± 0.02 Ba | 0.57 ± 0.02 Bb | 0.74 ± 0.03 Bc | 0.92 ± 0.03 Bd | 1.11 ± 0.04 Be | 1.31 ± 0.04 Bf |
| T3 | 0.44 ± 0.01 Aa | 0.52 ± 0.02 Ab | 0.66 ± 0.03 Ac | 0.82 ± 0.03 Ad | 0.98 ± 0.03 Ae | 1.15 ± 0.03 Af |
| PV (meq O2/kg) | ||||||
| T0 | 1.22 ± 0.05 Ba | 1.88 ± 0.06 Bb | 2.58 ± 0.08 Bc | 3.35 ± 0.09 Bd | 4.12 ± 0.11 Be | 4.95 ± 0.12 Bf |
| T1 | 1.20 ± 0.04 Ba | 1.74 ± 0.05 ABb | 2.34 ± 0.07 ABc | 2.95 ± 0.08 ABd | 3.60 ± 0.09 ABe | 4.16 ± 0.10 ABf |
| T2 | 1.17 ± 0.04 Aa | 1.63 ± 0.05 Ab | 2.08 ± 0.06 Ac | 2.64 ± 0.07 Ad | 3.18 ± 0.08 Ae | 3.72 ± 0.09 Af |
| T3 | 1.16 ± 0.03 Aa | 1.53 ± 0.04 Ab | 1.96 ± 0.06 Ac | 2.43 ± 0.07 Ad | 2.90 ± 0.08 Ae | 3.30 ± 0.08 Af |
| Group | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
|---|---|---|---|---|---|---|
| TPC (mg GAE/100 g) | ||||||
| T0 | 11.0 ± 0.3 Ca | 10.1 ± 0.3 Cb | 9.2 ± 0.3 Cc | 8.3 ± 0.3 Cd | 7.5 ± 0.2 Ce | 6.8 ± 0.2 Cf |
| T1 | 16.8 ± 0.4 Ba | 15.9 ± 0.4 Bb | 14.9 ± 0.4 Bc | 13.8 ± 0.3 Bd | 12.8 ± 0.3 Be | 11.9 ± 0.3 Bf |
| T2 | 22.9 ± 0.5 Aa | 21.7 ± 0.5 Ab | 20.5 ± 0.4 Ac | 19.1 ± 0.4 Ad | 17.8 ± 0.3 Ae | 16.6 ± 0.3 Af |
| T3 | 27.6 ± 0.6 Aa | 26.3 ± 0.5 Ab | 24.9 ± 0.5 Ac | 23.4 ± 0.4 Ad | 22.0 ± 0.4 Ae | 20.6 ± 0.4 Af |
| DPPH inhibition (%) | ||||||
| T0 | 27.5 ± 0.8 Ca | 24.6 ± 0.7 Cb | 21.8 ± 0.6 Cc | 19.2 ± 0.5 Cd | 16.7 ± 0.6 Ce | 14.5 ± 0.5 Cf |
| T1 | 41.5 ± 0.9 Ba | 38.4 ± 0.8 Bb | 35.4 ± 0.7 Bc | 32.3 ± 0.6 Bd | 29.3 ± 0.7 Be | 26.4 ± 0.6 Bf |
| T2 | 55.0 ± 1.0 Aa | 51.5 ± 0.9 Ab | 48.1 ± 0.8 Ac | 44.6 ± 0.9 Ad | 41.0 ± 0.8 Ae | 37.6 ± 0.7 Af |
| T3 | 65.2 ± 1.1 Aa | 61.6 ± 1.0 Ab | 58.0 ± 0.9 Ac | 54.0 ± 0.9 Ad | 49.6 ± 0.8 Ae | 45.8 ± 0.8 Af |
| Group | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
|---|---|---|---|---|---|---|
| Standard plate count (SPC, log CFU/g) | ||||||
| T0 | 2.52 ± 0.10 Ba | 2.90 ± 0.11 Bb | 3.60 ± 0.12 Bc | 4.30 ± 0.10 Bd | 5.18 ± 0.09 Be | 6.20 ± 0.12 Bf |
| T1 | 2.47 ± 0.09 BCa | 2.72 ± 0.12 BCb | 3.18 ± 0.10 Cc | 3.90 ± 0.11 Cd | 4.55 ± 0.10 Ce | 5.98 ± 0.11 Cf |
| T2 | 2.41 ± 0.11 ABa | 2.60 ± 0.10 BCb | 3.02 ± 0.09 Cc | 3.68 ± 0.10 Cd | 4.18 ± 0.08 Ce | 5.22 ± 0.09 Bf |
| T3 | 2.40 ± 0.12 Aa | 2.51 ± 0.09 Ab | 2.90 ± 0.10 Ac | 3.45 ± 0.09 Ad | 3.86 ± 0.10 Ae | 4.88 ± 0.11 Af |
| Psychrotrophic counts (log CFU/g) | ||||||
| T0 | ND | ND | ND | 1.20 ± 0.08 Ac | 1.52 ± 0.09 Ab | 2.00 ± 0.10 Aa |
| T1 | ND | ND | ND | 1.16 ± 0.07 ABc | 1.38 ± 0.08 Bb | 1.86 ± 0.09 Ba |
| T2 | ND | ND | ND | ND | 1.14 ± 0.07 Cb | 1.68 ± 0.08 Ca |
| T3 | ND | ND | ND | ND | ND | 1.46 ± 0.08 Da |
| Yeast and mold counts (log CFU/g) | ||||||
| T0 | ND | ND | ND | ND | 1.45 ± 0.07 Ab | 1.74 ± 0.09 Aa |
| T1 | ND | ND | ND | ND | 1.29 ± 0.06 Bb | 1.58 ± 0.08 Ba |
| T2 | ND | ND | ND | ND | 1.19 ± 0.07 BCb | 1.52 ± 0.09 Ba |
| T3 | ND | ND | ND | ND | 1.13 ± 0.06 Cb | 1.44 ± 0.08 Ca |
| Group | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
|---|---|---|---|---|---|---|
| L* (lightness) | ||||||
| T0 | 45.2 ± 0.4 Aa | 46.3 ± 0.4 Bb | 47.3 ± 0.5 Bc | 48.3 ± 0.5 Bd | 49.3 ± 0.5 Be | 50.1 ± 0.5 Bf |
| T1 | 45.1 ± 0.4 Aa | 45.9 ± 0.4 ABb | 46.8 ± 0.4 ABc | 47.6 ± 0.5 ABd | 48.3 ± 0.5 ABe | 49.0 ± 0.5 ABf |
| T2 | 45.0 ± 0.4 Aa | 45.6 ± 0.4 Ab | 46.2 ± 0.4 Ac | 46.8 ± 0.4 Ad | 47.3 ± 0.4 Ae | 47.8 ± 0.4 Af |
| T3 | 45.0 ± 0.4 Aa | 45.5 ± 0.4 Ab | 46.0 ± 0.4 Ac | 46.4 ± 0.4 Ad | 46.9 ± 0.4 Ae | 47.3 ± 0.4 Af |
| a* (redness) | ||||||
| T0 | 16.5 ± 0.3 Ba | 15.2 ± 0.3 Cb | 13.8 ± 0.3 Cc | 12.1 ± 0.3 Cd | 10.7 ± 0.3 Ce | 9.8 ± 0.3 Cf |
| T1 | 16.6 ± 0.3 ABa | 15.7 ± 0.3 Bb | 14.8 ± 0.3 Bc | 13.6 ± 0.3 Bd | 12.5 ± 0.3 Be | 11.5 ± 0.3 Bf |
| T2 | 16.5 ± 0.3 ABa | 16.0 ± 0.3 ABb | 15.4 ± 0.3 ABc | 14.6 ± 0.3 ABd | 13.8 ± 0.3 ABe | 13.0 ± 0.3 ABf |
| T3 | 16.4 ± 0.3 Aa | 16.1 ± 0.3 Ab | 15.7 ± 0.3 Ac | 15.0 ± 0.3 Ad | 14.2 ± 0.3 Ae | 13.6 ± 0.3 Af |
| b* (yellowness) | ||||||
| T0 | 12.2 ± 0.3 Aa | 12.9 ± 0.3 Bb | 13.7 ± 0.3 Bc | 14.6 ± 0.3 Bd | 15.3 ± 0.3 Be | 16.0 ± 0.3 Bf |
| T1 | 12.1 ± 0.3 Aa | 12.6 ± 0.3 ABb | 13.2 ± 0.3 ABc | 13.9 ± 0.3 ABd | 14.5 ± 0.3 ABe | 15.1 ± 0.3 ABf |
| T2 | 12.1 ± 0.3 Aa | 12.4 ± 0.3 Ab | 12.8 ± 0.3 Ac | 13.3 ± 0.3 Ad | 13.7 ± 0.3 Ae | 14.1 ± 0.3 Af |
| T3 | 12.0 ± 0.3 Aa | 12.3 ± 0.3 Ab | 12.6 ± 0.3 Ac | 12.9 ± 0.3 Ad | 13.2 ± 0.3 Ae | 13.6 ± 0.3 Af |
| ΔE*ab (vs. day 0) | ||||||
| T0 | 0.00 ± 0.00 Ca | 1.84 ± 0.08 Cb | 3.73 ± 0.10 Cc | 5.89 ± 0.11 Cd | 7.75 ± 0.12 Ce | 9.13 ± 0.12 Cf |
| T1 | 0.00 ± 0.00 BCa | 1.30 ± 0.07 BCb | 2.71 ± 0.09 BCc | 4.30 ± 0.10 BCd | 5.73 ± 0.11 BCe | 7.09 ± 0.11 BCf |
| T2 | 0.00 ± 0.00 ABa | 0.84 ± 0.06 ABb | 1.77 ± 0.07 ABc | 2.88 ± 0.08 ABd | 3.89 ± 0.09 ABe | 4.91 ± 0.10 ABf |
| T3 | 0.00 ± 0.00 Aa | 0.66 ± 0.05 Ab | 1.36 ± 0.06 Ac | 2.17 ± 0.07 Ad | 3.14 ± 0.08 Ae | 3.96 ± 0.09 Af |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokysheva, G.; Konysbayeva, D.; Myrzabayeva, M.; Ospankulova, G.; Dairova, K.; Makangali, K. Effects of Salicornia Extract on the Quality, Shelf-Life, and Functional Properties of Beef Patties During Refrigerated Storage. Appl. Sci. 2025, 15, 11751. https://doi.org/10.3390/app152111751
Tokysheva G, Konysbayeva D, Myrzabayeva M, Ospankulova G, Dairova K, Makangali K. Effects of Salicornia Extract on the Quality, Shelf-Life, and Functional Properties of Beef Patties During Refrigerated Storage. Applied Sciences. 2025; 15(21):11751. https://doi.org/10.3390/app152111751
Chicago/Turabian StyleTokysheva, Gulzhan, Damilya Konysbayeva, Malika Myrzabayeva, Gulnazym Ospankulova, Kalamkas Dairova, and Kadyrzhan Makangali. 2025. "Effects of Salicornia Extract on the Quality, Shelf-Life, and Functional Properties of Beef Patties During Refrigerated Storage" Applied Sciences 15, no. 21: 11751. https://doi.org/10.3390/app152111751
APA StyleTokysheva, G., Konysbayeva, D., Myrzabayeva, M., Ospankulova, G., Dairova, K., & Makangali, K. (2025). Effects of Salicornia Extract on the Quality, Shelf-Life, and Functional Properties of Beef Patties During Refrigerated Storage. Applied Sciences, 15(21), 11751. https://doi.org/10.3390/app152111751

