Microbial Spoilage Dynamics, Free Amino Acid Profile Alterations, and Biogenic Amine Accumulation in Beef Under Different Packaging Systems During Extended Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Beef Preparation and Packaging Conditions
2.2. Beef Storage and Experimental Schedule
2.3. Methods
2.3.1. Determination of O2 and CO2 Content in MAP Packages
2.3.2. Microbiological Quality Evaluation
2.3.3. Determination of Free Amino Acid and Biogenic Amine Profiles
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in Gas Composition in MAP Packages During Beef Storage
3.2. Changes in Microbiological Quality During Beef Storage
3.3. Changes in Free Amino Acid Profile During Beef Storage
3.4. Accumulation of Biogenic Amines in Beef During Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexi, N.; Thamsborg, K.; Hvam, J.; Lund, B.W.; Nsubuga, L.; De Oliveira Hansen, R.M.; Byrne, D.V.; Leisner, J.J. Novel cadaverine non-invasive biosensor technology for the prediction of shelf life of modified atmosphere packed pork cutlets. Meat Sci. 2022, 192, 108876. [Google Scholar] [CrossRef]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- FAO. The state of food and agriculture 2019. In Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Guidance on date marking and related food information: Part 1 (Date Marking). EFS2 2020, 18, e06306. [Google Scholar] [CrossRef]
- Tarlak, F. The use of predictive microbiology for the prediction of the shelf life of food products. Foods 2023, 12, 4461. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A review on food spoilage mechanisms, food borne diseases and commercial aspects of food preservation and processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Luong, N.-D.M.; Coroller, L.; Zagorec, M.; Membré, J.-M.; Guillou, S. Spoilage of chilled fresh meat products during storage: A quantitative analysis of literature data. Microorganisms 2020, 8, 1198. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.-S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, W.; Łukasiewicz-Mierzejewska, M.; Damaziak, K.; Bień, D. Biogenic amines in poultry meat and poultry products: Formation, appearance, and methods of reduction. Animals 2022, 12, 1577. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Prats-Moya, M.S. Free amino acids and biogenic amines in Alicante Monastrell wines. Food Chem. 2012, 135, 1511–1519. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Q.; Xu, J.; Sun, F.; Liu, H.; Kong, B. Effects of modified atmosphere packaging with various CO2 concentrations on the bacterial community and shelf-life of smoked chicken legs. Foods 2022, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Abril, B.; Bou, R.; García-Pérez, J.V.; Benedito, J. Role of enzymatic reactions in meat processing and use of emerging technologies for process intensification. Foods 2023, 12, 1940. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Li, H.; Jia, D.; Fu, L.; Chen, J.; Zhang, D.; Wang, Y. Biogenic amines detection in meat and meat products: The mechanisms, applications, and future trends. J. Future Foods 2024, 4, 21–36. [Google Scholar] [CrossRef]
- Thamsborg, K.K.M.; Lund, B.W.; Byrne, D.V.; Leisner, J.J.; Alexi, N. Cadaverine as a potential spoilage indicator in skin-packed beef and modified-atmosphere-packed beef. Foods 2023, 12, 4489. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.; Trindade, M.A.; Palu, A.F.; Baldin, J.C.; De Lima, C.G.; De Alvarenga Freire, M.T. Modified atmosphere packaging for lamb meat: Evaluation of gas composition in the extension of shelf life and consumer acceptance. J. Food Sci. Technol. 2018, 55, 3547–3555. [Google Scholar] [CrossRef]
- Lu, X.; Cornforth, D.P.; Carpenter, C.E.; Zhu, L.; Luo, X. Effect of oxygen concentration in modified atmosphere packaging on color changes of the M. longissimus thoraces et lumborum from dark cutting beef carcasses. Meat Sci. 2020, 161, 107999. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein oxidation in muscle foods: A comprehensive review. Antioxidants 2021, 11, 60. [Google Scholar] [CrossRef]
- Bonny, D.; Li, X.; Li, Z.; Li, M.; Du, M.; Gao, L.; Zhang, D. Colour stability and lipid oxidation of beef longissimus lumborum under different packaging conditions. Pol. J. Food Nutr. Sci. 2017, 67, 275–281. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, W.; Mao, Y.; Zhang, Y.; Li, K.; Luo, X.; Yang, X. Effects of CO2 on the physicochemical, microbial, and sensory properties of pork patties packaged under optimized O2 levels. Meat Sci. 2024, 209, 109422. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Cegiełka, A.; Adamczak, L.; Florowski, T.; Pietrzak, D.; Bryła, M.; Świder, O. Changes in the microbiological quality and content of biogenic amines in chicken fillets packed using various techniques and stored under different conditions. Food Microbiol. 2022, 102, 103920. [Google Scholar] [CrossRef]
- Chmiel, M.; Hać-Szymańczuk, E.; Dasiewicz, K.; Szymańska, I.; Adamczak, L.; Cegiełka, A.; Pietrzak, D.; Florowski, T.; Reder, K.; Bryła, M. Microbiological and physicochemical quality changes of pork ham slices packed using various methods during long-term refrigerated storage. LWT-Food Sci. Technol. 2025, 225, 117933. [Google Scholar] [CrossRef]
- PN-EN ISO 6887-2:2017; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension, and Decimal Dilutions for Microbiological Examination—Part 2: Specific Rules for the Preparation of Meat and Meat Products. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 4833-2:2013-12; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 Degrees C by the Surface Plating Technique. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-ISO 17410:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Psychrotrophic Microorganisms. Polish Committee for Standardization: Warsaw, Poland, 2004.
- PN-ISO 15214:2002; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Plate Method at 30 °C. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-EN ISO 21528-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 1: Detection of Enterobacteriaceae. Polish Committee for Standardization: Warsaw, Poland, 2017.
- Nowak, A.; Rygala, A.; Oltuszak-Walczak, E.; Walczak, P. The prevalence and some metabolic traits of Brochothrix thermosphacta in meat and meat products packaged in different ways. J. Sci. Food Agric. 2012, 92, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 13720:2010; Meat and Meat Products-Enumeration of Presumptive Pseudomonas sp. Polish Committee for Standardization: Warsaw, Poland, 2010.
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Adamczak, L.; Florowski, T.; Pietrzak, D.; Cegiełka, A.; Bryła, M. Time evolution of microbiological quality and content of volatile compounds in chicken fillets packed using various techniques and stored under different conditions. Poult. Sci. 2020, 99, 1107–1116. [Google Scholar] [CrossRef]
- Cegiełka, A.; Piątkowska, J.; Chmiel, M.; Hać-Szymańczuk, E.; Kalisz, S.; Adamczak, L. Changes in quality features of pork burgers prepared with chokeberry pomace during storage. Appl. Sci. 2025, 15, 2337. [Google Scholar] [CrossRef]
- Świder, O.; Roszko, M.Ł.; Wójcicki, M.; Szymczyk, K. Biogenic amines and free amino acids in traditional fermented vegetables—Dietary risk evaluation. J. Agric. Food Chem. 2020, 68, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef]
- Feddern, V.; Mazzuco, H.; Fonseca, F.N.; De Lima, G.J.M.M. A review on biogenic amines in food and feed: Toxicological aspects, impact on health and control measures. Anim. Prod. Sci. 2019, 59, 608. [Google Scholar] [CrossRef]
- Algahtani, F.D.; Morshdy, A.E.; Hussein, M.A.; Abouelkheir, E.S.; Adeboye, A.; Valentine, A.; Elabbasy, M.T. Biogenic amines and aflatoxins in some imported meat products: Incidence, occurrence, and public health impacts. J. Food Qual. 2020, 2020, 718179. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Liang, R.; Zhu, L.; Mao, Y.; Dong, P.; Hopkins, D.L.; Luo, X.; Zhang, Y. The response of bacterial communities to carbon dioxide in high-oxygen modified atmosphere packaged beef steaks during chilled storage. Food Res. Int. 2022, 151, 110872. [Google Scholar] [CrossRef]
- Guillard, V.; Couvert, O.; Stahl, V.; Hanin, A.; Denis, C.; Huchet, V.; Chaix, E.; Loriot, C.; Vincelot, T.; Thuault, D. Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere. Food Microbiol. 2016, 58, 43–55. [Google Scholar] [CrossRef]
- Conte-Junior, C.A.; Monteiro, M.L.G.; Patrícia, R.; Mársico, E.T.; Lopes, M.M.; Alvares, T.S.; Mano, S.B. The effect of different packaging systems on the shelf life of refrigerated ground beef. Foods 2020, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Zakrys-Waliwander, P.I.; O’Sullivan, M.G.; Walsh, H.; Allen, P.; Kerry, J.P. Sensory comparison of commercial low and high oxygen modified atmosphere packed sirloin beef steaks. Meat Sci. 2011, 88, 198–202. [Google Scholar] [CrossRef]
- Latou, E.; Mexis, S.F.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT-Food Sci. Technol. 2014, 55, 263–268. [Google Scholar] [CrossRef]
- Lázaro, C.A.; Conte-Júnior, C.A.; Canto, A.C.; Monteiro, M.L.G.; Costa-Lima, B.; Cruz, A.G.D.; Mársico, E.T.; Franco, R.M. Biogenic amines as bacterial quality indicators in different poultry meat species. LWT-Food Sci. Technol. 2015, 60, 15–21. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.; Kim, H.J.; Song, S.O.; Song, Y.H.; Jang, A. Evaluation of the microbiological status of raw beef in Korea: Considering the suitability of aerobic plate count guidelines. Food Sci. Anim. Resour. 2018, 38, 43–51. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Duan, X.; Li, K.; Cheng, H.; Sun, G.; Luo, X.; Hopkins, D.L.; Holman, B.W.B.; Zhang, Y.; et al. Investigation of oxygen packaging to maintain beef color stability and microbiology safety after periods of long-term superchilled storage. Meat Sci. 2024, 215, 109548. [Google Scholar] [CrossRef] [PubMed]
- Sai-Ut, S.; Indriani, S.; Srisakultiew, N.; Kingwascharapong, P.; Suriyarak, S.; Issara, U.; Phongthai, S.; Rawdkuen, S.; Pongsetkul, J. The Role of CO2 levels in high-oxygen modified atmosphere packaging on microbial communities of chilled goat meat during storage and their relationship with quality attributes. Foods 2025, 14, 1837. [Google Scholar] [CrossRef]
- Al-Mazrouei, M.A.; Al-Kharousi, Z.S.; Al-Kharousi, J.M.; Al-Barashdi, H.M. Microbiological evaluation of local and imported raw beef meat at retail sites in oman with emphasis on spoilage and pathogenic psychrotrophic bacteria. Microorganisms 2024, 12, 2545. [Google Scholar] [CrossRef] [PubMed]
- Hilgarth, M.; Behr, J.; Vogel, R.F. Monitoring of spoilage-associated microbiota on modified atmosphere packaged beef and differentiation of psychrophilic and psychrotrophic strains. J. Appl. Microbiol. 2018, 124, 740–753. [Google Scholar] [CrossRef]
- Patsias, A.; Chouliara, I.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: Microbiological, chemical, sensory attributes. Food Microbiol. 2006, 23, 423–429. [Google Scholar] [CrossRef]
- Kim, J.-H.; Ahn, H.-J.; Lee, J.-W.; Park, H.-J.; Ryu, G.-H.; Kang, I.-J.; Byun, M.-W. Effects of gamma irradiation on the biogenic amines in pepperoni with different packaging conditions. Food Chem. 2005, 89, 199–205. [Google Scholar] [CrossRef]
- Bassey, A.P.; Chen, Y.; Zhu, Z.; Odeyemi, O.A.; Gao, T.; Olusola, O.O.; Ye, K.; Li, C.; Zhou, G. Evaluation of spoilage indexes and bacterial community dynamics of modified atmosphere packaged super-chilled pork loins. Food Control 2021, 130, 108383. [Google Scholar] [CrossRef]
- Borges, A.F.; Cózar, A.; Patarata, L.; Gama, L.T.; Alfaia, C.M.; Fernandes, M.J.; Fernandes, M.H.; Pérez, H.V.; Fraqueza, M.J. Effect of high hydrostatic pressure challenge on biogenic amines, microbiota, and sensory profile in traditional poultry- and pork-based semidried fermented sausage. J. Food Sci. 2020, 85, 1256–1264. [Google Scholar] [CrossRef]
- Stella, S.; Ripamonti, B.; Vandoni, S.; Bernardi, C.; Sgoifo Rossi, C.A. Microbiological and physicochemical quality evaluation of vacuum-packed Argentine beef imported into Italy. J. Food Qual. 2013, 36, 253–262. [Google Scholar] [CrossRef]
- Li, M.; Tian, L.; Zhao, G.; Zhang, Q.; Gao, X.; Huang, X.; Sun, L. Formation of biogenic amines and growth of spoilage-related microorganisms in pork stored under different packaging conditions applying PCA. Meat Sci. 2014, 96, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.M.; Kaur, M.; Pillidge, C.J.; Torley, P.J. Evaluation of the potential of protective cultures to extend the microbial shelf-life of chilled lamb meat. Meat Sci. 2021, 181, 108613. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhao, H.; Yan, L.; Li, S.; Chen, X.; Fan, J. Effect of CO2 on the preservation effectiveness of chilled fresh boneless beef knuckle in modified atmosphere packaging and microbial diversity analysis. LWT-Food Sci. Technol. 2023, 187, 115262. [Google Scholar] [CrossRef]
- Nauman, K.; Jaspal, M.H.; Asghar, B.; Manzoor, A.; Akhtar, K.H.; Ali, U.; Ali, S.; Nasir, J.; Sohaib, M.; Badar, I.H. Effect of different packaging atmosphere on microbiological shelf life, physicochemical attributes, and sensory characteristics of chilled poultry fillets. Food Sci. Anim. Resour. 2022, 42, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.; Cegiełka, A.; Świder, O.; Roszko, M.; Hać-Szymańczuk, E.; Adamczak, L.; Pietrzak, D.; Florowski, T.; Bryła, M.; Florowska, A. Effect of high pressure processing on biogenic amines content in skin-packed beef during storage. LWT-Food Sci. Technol. 2023, 175, 114483. [Google Scholar] [CrossRef]
- Gallas, L.; Standarová, E.; Steinhauserová, I.; Steinhauser, L.; Vorlová, L. Formation of biogenic amines in chicken meat stored under modified atmosphere. Acta Vet. Brno 2010, 79, 107–116. [Google Scholar] [CrossRef]
- Bassey, A.P.; Chen, Y.; Zhu, Z.; Odeyemi, O.A.; Frimpong, E.B.; Ye, K.; Li, C.; Zhou, G. Assessment of quality characteristics and bacterial community of modified atmosphere packaged chilled pork loins using 16S rRNA amplicon sequencing analysis. Food Res. Inter. 2021, 145, 110412. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liang, R.; Mao, Y.; Dong, P.; Zhu, L.; Luo, X.; Zhang, Y.; Yang, X. Potential inhibitory effect of carbon dioxide on the spoilage behaviors of Pseudomonas Fragi in high-oxygen packaged beef during refrigerated storage. Food Microbiol. 2023, 112, 104229. [Google Scholar] [CrossRef]
- Gálvez, F.; Domínguez, R.; Maggiolino, A.; Pateiro, M.; Carballo, J.; De Palo, P.; Barba, F.J.; Lorenzo, J.M. Meat quality of commercial chickens reared in different production systems: Industrial, range and organic. Ann. Anim. Sci. 2020, 20, 263–285. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Cañedo, A.; Martínez-Onandi, N.; Gaya, P.; Nuñez, M.; Picon, A. Effect of high-pressure processing and chemical composition on lipid oxidation, aminopeptidase activity and free amino acids of serrano dry-cured ham. Meat Sci. 2021, 172, 108349. [Google Scholar] [CrossRef]
- Vierck, K.R.; Legako, J.F.; Kim, J.; Johnson, B.; Brooks, J.C. Determination of package and muscle-type influence on proteolysis, beef-flavor-contributing free amino acids, final beef flavor, and tenderness. Meat Muscle Biol. 2020, 4, 10933. [Google Scholar] [CrossRef]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci. 2008, 79, 270–277. [Google Scholar] [CrossRef]
- Kim, H.C.; Baek, K.H.; Ko, Y.-J.; Lee, H.J.; Yim, D.-G.; Jo, C. Characteristic metabolic changes of the crust from dry-aged beef using 2D NMR spectroscopy. Molecules 2020, 25, 3087. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comp. Rev. Food Sci. Food Safe 2015, 14, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Rabie, M.A.; Peres, C.; Malcata, F.X. Evolution of amino acids and biogenic amines throughout storage in sausages made of horse, beef and turkey meats. Meat Sci. 2014, 96, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Hanagasaki, T.; Asato, N. Changes in free amino acids and hardness in round of Okinawan delivered cow beef during dry- and wet-aging processes. J. Anim. Sci. Technol. 2018, 60, 23. [Google Scholar] [CrossRef]
- Hwang, S.H.; Lee, J.; Nam, T.G.; Koo, M.; Cho, Y.S. Changes in physicochemical properties and bacterial communities in aged korean native cattle beef during cold storage. Food Sci. Nutr. 2022, 10, 2590–2600. [Google Scholar] [CrossRef] [PubMed]
- Kanokruangrong, S.; Kebede, B.; Carne, A.; Stewart, I.; Bekhit, A.E.-D.A. Metabolomic investigation of fresh beef, lamb and venison using nuclear magnetic resonance spectroscopy in relation to colour stability. Food Chem. 2025, 463, 141447. [Google Scholar] [CrossRef]
- Balamatsia, C.C.; Paleologos, E.K.; Kontominas, M.G.; Savvaidis, I.N. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 °C: Possible role of biogenic amines as spoilage indicators. J. Microbiol. 2006, 89, 9–17. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Comp. Rev. Food Sci. Food Safe 2017, 16, 96–123. [Google Scholar] [CrossRef]
- Matthews, D.E. An overview of phenylalanine and tyrosine kinetics in humans. J. Nutr. 2007, 137, 1549–1555. [Google Scholar] [CrossRef]
- Hellwig, M. Analysis of protein oxidation in food and feed products. J Agric Food Chem. 2020, 68, 12870–12885. [Google Scholar] [CrossRef]
- Rokka, M.; Eerola, S.; Smolander, M.; Alakomi, H.-L.; Ahvenainen, R. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions. Food Control 2004, 15, 601–607. [Google Scholar] [CrossRef]
- Li, S.; Johansson, M.; Vidanarachchi, J.K.; Pickova, J.; Zamaratskaia, G. Determination of biogenic amines in aerobically stored beef using high-performance thin-layer chromatography densitometry. Acta Agric. Scand. A Anim. Sci. 2016, 66, 199–205. [Google Scholar] [CrossRef]
- Banicod, R.J.S.; Ntege, W.; Njiru, M.N.; Abubakar, W.H.; Kanthenga, H.T.; Javaid, A.; Khan, F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int. J. Food Microbiol. 2025, 428, 110996. [Google Scholar] [CrossRef] [PubMed]
- Motaghifar, A.; Akbari-Adergani, B.; Rokney, N.; Mottalebi, A. Evaluating red meat putrefaction in long term storage in freezing condition based on co-variation of major biogenic amines and total volatile nitrogen. Food Sci. Technol. 2021, 41, 123–128. [Google Scholar] [CrossRef]
- De Filippis, F.; Pennacchia, C.; Di Pasqua, R.; Fiore, A.; Fogliano, V.; Villani, F.; Ercolini, D. Decarboxylase gene expression and cadaverine and putrescine production by Serratia proteamaculans in vitro and in beef. Int. J. Food Microbiol. 2013, 165, 332–338. [Google Scholar] [CrossRef]
- Ivanov, G.; Ivanova, I.; Slavchev, A.; Vassilev, K. Biogenic amines and their role as index of freshness in chicken meat. J. Appl. Life Sci. Int. 2015, 3, 55–62. [Google Scholar] [CrossRef]
- Wójcik, W.; Damaziak, K.; Łukasiewicz-Mierzejewska, M.; Świder, O.; Niemiec, J.; Wójcicki, M.; Roszko, M.; Gozdowski, D.; Riedel, J.; Marzec, A. Correlation between biogenic amines and their precursors in stored chicken meat. Appl. Sci. 2023, 13, 12230. [Google Scholar] [CrossRef]
- Galgano, F.; Favati, F.; Bonadio, M.; Lorusso, V.; Romano, P. Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials. Food Res. Int. 2009, 42, 1147–1152. [Google Scholar] [CrossRef]
- Ntzimani, A.G.; Paleologos, E.K.; Savvaidis, I.N.; Kontominas, M.G. Formation of biogenic amines and relation to microbial flora and sensory changes in smoked turkey breast fillets stored under various packaging conditions at 4 °C. Food Microbiol. 2008, 25, 509–517. [Google Scholar] [CrossRef]
- Schirone, M.; Esposito, L.; D’Onofrio, F.; Visciano, P.; Martuscelli, M.; Mastrocola, D.; Paparella, A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022, 11, 788. [Google Scholar] [CrossRef]
- Pang, Z.; Lee, J.-W.; Lee, Y.; Moon, B. Changes in quality characteristics and biogenic amine contents in beef by cooking methods. Food Sci. Biotechnol. 2024, 33, 2313–2321. [Google Scholar] [CrossRef]
- Lázaro, C.A.; Monteiro, M.L.G.; Conte-Junior, C.A. Combined effect of modified atmosphere packaging and UV-C radiation on pathogens reduction, biogenic amines, and shelf life of refrigerated tilapia (Oreochromis niloticus) fillets. Molecules 2020, 25, 3222. [Google Scholar] [CrossRef] [PubMed]
Bacterial Counts (cfu/g) | Packaging Variant | Storage Time (days) | |||||
---|---|---|---|---|---|---|---|
0 † | 7 | 14 | 21 | 28 | p-Value | ||
Total Plate Count (TPC) | MAP80/20/0 | 2.2 × 103 Aa ± 3.8 × 102 | 3.4 × 104 Aa ± 2.0 × 104 | 5.3 × 105 Aa ± 3.2 × 105 | 5.4 × 106 Aa ± 2.3 × 106 | 1.3 × 108 Bb ± 5.8 × 106 | <0.0001 |
MAP70/20/10 | 2.2 × 103 Aa ± 3.8 × 102 | 3.4 × 104 Aa ± 1.8 × 104 | 4.4 × 105 Aa ± 2.7 × 105 | 5.0 × 106 Aa ± 3.9 × 106 | 6.4 × 107 ABb ± 4.5 × 107 | 0.0105 | |
MAP60/20/20 | 2.2 × 103 Aa ± 3.8 × 102 | 2.6 × 104 Aa ± 1.2 × 104 | 5.4 × 105 Aa ± 4.9 × 104 | 1.3 × 106 Aab ± 1.5 × 106 | 3.9 × 107 Ab ± 2.2 × 107 | 0.0025 | |
VP | 2.2 × 103 Aa ± 3.8 × 102 | 3.0 × 104 Aa ± 3.2 × 104 | 5.6 × 105 Aa ± 2.0 × 105 | 4.4 × 106 Aa ± 6.9 × 105 | 1.7 × 107 Ab ± 7.1 × 106 | 0.0002 | |
p-value | 1.0000 | 0.9573 | 0.9329 | 0.1089 | 0.0038 | ||
Psychrotrophic bacteria count (PBC) | MAP80/20/0 | nd | 9.1 × 103 Aa ± 3.6 × 103 | 4.0 × 104 Aa ± 4.1 × 104 | 8.3 × 105 Aa ± 1.3 × 105 | 1.8 × 108 Bb ± 9.5 × 107 | 0.0010 |
MAP70/20/10 | nd | 1.6 × 104 Aa ± 5.8 × 103 | 1.7 × 104 Aa ± 5.8 × 102 | 6.6 × 105 Aa ± 4.2 × 105 | 1.8 × 108 Bb ± 3.5 × 107 | <0.0001 | |
MAP60/20/20 | nd | 1.2 × 104 Aa ± 1.0 × 103 | 2.0 × 104 Aa ± 5.8 × 102 | 8.6 × 105 Aa ± 4.7 × 105 | 7.3 × 107 ABb ± 2.9 × 107 | 0.0001 | |
VP | nd | 1.5 × 104 Aa ± 2.1 × 103 | 1.7 × 104 Aa ± 2.1 × 103 | 4.8 × 105 Aa ± 3.0 × 104 | 1.4 × 107 Ab ± 1.0 × 106 | <0.0001 | |
p-value | 1.0000 | 0.1021 | 0.4945 | 0.1103 | 0.0100 | ||
Lactic Acid Bacteria (LAB) | MAP80/20/0 | 2.1 × 102 Aa ± 9.0 × 101 | 4.2 × 103 Aa ± 4.7 × 103 | 1.8 × 105 Aa ± 4.0 × 104 | 1.6 × 106 Ab ± 6.7 × 105 | 2.7 × 106 Ab ± 8.5 × 105 | 0.0001 |
MAP70/20/10 | 2.1 × 102 Aa ± 9.0 × 101 | 2.9 × 103 Aa ± 1.6 × 103 | 2.5 × 105 Aa ± 9.9 × 104 | 2.7 × 106 Ab ± 1.7 × 105 | 4.9 × 106 Ac ± 1.8 × 106 | <0.0001 | |
MAP60/20/20 | 2.1 × 102 Aa ± 9.0 × 101 | 3.2 × 103 Aa ± 2.3 × 103 | 5.0 × 105 Aab ± 1.7 × 105 | 1.6 × 106 Ab ± 7.6 × 105 | 4.5 × 106 Ac ± 8.1 × 105 | <0.0001 | |
VP | 2.1 × 102 Aa ± 9.0 × 101 | 5.2 × 103 Aa ± 1.2 × 103 | 6.3 × 105 Aab ± 7.9 × 104 | 3.9 × 106 Ab ± 1.7 × 106 | 7.3 × 106 Ac ± 5.8 × 105 | <0.0001 | |
p-value | 1.0000 | 0.1091 | 0.1015 | 0.1463 | 0.1067 | ||
Enterobacteriaceae | MAP80/20/0 | nd | nd | 2.9 × 101 Aa ± 1.2 × 102 | 2.6 × 103 Aa ± 1.2 × 103 | 2.5 × 105 Ab ± 2.6 × 104 | <0.0001 |
MAP70/20/10 | nd | nd | 2.3 × 102 Aa ± 6.6 × 101 | 6.9 × 103 Aa ± 7.2 × 102 | 5.2 × 105 Ab ± 3.6 × 105 | 0.0085 | |
MAP60/20/20 | nd | nd | 2.5 × 102 Aa ± 6.8 × 101 | 7.2 × 103 Aa ± 1.2 × 103 | 5.9 × 105 Ab ± 1.4 × 105 | <0.0001 | |
VP | nd | 1.7 × 103 a ± 6.1 × 102 | 7.8 × 103 Ba ± 2.2 × 103 | 4.9 × 104 Ba ± 4.9 × 104 | 8.4 × 105 Bb ± 3.8 × 104 | <0.0001 | |
p-value | 1.0000 | - | <0.0001 | 0.0484 | 0.0459 | ||
Brochothrix thermosphacta | MAP80/20/0 | nd | 2.1 × 103 Aa ± 1.4 × 103 | 3.1 × 104 Aa ± 2.5 × 104 | 5.8 × 105 Aa ± 1.5 × 105 | 1.9 × 107 Ab ± 9.8 × 106 | 0.0011 |
MAP70/20/10 | nd | 5.4 × 103 Aa ± 1.8 × 103 | 7.5 × 104 Aa ± 9.3 × 103 | 9.8 × 105 Aa ± 5.1 × 105 | 5.8 × 107 Ab ± 3.4 × 107 | 0.0032 | |
MAP60/20/20 | nd | 5.8 × 103 Aa ± 7.8 × 102 | 6.5 × 104 Aa ± 7.6 × 103 | 7.8 × 105 Aa ± 1.8 × 105 | 2.1 × 107 Ab ± 1.5 × 106 | <0.0001 | |
VP | nd | 4.9 × 103 Aa ± 2.8 × 103 | 3.9 × 104 Aa ± 4.4 × 104 | 9.0 × 104 Aa ± 1.5 × 104 | 3.7 × 106 Ab ± 3.8 × 105 | <0.0001 | |
p-value | 1.0000 | 0.1372 | 0.2053 | 0.1005 | 0.0579 | ||
Pseudomonas spp. | MAP80/20/0 | 1.7 × 103 Aa ± 3.1 × 102 | 3.0 × 104 Aa ± 1.3 × 104 | 4.3 × 105 Aa ± 2.8 × 105 | 4.2 × 106 Aab ± 1.7 × 106 | 5.7 × 107 Ab ± 2.1 × 107 | <0.0001 |
MAP70/20/10 | 1.7 × 103 Aa ± 3.1 × 102 | 4.2 × 104 Aa ± 1.7 × 104 | 5.9 × 105 Aa ± 3.5 × 104 | 4.9 × 106 Aab ± 2.1 × 106 | 6.1 × 107 Ab ± 1.1 × 107 | <0.0001 | |
MAP60/20/20 | 1.7 × 103 Aa ± 3.1 × 102 | 3.3 × 104 Aa ± 3.1 × 104 | 5.0 × 105 Aa ± 2.2 × 105 | 5.2 × 106 Aab ± 3.7 × 106 | 7.1 × 107 Ab ± 1.5 × 107 | <0.0001 | |
VP | 1.7 × 103 Aa ± 3.1 × 102 | 5.3 × 104 Aa ± 1.7 × 104 | 5.7 × 105 Aa ± 1.6 × 105 | 3.1 × 106 Aab ± 3.5 × 105 | 4.6 × 107 Ab ± 4.4 × 107 | 0.0455 | |
p-value | 1.0000 | 0.5497 | 0.7469 | 0.6877 | 0.6998 |
Amino Acid Content (mg/kg) | Packaging Variant | Storage Time (days) | |||||
---|---|---|---|---|---|---|---|
0 † | 7 | 14 | 21 | 28 | p-Value | ||
Arginine | MAP80/20/0 | 87.09 Aa ± 10.60 | 111.91 Aab ± 21.15 | 138.08 Bbc ± 7.11 | 152.49 Cc ± 32.39 | 134.96 Bbc ± 57.78 | <0.0001 |
MAP70/20/10 | 87.09 Aa ± 10.60 | 112.2 Aab ± 27.52 | 105.79 Bab ± 57.15 | 115.85 BCb ± 38.18 | 75.84 ABab ± 22.45 | 0.0486 | |
MAP60/20/20 | 87.09 Ab ± 10.60 | 110.37 Abc ± 16.39 | 143.43 Bc ± 11.71 | 84.74 Bb ± 49.74 | 38.20 Aa ± 45.58 | <0.0001 | |
VP | 87.09 Ac ± 10.60 | 100.27 Ac ± 10.16 | 45.44 Ab ± 12.71 | 10.50 Aa ± 2.76 | 10.24 Aa ± 1.46 | <0.0001 | |
p-value | 1.0000 | 0.5394 | <0.0001 | <0.0001 | <0.0001 | ||
Histidine | MAP80/20/0 | 47.68 Aa ± 6.43 | 57.98 Aab ± 11.61 | 81.76 Bc ± 14.42 | 75.66 Abc ± 13.25 | 82.2 Bc ± 18.97 | <0.0001 |
MAP70/20/10 | 47.68 Aa ± 6.43 | 60.39 Aab ± 12.60 | 83.76 Bc ± 14.17 | 72.20 Abc ± 7.75 | 72.66 ABbc ± 11.06 | <0.0001 | |
MAP60/20/20 | 47.68 Aa ± 6.43 | 54.54 Aab ± 7.79 | 86.11 Bc ± 7.19 | 74.59 Abc ± 14.00 | 65.26 ABbc ± 8.95 | <0.0001 | |
VP | 47.68 Aa ± 6.43 | 51.20 Aab ± 6.70 | 65.73 Ac ± 7.88 | 62.85 Abc ± 8.93 | 61.8 Abc ± 13.97 | <0.0001 | |
p-value | 1.0000 | 0.2797 | 0.0321 | 0.0865 | 0.0180 | ||
Lysine | MAP80/20/0 | 64.41 Aa ± 13.13 | 82.37 Aa ± 13.27 | 154.24 Bb ± 34.80 | 192.57 Cc ± 27.25 | 159.59 Cbc ± 23.36 | <0.0001 |
MAP70/20/10 | 64.41 Aa ± 13.13 | 83.74 Aa ± 18.06 | 145.86 Bb ± 27.73 | 198.12 Cc ± 4.69 | 146.66 BCbc ± 37.17 | <0.0001 | |
MAP60/20/20 | 64.41 Aa ± 13.13 | 85.30 Aa ± 8.79 | 147.20 Bb ± 11.72 | 166.82 Bb ± 5.14 | 93.06 Bab ± 25.90 | <0.0001 | |
VP | 64.41 Ab ± 13.13 | 64.71 Ab ± 16.99 | 28.33 Aa ± 4.09 | 27.53 Aa ± 4.22 | 24.25 Aa ± 5.08 | <0.0001 | |
p-value | 1.0000 | 0.0587 | <0.0001 | <0.0001 | <0.0001 | ||
Ornithine | MAP80/20/0 | 12.89 Aa ± 3.17 | 7.79 Aa ± 2.14 | 34.03 Ab ± 16.27 | 53.53 Bc ± 12.26 | 46.35 Bbc ± 26.03 | 0.0013 |
MAP70/20/10 | 12.89 Aa ± 3.17 | 6.32 Aa ± 1.42 | 33.95 Ab ± 12.93 | 58.80 Bc ± 15.34 | 39.29 Bbc ± 13.53 | <0.0001 | |
MAP60/20/20 | 12.89 Aa ± 3.17 | 8.64 Aa ± 4.12 | 20.27 Ab ± 2.69 | 54.98 Bc ± 13.76 | 38.69 Bbc ± 23.13 | <0.0001 | |
VP | 12.89 Aa ± 3.17 | 8.87 Aa ± 3.25 | 15.41 Aa ± 5.20 | 14.03 Aa ± 2.40 | 9.88 Aa ± 1.58 | 0.05613 | |
p-value | 1.0000 | 0.2580 | 0.1779 | 0.0089 | 0.0012 | ||
Phenylalanine | MAP80/20/0 | 38.84 Aa ± 5.21 | 42.89 Aa ± 3.45 | 95.96 Ab ± 6.90 | 115.41 Ab ± 12.00 | 101.92 ABb ± 33.23 | <0.0001 |
MAP70/20/10 | 38.84 Aa ± 5.21 | 41.85 Aa ± 2.73 | 93.37 Ab ± 14.10 | 115.79 Ab ± 20.36 | 95.72 ABb ± 12.16 | <0.0001 | |
MAP60/20/20 | 38.84 Aa ± 5.21 | 41.17 Aa ± 6.60 | 86.39 Ab ± 13.67 | 105.22 Ab ± 7.84 | 83.50 Ab ± 11.78 | <0.0001 | |
VP | 38.84 Aa ± 5.21 | 39.85 Aa ± 3.44 | 131.71 Bb ± 13.91 | 174.73 Bc ± 15.2 | 118.51 Bb ± 11.03 | <0.0001 | |
p-value | 1.0000 | 0.5126 | <0.0001 | <0.0001 | 0.0055 | ||
Tryptophan | MAP80/20/0 | 12.09 Aa ± 1.87 | 15.29 Aa ± 3.06 | 22.72 Ab ± 3.06 | 26.50 Bb ± 1.74 | 28.44 Bb ± 6.72 | <0.0001 |
MAP70/20/10 | 12.09 Aa ± 1.87 | 16.48 Aa ± 3.18 | 26.28 Ac ± 2.60 | 29.70 Bc ± 4.31 | 29.95 Bc ± 7.92 | <0.0001 | |
MAP60/20/20 | 12.09 Aa ± 1.87 | 16.36 Aa ± 1.92 | 27.66 Ab ± 2.62 | 28.37 Bb ± 1.24 | 31.58 Bb ± 10.16 | <0.0001 | |
VP | 12.09 Aab ± 1.87 | 14.75 Ab ± 1.66 | 24.73 Ac ± 4.34 | 13.47 Aab ± 8.35 | 8.32 Aa ± 1.95 | <0.0001 | |
p-value | 1.0000 | 0.1742 | 0.0580 | <0.0001 | <0.0001 | ||
Tyrosine | MAP80/20/0 | 39.88 Aa ± 6.34 | 56.26 Aa ± 5.24 | 107.60 Bb ± 22.38 | 45.21 Ba ± 12.97 | 87.88 Bb ± 44.57 | <0.0001 |
MAP70/20/10 | 39.88 Aa ± 6.34 | 54.57 Aa ± 3.62 | 129.17 Bc ± 36.19 | 55.98 Ba ± 18.88 | 92.52 Bb ± 29.75 | <0.0001 | |
MAP60/20/20 | 39.88 Aa ± 6.34 | 59.81 Aa ± 11.24 | 138.48 Bb ± 29.35 | 61.81 Ba ± 13.55 | 63.52 Ba ± 46.93 | <0.0001 | |
VP | 39.88 Ab ± 6.34 | 55.83 Ac ± 11.22 | 45.39 Abc ± 16.45 | 12.88 Aa ± 3.61 | 16.33 Aa ± 1.03 | <0.0001 | |
p-value | 1.0000 | 0.6078 | <0.0001 | <0.0001 | 0.0002 |
Biogenic Amine Content (mg/kg) and Index (BAI) | Packaging Variant | Storage Time (days) | |||||
---|---|---|---|---|---|---|---|
0 † | 7 | 14 | 21 | 28 | p-Value | ||
Agmatine | MAP80/20/0 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | 0.25 Ab ± 0.07 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | <0.0001 |
MAP70/20/10 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | 0.21 Ab ± 0.05 | 0.02 *Aa ± 0.01 | 0.05 Aa ± 0.04 | <0.0001 | |
MAP60/20/20 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | 0.22 Ab ± 0.10 | 0.02 *Aa ± 0.01 | 0.07 Aa ± 0.05 | <0.0001 | |
VP | 0.02 *aA ± 0.01 | 0.02 *Aa ± 0.01 | 0.21 Ab ± 0.05 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | <0.0001 | |
p-value | 1.0000 | 1.0000 | 0.6292 | 0.1589 | 0.0504 | ||
Spermine | MAP80/20/0 | 40.13 Aa ± 5.23 | 39.84 Aa ± 1.29 | 40.20 Aa ± 4.47 | 35.47 Aa ± 4.52 | 34.89 Aa ± 3.99 | 0.7801 |
MAP70/20/10 | 40.13 Aa ± 5.23 | 39.62 Aa ± 1.73 | 40.98 Aa ± 2.56 | 31.63 Aa ± 1.50 | 36.29 Aa ± 0.92 | 0.0505 | |
MAP60/20/20 | 40.13 Aa ± 5.23 | 36.35 Aa ± 1.55 | 43.67 Aa ± 2.22 | 30.10 Aa ± 3.75 | 34.86 Aa ± 1.31 | 0.0706 | |
VP | 40.13 Aa ± 5.23 | 37.96 Aa ± 5.86 | 43.94 Aa ± 5.00 | 34.30 Aa ± 4.71 | 32.88 Aa ± 1.19 | 0.1009 | |
p-value | 1.0000 | 0.0963 | 0.0801 | 0.0622 | 0.0709 | ||
Spermidine | MAP80/20/0 | 2.24 Aa ± 0.99 | 2.13 Aa ± 0.26 | 2.40 Aa ± 0.53 | 2.02 Aa ± 0.26 | 1.85 Aa ± 0.24 | 0.4033 |
MAP70/20/10 | 2.24 Aa ± 0.99 | 1.88 Aa ± 0.39 | 2.48 Aa ± 0.63 | 1.95 Aa ± 0.24 | 2.01 Aa ± 0.50 | 0.3257 | |
MAP60/20/20 | 2.24 Aa ± 0.99 | 2.15 Aa ± 0.46 | 2.65 Aa ± 1.25 | 2.19 Aa ± 0.97 | 1.71 Aa ± 0.60 | 0.4225 | |
VP | 2.24 Aa ± 0.99 | 1.80 Aa ± 1.53 | 2.01 Aa ± 1.01 | 1.94 Aa ± 0.54 | 1.93 Aa ± 0.32 | 0.7001 | |
p-value | 1.0000 | 0.7474 | 0.8501 | 0.7863 | 0.0565 | ||
Histamine | MAP80/20/0 | 1.24 Aa ± 0.23 | 1.67 Aa ± 0.11 | 2.00 Aa ± 0.11 | 1.64 Aa ± 0.12 | 2.05 Aa ± 0.72 | 0.3005 |
MAP70/20/10 | 1.24 Aa ± 0.23 | 1.56 Aa ± 0.27 | 1.81 Aa ± 0.19 | 1.34 Aa ± 0.21 | 1.89 ABa ± 5.23 | 0.0653 | |
MAP60/20/20 | 1.24 Aa ± 0.23 | 1.55 Aa ± 0.35 | 1.82 Aa ± 0.43 | 1.39 Aa ± 0.32 | 1.32 Aa ± 0.10 | 0.1707 | |
VP | 1.24 Aa ± 0.23 | 1.44 Aa ± 0.22 | 2.03 Aa ± 0.40 | 9.09 Bb ± 3.46 | 11.13 Bb ± 11.62 | 0.0001 | |
p-value | 1.0000 | 0.3072 | 0.3156 | <0.0001 | 0.0106 | ||
Cadaverine | MAP80/20/0 | 0.02 *Aa ± 0.01 | 0.14 Aa ± 0.20 | 8.33 Ab ± 12.48 | 10.43 Ab ± 0.33 | 25.05 Ac ± 2.35 | 0.0032 |
MAP70/20/10 | 0.02 *Aa ± 0.01 | 0.12 Aa ± 0.01 | 8.46 Ab ± 5.21 | 13.27 Ab ± 9.51 | 59.19 Ac ± 21.46 | 0.0023 | |
MAP60/20/20 | 0.02 *Aa ± 0.01 | 0.12 Aa ± 0.01 | 10.90 Ab ± 0.74 | 17.44 Ab ± 14.38 | 59.68 Ac ± 27.63 | <0.0001 | |
VP | 0.02 *Aa ± 0.01 | 14.2 Bb ± 15.71 | 133.73 Bc ± 14.85 | 175.82 Bc ± 25.6 | 172.59 Bc ± 18.99 | <0.0001 | |
p-value | 1.0000 | 0.0007 | <0.0001 | <0.0001 | <0.0001 | ||
Putrescine | MAP80/20/0 | 0.19 Aa ± 0.08 | 0.75 Aa ± 0.13 | 3.13 Aa ± 3.56 | 5.35 Aab ± 3.28 | 28.48 Ab ± 11.12 | 0.0003 |
MAP70/20/10 | 0.19 Aa ± 0.08 | 0.71 Aa ± 0.10 | 3.30 Aa ± 3.25 | 5.39 Aab ± 4.69 | 28.15 Ab ± 17.46 | 0.0062 | |
MAP60/20/20 | 0.19 Aa ± 0.08 | 0.79 Aa ± 0.12 | 3.89 Aa ± 0.18 | 6.55 Aab ± 4.76 | 26.60 Ab ± 15.05 | 0.0011 | |
VP | 0.19 Aa ± 0.08 | 2.03 Aa ± 1.88 | 75.11 Bb ± 5.23 | 111.53 Bc ± 23.59 | 122.61 Bc ± 7.00 | <0.0001 | |
p-value | 1.0000 | 0.0542 | <0.0001 | <0.0001 | <0.0001 | ||
2-phenylethylamine | MAP80/20/0 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 1.0000 |
MAP70/20/10 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.09 Aa ± 0.06 | 0.0516 | |
MAP60/20/20 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 1.0000 | |
VP | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.39 Bb ± 0.08 | 1.07 Bbc ± 0.44 | 1.60 Bc ± 0.82 | <0.0001 | |
p-value | 1.0000 | 1.0000 | <0.0001 | <0.0001 | <0.0001 | ||
Tryptamine | MAP80/20/0 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.9927 |
MAP70/20/10 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.36 | 0.08 Aa ± 0.01 | 1.27 ABb ± 1.84 | 0.0026 | |
MAP60/20/20 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 3.86 Bb ± 2.90 | <0.0001 | |
VP | 0.05 *Aa ± 0.01 | 0.05 *Aa ± 0.01 | 6.73 Bb ± 2.62 | 20.18 Bc ± 8.39 | 29.82 Cd ± 3.70 | <0.0001 | |
p-value | 1.0000 | 1.0000 | <0.0001 | <0.0001 | <0.0001 | ||
Tyramine | MAP80/20/0 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | 6.74 Ab ± 5.23 | 3.19 Ab ± 2.13 | 8.57 Ab ± 4.01 | 0.0001 |
MAP70/20/10 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | 6.54 Ab ± 4.64 | 4.82 Ab ± 2.97 | 18.92 Ab ± 12.72 | <0.0001 | |
MAP60/20/20 | 0.02 *Aa ± 0.01 | 0.02 *Aa ± 0.01 | 4.17 Ab ± 0.97 | 9.03 Ab ± 3.07 | 69.81 Bc ± 37.01 | <0.0001 | |
VP | 0.02 *Aa ± 0.01 | 8.06 Bb ± 3.86 | 107.63 Bc ± 7.82 | 152.04 Bd ± 18.92 | 148.22 Cd ± 8.28 | <0.0001 | |
p-value | 1.0000 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
BAI | MAP80/20/0 | 1.47 Aa ± 0.28 | 2.58 Aa ± 0.35 | 20.20 Ab ± 11.28 | 20.61 Ab ± 3.43 | 64.15 Ac ± 18.00 | 0.0052 |
MAP70/20/10 | 1.47 Aa ± 0.28 | 2.41 Aa ± 0.25 | 20.11 Ab ± 4.84 | 24.82 Ab ± 14.51 | 108.15 Bc ± 36.03 | <0.0001 | |
MAP60/20/20 | 1.47 Aa ± 0.28 | 2.48 Aa ± 0.41 | 20.78 Ab ± 2.23 | 34.41 Ab ± 21.11 | 157.41 Bc ± 30.83 | <0.0001 | |
VP | 1.47 Aa ± 0.28 | 25.73 Bb ± 21.24 | 318.50 Bc ± 17.43 | 448.48 Bcd ± 62.93 | 454.55 Cd ± 14.79 | <0.0001 | |
p-value | 1.0000 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Characteristic | Agmatine | Spermine | Spermidine | Histamine | Cadaverine | Putrescine | 2-Phenyl Ethylamine | Tryptamine | Tyramine |
---|---|---|---|---|---|---|---|---|---|
Total Plate Count (TPC) | −0.183758 | −0.205428 | −0.040183 | 0.090367 | 0.030261 | 0.005467 | 0.066835 | −0.004540 | 0.030553 |
Psychrotrophic bacteria count (PBC) | −0.149984 | −0.239457 | −0.018646 | 0.097935 | 0.037650 | −0.006631 | 0.067778 | −0.056791 | −0.003363 |
Lactic Acid Bacteria (LAB) | −0.132162 | −0.460119 | −0.226542 | 0.743712 | 0.688688 | 0.686099 | 0.770250 | 0.722037 | 0.678569 |
Enterobacteriaceae | −0.158303 | −0.495450 | −0.220874 | 0.570747 | 0.509397 | 0.504849 | 0.608608 | 0.561725 | 0.509108 |
Brochothrix thermosphacta | −0.104648 | −0.304626 | 0.006817 | 0.134376 | 0.100053 | 0.033331 | 0.111570 | −0.056843 | 0.013035 |
Pseudomonas spp. | −0.172263 | −0.429793 | −0.142828 | 0.311147 | 0.299079 | 0.264431 | 0.326203 | 0.275524 | 0.308228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, M.; Świder, O.; Padewska, D.; Hać-Szymańczuk, E.; Adamczak, L.; Cegiełka, A.; Florowski, T.; Pietrzak, D.; Szymańska, I.; Bryła, M.; et al. Microbial Spoilage Dynamics, Free Amino Acid Profile Alterations, and Biogenic Amine Accumulation in Beef Under Different Packaging Systems During Extended Storage. Appl. Sci. 2025, 15, 9882. https://doi.org/10.3390/app15189882
Chmiel M, Świder O, Padewska D, Hać-Szymańczuk E, Adamczak L, Cegiełka A, Florowski T, Pietrzak D, Szymańska I, Bryła M, et al. Microbial Spoilage Dynamics, Free Amino Acid Profile Alterations, and Biogenic Amine Accumulation in Beef Under Different Packaging Systems During Extended Storage. Applied Sciences. 2025; 15(18):9882. https://doi.org/10.3390/app15189882
Chicago/Turabian StyleChmiel, Marta, Olga Świder, Daria Padewska, Elżbieta Hać-Szymańczuk, Lech Adamczak, Aneta Cegiełka, Tomasz Florowski, Dorota Pietrzak, Iwona Szymańska, Marcin Bryła, and et al. 2025. "Microbial Spoilage Dynamics, Free Amino Acid Profile Alterations, and Biogenic Amine Accumulation in Beef Under Different Packaging Systems During Extended Storage" Applied Sciences 15, no. 18: 9882. https://doi.org/10.3390/app15189882
APA StyleChmiel, M., Świder, O., Padewska, D., Hać-Szymańczuk, E., Adamczak, L., Cegiełka, A., Florowski, T., Pietrzak, D., Szymańska, I., Bryła, M., & Roszko, M. Ł. (2025). Microbial Spoilage Dynamics, Free Amino Acid Profile Alterations, and Biogenic Amine Accumulation in Beef Under Different Packaging Systems During Extended Storage. Applied Sciences, 15(18), 9882. https://doi.org/10.3390/app15189882