Yield Components Analysis in Partially Interspecific Lines of Cotton and Irrigation-Nitrogen Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
- 2006: pH 7.71; organic matter 1.15%; nitrate nitrogen (N-NO3) 8.4 ppm; available phosphorus (Olsen method) 9.8 ppm; potassium 135 ppm.
- 2007: pH 8.0; organic matter 2.63%; N-NO3 53.2 ppm; phosphorus 16.2 ppm; potassium 189 ppm.
2.2. Genetic Materials
2.3. Experimental Design
2.4. Fertilizer and Irrigation Application
2.5. Crop Management
2.6. Measurements
2.7. Statistical Analysis
2.8. Stability Index
2.9. Multi-Environment Evaluation Using AMMI and GGE Biplots
3. Results
3.1. Combined ANOVA
3.2. Stability Index (SI)
3.3. Trait Correlations
3.4. AMMI and GGE Analyses
3.4.1. Seed-Cotton Yield (AMMI and GGE Biplots)
3.4.2. Plant Height Stability
3.4.3. First-Pick Yield Proportion
3.4.4. Boll Weight Stability
3.4.5. Lint Percentage Stability
3.5. Integrated Stability Overview
4. Discussion
4.1. Environmental and Genotypic Effects
4.2. Trait Stability and G × E Interactions
4.2.1. Environmental and Management Effects on Stability
4.2.2. Genotypic Responses and G × E Patterns
4.2.3. Multivariate Stability Analysis (AMMI, GGE, SI)
4.3. Practical and Breeding Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avgoulas, C.; Bouza, L.; Koutrou, A.; Papadopoulou, S.; Kosmas, S.; Makridou, E.; Papastylianou, P.; Bilalis, D. Evaluation of five most commonly grown cotton cultivars (Gossypium hirsutum L.) under Mediterranean conditions: Productivity and fibre quality. J. Agron. Crop Sci. 2005, 191, 1–9. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service. Cotton and Products Annual–Greece; Report No. GR2025-0001; USDA FAS: Washington, DC, USA, 2025. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Cotton+and+Products+Annual_Rome_Greece_GR2025-0001.pdf (accessed on 6 September 2025).
- Sficas, A.G. Field Crops I: Cereal, Legumes and Forages; Aristotle University of Thessaloniki: Thessaloniki, Greece, 1984; p. 284. [Google Scholar]
- Kramer, P.J. Water Deficits and Plant Growth. In Water Relations of Plants; Academic Press: Cambridge, MA, USA, 1983; pp. 342–389. [Google Scholar]
- Basal, H.; Dagdelen, N.; Unay, A.; Yilmaz, E. Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. J. Agron. Crop Sci. 2009, 195, 19–29. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Climate change, drought and desertification. J. Arid Environ. 1996, 34, 133–185. [Google Scholar] [CrossRef]
- Stockton, J.R.; Doneen, L.D.; Walhood, V.T. Boll shedding and growth of the cotton plant in relation to irrigation frequency. Agron. J. 1961, 53, 272–275. [Google Scholar] [CrossRef]
- Grimes, D.W.; Dickens, W.L.; Anderson, W.D. Functions for Cotton (Gossypium hirsutum L.) Production from Irrigation and Nitrogen Fertilization Variables: II. Yield Components and Quality Characteristics. Agron. J. 1969, 61, 773–776. [Google Scholar] [CrossRef]
- Cook, C.G.; El-Zik, K.M. Fruiting and lint yield of cotton cultivars under irrigated and non-irrigated conditions. Field Crops Res. 1993, 33, 411–421. [Google Scholar] [CrossRef]
- Gerik, T.J.; Faver, K.L.; Thaxton, P.M.; El-Zik, K.M. Late Season Water Stress in Cotton: I. Plant Growth, Water Use, and Yield. Crop Sci. 1996, 36, 914–921. [Google Scholar] [CrossRef]
- Zafar, S.; Afzal, H.; Ijaz, A.; Mahmood, A.; Ayub, A.; Nayab, A.; Hussain, S.; Hussan, M.U.; Sabir, M.A.; Zulfiqar, U.; et al. Cotton and drought stress: An updated overview for improving stress tolerance. S. Afr. J. Bot. 2023, 161, 258–268. [Google Scholar] [CrossRef]
- Arshad, M.U.; Zhao, Y.; Gong, Y.; Guo, X.; Hanif, S.; Ge, Y.; Jun, T. The effect of climate change on cotton productivity—An empirical investigation in Pakistan. Pak. J. Agric. Sci. 2021, 58, 8. [Google Scholar]
- Zhang, F.; Zhang, Z.; Heng, T.; He, X. Optimizing Cotton Irrigation Strategies in Arid Regions Under Water–Salt–Nitrogen Interactions and Projected Climate Impacts. Agronomy 2025, 15, 1305. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Y.; He, J.; Biswas, A.; Siddique, K.H.; Hou, Z.; Luo, H.; Wang, C.; Xie, X. Enhancing Precision Nitrogen Management for Cotton Cultivation in Arid Environments Using Remote Sensing Techniques. Field Crops Res. 2025, 321, 109689. [Google Scholar] [CrossRef]
- Manibharathi, S.; Somasundaram, S.; Parasuraman, P.; Subramanian, A.; Ravichandran, V.; Boopathi, N.M. Exploring the impact of high density planting system and deficit irrigation in cotton (Gossypium hirsutum L.): A comprehensive review. J. Cotton Res. 2024, 7, 28. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, X.; Huang, W.; Li, Z.; Huang, T.; Song, Z.; Yang, Y.; Chen, J. Evaluating the Effect of Deficit Irrigation on Yield and Water Use Efficiency of Drip Irrigation Cotton under Film in Xinjiang Based on Meta-Analysis. Plants 2024, 13, 640. [Google Scholar] [CrossRef] [PubMed]
- Anac, S.; Ul, M.A.; Tuzel, I.H.; Anac, D.; Okur, B.; Hakerler, H. Optimum irrigation scheduling for cotton under deficit irrigation conditions. In Crop Yield Response to Deficit Irrigations; Kırda, C., Moutonnet, P., Hera, C., Nielsen, D.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Wu, F.; Tang, Q.; Cui, J.; Tian, L.; Guo, R.; Wang, L.; Lin, T. Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation. Agronomy 2024, 14, 1876. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Chipamaunga, J.; Bate, G.C. Nitrogen uptake of field grown cotton I. Distribution in plant components in relation to fertilization and yield. Exp. Agric. 1983, 19, 91–101. [Google Scholar] [CrossRef]
- Gerik, T.J.; Jackson, B.S.; Stockle, C.O.; Rosenthal, W.D. Plant nitrogen status and boll load of cotton. Agron. J. 1994, 86, 514–518. [Google Scholar] [CrossRef]
- Howard, D.D.; Gwathmey, C.O.; Essington, M.E.; Roberts, R.K.; Mullen, M.D. Nitrogen fertilization of no till cotton on loess derived soils. Agron. J. 2001, 93, 157–163. [Google Scholar] [CrossRef]
- Fritschi, F.B.; Bruce, A.; Roberts, R.L.; Travis, D.; Rains, W.; Hutmacher, R.B. Response of irrigated acala and pima cotton to nitrogen fertilization: Growth, dry matter partitioning, and yield. Agron. J. 2003, 95, 133–146. [Google Scholar] [CrossRef]
- Scarpin, G.J.; Bhattarai, A.; Hand, L.C.; Snider, J.L.; Roberts, P.M.; Bastos, L.M. Cotton Lint Yield and Quality Variability in Georgia, USA: Understanding Genotypic and Environmental Interactions. Field Crops Res. 2025, 325, 109822. [Google Scholar] [CrossRef]
- Sharif, I.; Aleem, S.; Junaid, J.A.; Aleem, M.; Jamshaid, K.; Saleem, H.; Rizwan, M.; Chohan, S.M.; Sohail, S.; Akram, S.; et al. Evaluation of Genotype × Environment Interaction and Yield Stability of Cotton (Gossypium hirsutum L.) Genotypes under Heat Stress Conditions. J. Crop Health 2025, 77, 16. [Google Scholar] [CrossRef]
- White, T.G.; Richmont, T.R.; Lewis, C.F. Use of cotton monosomes in developing interspecific substitution line. Crop Res. 1967, ARS, 34–91. [Google Scholar]
- Basbag, S.; Gencer, O. Investigation of some yield and fibre quality characteristics of interspecific hybrid (Gossypium hirsutum L. × G. barbadense L.) cotton varieties. Hereditas 2007, 144, 33–42. [Google Scholar] [CrossRef]
- Galanopoulou-Sendouca, S.; Roupakias, D. Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk generations. Eur. J. Agron. 1999, 11, 53–62. [Google Scholar] [CrossRef]
- Mavromatis, A.G.; Roupakias, D.G. Biotechnology: A Hope for Partial Interspecific Hybrid in Cotton (Gossypium spp.). In Cotton Biotechnology, Proceedings of the Working Group on Cotton Biotechnology, Leuven, Belgium, 22–23 October 1993; Peeters, M.C., Ed.; FAO Technical Series No. 32; FAO: Rome, Italy, 1994; pp. 29–36. [Google Scholar]
- Mavromatis, A.G.; Kantartzi, S.K.; Vlachostergios, D.N.; Xynias, I.N.; Skarakis, G.N.; Roupakias, D.G. Induction of embryo development and fixation of partial interspecific lines after pollination of F1 cotton interspecific hybrids (Gossypium barbadense × Gossypium hirsutum) with pollen from Hibiscus cannabinus. Aust. J. Agric. Res. 2005, 56, 1101–1109. [Google Scholar] [CrossRef]
- Vlachostergios, D.N.; Mavromatis, A.G.; Kantartzi, S.K.; Roupakias, D.G. In-vitro development of ovules obtained after pollination of cotton (Gossypium spp) flowers with pollen from okra (Abelmoschus esculentus L. Moench). Plant Cell Tissue Organ Cult. 2006, 88, 109–115. [Google Scholar] [CrossRef]
- Kantarzi, S.; Roupakias, D.G. Production of aneuploids of the cotton hybrid G. barbadense × G hirsutum L. via intergeneric pollination with Abelmoschus esculentus. Euphytica 2008, 161, 319–327. [Google Scholar] [CrossRef]
- Abasianyanga, I.; Balu, P.A. Variability, heritability and genetic advance for yield and quality components in interspecific F1 hybrids of cotton. Electron. J. Plant Breed. 2017, 8, 361–364. [Google Scholar] [CrossRef]
- Anwar, M.; Iqbal, M.Z.; Abro, A.A.; Memon, S.; Bhutto, L.A.; Memon, S.A.; Peng, Y. Inter-specific hybridization in cotton (Gossypium hirsutum) for crop improvement. Agronomy 2022, 12, 3158. [Google Scholar] [CrossRef]
- Hugar, A.A.; Nidagundi, J.M.; Fakrudin, B.; Neelagiri, Y.L.; Muniswamy, S.; Hosamani, A.C.; Hallasahalli, S.C.; Rashwan, M.A.; Moussa, I.M.; Mahmoud, E.A.; et al. Genetic divergence and hybrid potential for yield and fiber quality in cotton (Gossypium hirsutum L.). J. Nat. Fibers 2024, 21, 2427716. [Google Scholar] [CrossRef]
- Dharsini, V.D.; Subramanian, A.; Premalatha, N.; Boopathi, N.M.; Djanaguiraman, M.; Santhanakrishnan, V.P. Fertile grounds: Exploring male sterility in cotton and its marker development. Mol. Biol. Rep. 2024, 51, 961. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical analysis of a yield trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Yehia, W.M.B.; Zaazaa, E.E.D.I.; El-Hashash, E.F.; El-Enin, M.M.A.; Shaaban, A. Genotype-by-environment interaction analysis for cotton seed yield using various biometrical methods under irrigation regimes in a semi-arid region. Arch. Agron. Soil Sci. 2024, 70, 1–23. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Q.; Chen, Q.; Jiang, M.; Qu, Y. Yield-based drought tolerance index evaluates the drought tolerance of cotton germplasm lines in the interaction of genotype-by-environment. PeerJ 2023, 11, e14367. [Google Scholar] [CrossRef]
- Asaad, M.R.; El-Hashash, E.F.; El-Sayed, A.M.; El-Mohamed, A.M. Genotype × environment interaction and yield stability of Egyptian cotton genotypes under soil moisture deficit conditions. SVU-Int. J. Agric. Sci. 2025, 7, 107–124. [Google Scholar] [CrossRef]
- Shaker, S.A.; Habouh, M.A.F.; El-Fesheikwy, A.B.A. Analysis of stability using AMMI and GGE-biplot methods in some Egyptian cotton genotypes. Menoufia J. Plant Prod. 2019, 4, 153–163. [Google Scholar] [CrossRef]
- Sadabadi, M.F.; Ranjbar, G.A.; Zangi, M.R.; Kazemi Tabar, S.K.; Najafi Zarini, H. Analysis of stability and adaptation of cotton genotypes using GGE biplot method. Trakia J. Sci. 2018, 16, 51–61. [Google Scholar] [CrossRef]
- Greveniotis, V. Impact of the Inputs Level on Yielding Performance and Fiber Quality of Pa7 Partially Interspecific Lines of Cotton. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2008. [Google Scholar]
- Stratilakis, S.N.; Goulas, C.K. Yield performance at three nitrogen rates of a set of honeycomb vs. traditional pedigree selected bread wheat varieties. Eur. J. Agron. 2003, 19, 65–76. [Google Scholar] [CrossRef]
- Tsaliki, E.; Loison, R.; Kalivas, A.; Panoras, I.; Grigoriadis, I.; Traore, A.; Gourlot, J.-P. Cotton Cultivation in Greece under Sustainable Utilization of Inputs. Sustainability 2024, 16, 347. [Google Scholar] [CrossRef]
- Papastylianou, P.T.; Argyrokastritis, I.G. Effect of Limited Drip Irrigation Regime on Yield, Yield Components, and Fiber Quality of Cotton under Mediterranean Conditions. Agric. Water Manag. 2014, 142, 127–134. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, H.; Dickey, D.A. Principles and Procedures of Statistics. A Biometrical Approach, 3rd ed.; McGraw-Hill: New York, NY, USA, 1997; p. 666. [Google Scholar]
- Fasoula, V.A. Prognostic breeding: A new paradigm for crop improvement. Plant Breed. Rev. 2013, 37, 297–347. [Google Scholar]
- Haile, G.A.; Kebede, G.Y. Identification of Stable Faba Bean (Vicia faba L.) Genotypes for Seed Yield in Ethiopia Using GGE Model. J. Plant Sci. 2021, 9, 163–169. [Google Scholar]
- Gauch, H., Jr. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Khan, M.M.H.; Rafii, M.Y.; Ramlee, S.I.; Jusoh, M.; Al Mamun, M. AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs). Sci. Rep. 2021, 11, 22791. [Google Scholar] [CrossRef]
- Koundinya, A.V.V.; Ajeesh, B.R.; Hegde, V.; Sheela, M.N.; Mohan, C.; Asha, K.I. Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. Sci. Hortic. 2021, 281, 109949. [Google Scholar] [CrossRef]
- Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, B.; Luo, Q.; Jiao, W.; Yang, Y. Uncovering the Drivers and Regional Variability of Cotton Yield in China. Agriculture 2023, 13, 2132. [Google Scholar] [CrossRef]
- Garcia, G.M.; Crone, E.E.; Kuhl, L.; Orians, C.M. Intrinsic yield fluctuations interact with environmental shocks to threaten the socio-ecological resilience of perennial crop systems. One Earth 2024, 7, 1362–1372. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron. J. 2004, 96, 377–383. [Google Scholar] [CrossRef]
- Liao, H.; Liu, K.; Hao, H.; Yong, Y.; Zhang, W.; Hou, Z. Effects of Irrigation Amount and Nitrogen Rate on Cotton Yield, Nitrogen Use Efficiency, and Soil Nitrogen Balance under Drip Irrigation. Agronomy 2024, 14, 1671. [Google Scholar] [CrossRef]
- Bai, Z.; Xie, C.; Yu, J.; Bai, W.; Pei, S.; Li, Y.; Li, Z.; Zhang, F.; Fan, J.; Yin, F. Effects of Irrigation and Nitrogen Levels on Yield and Water-Nitrogen-Radiation Use Efficiency of Drip-Fertigated Cotton in South Xinjiang of China. Field Crops Res. 2024, 308, 109280. [Google Scholar] [CrossRef]
- Cetin, O.; Bilgel, L. Effects of different irrigation methods on shedding and yield of cotton. Agric. Water Manag. 2002, 54, 1–15. [Google Scholar] [CrossRef]
- Ertek, A.; Kanber, R. Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton. Agric. Water Manag. 2003, 60, 1–11. [Google Scholar] [CrossRef]
- Herritt, M.T.; Thompson, A.; Thorp, K. Irrigation Management Impacts on Cotton Reproductive Development and Boll Distribution. Crop Sci. 2022, 62, 1559–1572. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, B.; Han, Y.; Wang, G.; Su, T.; Li, X.; Lei, Y.; Zhi, X.; Xiong, S.; Xin, M.; et al. Enhanced Cotton Yield and Fiber Quality by Optimizing Irrigation Amount and Frequency in Arid Areas of Northwest China. Agronomy 2024, 14, 266. [Google Scholar] [CrossRef]
- Lin, M.; Wang, L.; Lv, G.; Gao, C.; Zhao, Y.; Li, X.; He, L.; Sun, W. Deficit Irrigation Effects on Cotton Growth Cycle and Preliminary Optimization of Irrigation Strategies in Arid Environment. Plants 2024, 13, 1403. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.T.; Bauer, P.J. Genetic variation for yield and fiber quality response to supplemental irrigation within the Pee Dee Upland cotton germplasm collection. Crop Sci. 2007, 47, 591–597. [Google Scholar] [CrossRef]
- Karademir, E.; Karademir, C.; Arslan, D.; Uçar, Ö.O. Comparisons of yield, yield components and fiber technological characteristics of modern cotton varieties. J. Agron. Technol. Eng. Manag. 2020, 3, 388–401. [Google Scholar]
- Ds Raj, S.; Patil, R.S.; Patil, B.R.; Nayak, S.N.; Pawar, K.N. Characterization of early maturing elite genotypes based on MTSI and MGIDI indexes: An illustration in upland cotton (Gossypium hirsutum L.). J. Cotton Res. 2024, 7, 25. [Google Scholar] [CrossRef]
- Aziz, I.; Nazeer, W.; Faheem, M.; Basheer, M.; Bukhsh, A.; Bilal, N. Genotype × Environment Interaction for Fiber Quality and Yield Related Traits under Climatic Conditions of Dera Ghazi Khan Division. J. Bioresour. Manag. 2023, 10, 133–140. [Google Scholar]
- Patil, A.E.; Deosarkar, D.B.; Khatri, N.; Ubale, A.B. Comprehensive Investigation of Genotype-Environment Interaction Effects on Seed Cotton Yield Contributing Traits in Gossypium hirsutum L. Using Multivariate Analysis and Artificial Neural Network. Comput. Electron. Agric. 2023, 211, 107966. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Sun, H.M.; Yang, Y.R.; Li, Z.; Li, P.; Qiao, Y.T.; Zhang, Y.J.; Zhang, K.; Bai, Z.Y.; Li, A.C.; et al. Long-term nitrogen fertilizer management for enhancing use efficiency and sustainable cotton (Gossypium hirsutum L.). Front. Plant Sci. 2023, 14, 1271846. [Google Scholar] [CrossRef] [PubMed]
- Van Der Sluijs, M.H. Effect of nitrogen application level on cotton fibre quality. J. Cotton Res. 2022, 5, 9. [Google Scholar] [CrossRef]
- Singh, S.; Singh, V.V.; Choudhary, A.D. Genotype × environment interaction and yield stability analysis in multi environment. Trop. Subtrop. Agroecosyst. 2014, 17, 477–482. [Google Scholar] [CrossRef]
- Greveniotis, V.; Sioki, E. Genotype by environment interactions on cotton fiber traits and their implications on variety recommendation. J. Agric. Stud. 2017, 5, 86–106. [Google Scholar] [CrossRef]
- Greveniotis, V.; Sioki, E.; Ipsilandis, C.G. Estimations of fibre trait stability and type of inheritance in cotton. Czech J. Genet. Plant Breed. 2018, 54, 190–192. [Google Scholar] [CrossRef]
- Greveniotis, V.; Zotis, S.; Sioki, E.; Ipsilandis, C. Field Population Density Effects on Field Yield and Morphological Characteristics of Maize. Agriculture 2019, 9, 160. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Assessment of Interactions between Yield Components of Common Vetch Cultivars in Both Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 369. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. A Stability Analysis Using AMMI and GGE Biplot Approach on Forage Yield Assessment of Common Vetch in Both Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 567. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 805. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Estimations on Trait Stability of Maize Genotypes. Agriculture 2021, 11, 952. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Stability, the Last Frontier: Forage Yield Dynamics of Peas under Two Cultivation Systems. Plants 2022, 11, 892. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. Plants 2023, 12, 3769. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Stability Dynamics of Main Qualitative Traits in Maize Cultivations across Diverse Environments regarding Soil Characteristics and Climate. Agriculture 2023, 13, 1033. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. A Comparative Study on Stability of Seed Characteristics in Vetch and Pea Cultivations. Agriculture 2023, 13, 1092. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Korkovelos, A.; Kantas, D.; Zotis, S.; Ipsilandis, C.G. Modeling Stability of Alfalfa Yield and Main Quality Traits. Agriculture 2024, 14, 542. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Evaluation and Stability of Red and White Trifolium Species for Nutritional Quality in a Mediterranean Environment. Agriculture 2025, 15, 391. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Ipsilandis, C.G. Fiber Quality and Stability of Partially Interspecific Cotton Lines Under Irrigation and Nitrogen Environments. Appl. Sci. 2025, 15, 9684. [Google Scholar] [CrossRef]
- Bhailume, M.S.; Borole, D.N.; Magar, N.M. Correlation and path analysis between seed cotton yield and its attributing characters studies in deshi cotton. J. Cotton Res. 2016, 30, 29–31. [Google Scholar]
- Rehman, A.; Mustafa, N.; Du, X.; Azhar, M.T. Heritability and correlation analysis of morphological and yield traits in genetically modified cotton. J. Cotton Res. 2020, 3, 23. [Google Scholar] [CrossRef]
- Jangid, K.; Sangwan, O.; Sagar; Chaudhary, M.; Kumar, P. Correlation and Path Analysis for Seed Cotton Yield and Its Contributing Traits under Irrigated Conditions of Sirsa in Desi Cotton. J. AgriSearch 2022, 9, 129–132. [Google Scholar]
- Gendron, J.M.; Smith, C.W.; Hague, S. Correlations of Upland Cotton Within-Boll Yield Components with Fiber Properties in Breeding Populations with Improved Fiber Bundle Strength. Crop Sci. 2025, 65, e70024. [Google Scholar] [CrossRef]
- Sahar, A.; Zafar, M.M.; Razzaq, A.; Manan, A.; Haroon, M.; Sajid, S.; Rehman, A.; Ashraf, M.; Ren, M.; Shakeel, A.; et al. Genetic variability for yield and fiber related traits in genetically modified cotton. J. Cotton Res. 2021, 4, 19. [Google Scholar] [CrossRef]
- Reddy, K.B.; Reddy, V.C.; Ahmed, M.L.; Naidu, T.C.M.; Srinivasarao, V. Correlation and path coefficient analysis in upland cotton (Gossypium hirsutum L.). Int. J. Pure Appl. Biosci. 2015, 3, 70–80. [Google Scholar]
- Mert, M. Irrigation of cotton cultivars improves seed cotton yield, yield components and fiber properties in the Hatay region, Turkey. Acta Agric. Scand. Sect. B Soil Plant Sci. 2005, 55, 44–50. [Google Scholar]
- Zhao, F.; Huang, W.; Zhao, X.; Zhang, L.; Guo, Y.; Wang, H.; Wang, X.; Gao, Y. Enhancing nitrogen fertilizer productivity in cotton fields in southern Xinjiang by improving the soil microenvironment through water and nitrogen management. Agric. Water Manag. 2025, 312, 109442. [Google Scholar] [CrossRef]
- Killi, F.; Harem, E. Genotype × environment interaction and stability analysis of cotton yield in Aegean region of Turkey. J. Environ. Biol. 2006, 37, 427–430. [Google Scholar]
- Ahmad, S.; Abbas, G.; Tariq, M.; Fatima, Z.; Wahab, A.A.; Ahmed, M.; Wilkerson, C.J.; Hoogenboom, G. Nitrogen nutrition for cotton in a semi-arid environment. J. Agric. Sci. 2025, 163, 27–41. [Google Scholar] [CrossRef]
- European Parliament. Policies on Irrigation in the EU: EU CAP and Mediterranean Water Management; European Parliament Briefing; European Parliament: Strasbourg, France, 2019. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/644216/EPRS_BRI(2019)644216_EN.pdf (accessed on 1 October 2025).
- Xu, R.; Li, C.; Paterson, A.H. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS ONE 2019, 14, e0205083. [Google Scholar] [CrossRef] [PubMed]
- Psiroukis, V.; Papadopoulos, G.; Kasimati, A.; Tsoulias, N.; Fountas, S. Cotton Growth Modelling Using UAS-Derived DSM and RGB Imagery. Remote Sens. 2023, 15, 1214. [Google Scholar] [CrossRef]



| Code | Genotype Description | Parentage |
|---|---|---|
| M1 | Pa7 Line 1 | F1: G. hirsutum × G. barbadense × H. cannabinus: [(Carnak × 4S) × H. cannabinus] |
| M2 | Pa7 Line 2 | F1: G. hirsutum × G. barbadense × H. cannabinus: [(Carnak × 4S) × H. cannabinus] |
| M3 | Pa7 Line 3 | F1: G. hirsutum × G. barbadense × H. cannabinus: [(B403 × Coker) × H. cannabinus] |
| M4 | Pa7 Line 4 | F1: G. hirsutum × G. barbadense × H. cannabinus: [(Carnak × 4S) × H. cannabinus] |
| M5: Celia | Control Cultivar | Commercial G. hirsutum |
| Year | Total (Irrigation + Rainfall) (mm) | Rainfall (mm) | Irrigation (mm) | Irrigation Dates |
|---|---|---|---|---|
| 2006 | 233 | 108 | 125 | 5 May, 17 May, 2 August, 14 August, 23 August |
| 333 | 108 | 225 | 5 May, 17 May, 18 June, 2 August, 14 August, 23 August | |
| 433 | 108 | 325 | 5 May, 17 May, 18 June, 2 August, 14 August, 23 August | |
| 2007 | 321 | 202 | 119 | 26 April, 14 May, 6 July, 13 July, 23 July, 22 August |
| 421 | 202 | 229 | 26 April, 14 May, 6 July, 13 July, 23 July, 16 August, 22 August | |
| 521 | 202 | 329 | 26 April, 14 May, 6 July, 13 July, 23 July, 16 August, 22 August |
| Source of Variation | Plant Height (cm) | Seed-Cotton Yield (t ha−1) | Proportion (%) of First-Pick Cotton Yield | Boll Weight (g) | Lint Percentage (%) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| m.s | Partial η2 | m.s. | Partial η2 | m.s. | Partial η2 | m.s. | Partial η2 | m.s. | Partial η2 | |
| Environment (E) | 11,639.716 *** | 0.897 | 34.057 *** | 0.889 | 7023.422 *** | 0.847 | 42.547 *** | 0.794 | 53.120 *** | 0.309 |
| REPS/environments | 760.850 *** | 0.577 | 1.152 *** | 0.393 | 396.244 *** | 0.428 | 2.389 *** | 0.341 | 8.483 ns | 0.147 |
| Genotype (G) | 1773.131 *** | 0.515 | 11.510 *** | 0.683 | 2010.769 *** | 0.559 | 14.186 *** | 0.506 | 350.617 *** | 0.703 |
| Fertilization (F) | 3.756 ns | 0.001 | 0.161 ns | 0.007 | 30.422 ns | 0.005 | 1.800 ns | 0.032 | 1.800 ns | 0.003 |
| Environment × Genotype (E × G) | 323.807 *** | 0.492 | 1.132 *** | 0.515 | 232.286 *** | 0.422 | 2.399 *** | 0.464 | 10.337 * | 0.259 |
| Environment × Fertilization (E × F) | 133.849 * | 0.091 | 0.217 ns | 0.048 | 115.809 ns | 0.084 | 2.173 *** | 0.164 | 3.093 ns | 0.025 |
| Genotype × Fertilization (G × F) | 23.436 ns | 0.014 | 0.104 ns | 0.019 | 82.325 ns | 0.049 | 0.119 ns | 0.009 | 10.300 ns | 0.065 |
| Environment × Genotype × Fertilization (E × G × F) | 57.013 ns | 0.146 | 0.189 ns | 0.151 | 60.695 ns | 0.160 | 0.559 ns | 0.168 | 5.493 ns | 0.156 |
| Error | 61.881 | – | 0.198 | – | 58.831 | – | 0.512 | – | 5.490 | – |
| Genotypes | Plant Height (cm) | Seed-Cotton Yield (t ha−1) | Proportion (%) of First-Pick Cotton Yield | Boll Weight (g) | Lint Percentage (%) |
|---|---|---|---|---|---|
| M1 | 24 | 6 | 14 | 6 | 94 |
| M2 | 15 | 6 | 14 | 5 | 188 |
| M3 | 23 | 5 | 33 | 5 | 135 |
| M4 | 22 | 3 | 14 | 4 | 92 |
| M5 | 51 | 28 | 129 | 24 | 490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Korkovelos, A.; Ipsilandis, C.G. Yield Components Analysis in Partially Interspecific Lines of Cotton and Irrigation-Nitrogen Effects. Appl. Sci. 2025, 15, 11746. https://doi.org/10.3390/app152111746
Greveniotis V, Bouloumpasi E, Skendi A, Korkovelos A, Ipsilandis CG. Yield Components Analysis in Partially Interspecific Lines of Cotton and Irrigation-Nitrogen Effects. Applied Sciences. 2025; 15(21):11746. https://doi.org/10.3390/app152111746
Chicago/Turabian StyleGreveniotis, Vasileios, Elisavet Bouloumpasi, Adriana Skendi, Athanasios Korkovelos, and Constantinos G. Ipsilandis. 2025. "Yield Components Analysis in Partially Interspecific Lines of Cotton and Irrigation-Nitrogen Effects" Applied Sciences 15, no. 21: 11746. https://doi.org/10.3390/app152111746
APA StyleGreveniotis, V., Bouloumpasi, E., Skendi, A., Korkovelos, A., & Ipsilandis, C. G. (2025). Yield Components Analysis in Partially Interspecific Lines of Cotton and Irrigation-Nitrogen Effects. Applied Sciences, 15(21), 11746. https://doi.org/10.3390/app152111746

